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RFE: Machine Learning for Student Reasoning during 
Challenging Concept Questions - Year 2 

 
Introduction 
 
In this NSF Grantee Poster Session Paper, we outline the progress of a collaboration funded by 
NSF Research in the Formation of Engineers (RFC) 2226553 between engineering education 
researchers at Tufts University and machine learning researchers at University of Massachusetts 
Lowell to use Generative AI (GenAI) to automate qualitative coding and analysis of short-
answer justifications to concept questions. Concept questions, sometimes called ConcepTests 
[1], [2], are single-right-answer multiple-choice questions that assess student understanding of 
recently learned challenging concepts. Instructors sometimes ask students to supply short-answer 
justifications to explain their answer choice reasoning. These instructional practices have been 
shown to improve student outcomes and conceptual understanding [2]-[4]. Analysis of these 
justifications provides insight into student thinking but can be laborious and time-consuming for 
instructors and researchers. Machine learning (ML) has been used for adaptive learning 
experiences, lesson planning, real-time tutoring, grading, and analysis of short- and long-answer 
student text [5]-[7]. However, too often, ML approaches in education research are focused on the 
products of learning rather than the processes of learning. Here, we explore the use of state-of-
the-art (SOTA) large language models (LLMs) to automate the coding and analysis of student 
thinking within short-answer justifications to concept questions collected through an educational 
technology tool.  
 
Background 
Concept Questions and Short-Answer Justifications 
 
Concept questions [1], [2] are single-right-answer multiple-choice questions that assess students’ 
understanding of recently learned challenging concepts. Questions are designed to help 
instructors enact social, cognitive, and epistemological goals around teaching and learning [8]. 
Researchers have observed that using concept questions within active learning pedagogies has 
improved student outcomes, promoted conceptual understanding, and encouraged engagement in 
the classroom [2]. Instructors sometimes pair concept questions with a short-answer justification, 
a low-stakes writing task that asks students to explain their answer choice reasoning. Work has 
shown that writing justifications promotes conceptual understanding and prepares students for 
in-class discussions [3], [4]. Thus, analysis of justifications can give insight into student 
thinking, but it can require a lot of time and resources, prompting our motivation to use GenAI to 
supplement analysis.   
 
GenAI in Education Research  
 
ML in education has been implemented to provide adaptive learning experiences, lesson 
planning, real-time tutoring, grading, and analysis of short- and long-answer student text [9]. The 
emergence of transformer-based generative LLMs [10], [11] have emerged as state-of-the-art in 
understanding and generating natural language text. The use of LLMs to analyze student text is 
emergent, but work that has utilized GPT-3 [10], GPT-4 [11], and Llama-2 [12] show promise in 
their ability in grading and rubric-based analysis tasks [13], [14]. We also aim to take a human-



centered AI [15] approach, as these tools can provide assistance with time-consuming tasks and 
provide another perspective on qualitative coding and analysis.  
 
Methods 
Data Collection 
 
Short-answer explanations were collected through the Concept Warehouse (CW) [16], a free, 
web-based active learning tool and content repository, between 2012 and 2024. Students are 
from a diverse array of two- and four-year institutions. Instructors delivered concept questions in 
the way they deemed fit for their classes. Active data collection occurred for statics and 
dynamics from 2021 to the present, while historical data from the CW was used for 
thermodynamics questions. Questions ranged from 49-80% correctness; further details are 
provided in Table I and Figures 1 and 2.  

TABLE I 
CONCEPT QUESTIONS ANALYZED IN PROJECT 

Domain Question ID Topic No. Responses 
Statics 4975 3-D Moments 54 

4976 3-D Moments 53 
Dynamics 5703 Friction 240 

6141 Moment of Inertia 106 
Thermodynamics 1072 Enthalpy of mixing ideal gases 1396 

1073 Entropy of mixing ideal gases 1387 
1287 Enthalpy of mixing two-non-ideal liquids 904 

 
 

Fig. 1. Mechanics Concept Questions (A) 4975, (B) 4976, (C) 5703, and (D) 6141 
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Fig. 2. Thermodynamics Concept Questions (A) 1072, (B) 1073, and (C) 1287. 

Data Analysis 
Qualitative  
 
Only students who consented had their responses analyzed. Qualitative coding of responses was 
done in a two-stage coding cycle [17]. The first cycle consisted of emergent coding that looked 
for cognitive resources in their responses. The second cycle involved iterating and refining these 
emergent codes and then generating salient themes. Coding practices were discussed amongst the 
team to promote reliability.  
 
Machine Learning 
 
This task was treated as a sequence labeling problem where the machine attaches a label to spans 
of student text. We’ve utilized various models in this project, including Text-to-Text 
Transformer (T5)-base, T5-large [18], Mixtral of Experts (MoE) [19], GPT-3 [10], GPT-4 [11], 
GPT-4o-mini [20], Llama-3-8B [21], and Phi-3.5-mini [22]. Transfer learning via fine-tuning 
and in-context learning were used to simplify the training process. T5, MoE, Llama-3-8B, and 
Phi-3.5-mini utilized transfer learning via fine-tuning, where the models are pre-trained on large 
amounts of text and then further fine-tuned using our datasets.  GPT-3, GPT-4, and GPT-4o-mini 
used in-context learning where the model is prompted using a few samples and asked to code 
responses. There was no training done for models using in-context learning. An Exact Match 
metric was used to compare the machine-coded responses to human-coded responses, evaluating 
how many codes were semantically identical. Precision, recall, and F1 scores were also 
calculated.  
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Findings 
Year 1  
 
Building on our previous work [23], we automated coding using GPT-4 [11], MoE [18], and 
ATLAS.ti’s Interactive Coding tool powered by OpenAI [24] on thermodynamics questions 
about the entropy and enthalpy of mixing ideal gases (QIDs 1072 and 1073) [25], [26]. The 
manual analysis found that students use three main cognitive processes to formulate their 
responses: identification, comparison, and inference. Within these main cognitive processes, we 
group smaller cognitive resources, or ideas, that further describe the qualities of these processes. 
For MoE, the highest F1 score of 62% was achieved using a combined training set (enthalpy and 
entropy-coded responses). For GPT-4, the highest F1 score of 48% was achieved with enthalpy 
in-context examples. Finally, ATLAS.ti achieved an F1 score of 10%.  
 
Year 2 
 
To further investigate the ability of SOTA LLMs to automate the coding of short-answer 
justifications, we analyzed student thinking in all concept questions mentioned above. We then 
compared the ability of dense (GPT-4, GPT-4o-mini, Llama-3-8B, Phi-3.5-mini) and sparse 
(MoE) LLMs to automate the coding of cognitive resources within the same question, within the 
domain (e.g., train on 1287 in thermodynamics and test on 1073 in the thermodynamics test set), 
and across domains (e.g., train on thermodynamics question and test on a statics or dynamics 
question). This study revealed that MoE and Llama-3 performed the best with in-domain coding 
tasks, while GPT-4 and GPT-4o-mini generally performed better for cross-domain tasks.    
 
Implications and Future Directions 
 
This work contributes to the body of work implementing GenAI in education research. We aim 
to develop an AI assistant for the CW, which automates coding and reports on patterns and 
trends within justifications. This tool could supplement analysis to allow instructors to gain 
insight from responses through patterns and trends, and give researchers access to coded 
responses on a scale not feasible with manual coding. This will require the design of a user 
interface, setting up dedicated hardware for high-performance computing, and user experience 
research for a beta version of the tool.  
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