
Paper ID #47235

BOARD #139: WIP: Interactive Software Platform for Undergraduate Nuclear
Engineering Education

Jonathan William Ross, Drexel University

Jonathan Ross completed his studies for the BS and MS degrees at Drexel University. He is currently
pursuing a PhD with the Center for Electric Power Engineering at Drexel. His current research interests
include distributed generator control in power distribution systems, improving numerical methods for
solving the power flow equations, and creating educational tools for engineering undergraduates.

Dr. Karen Miu Miller, Drexel University

Dr. Karen Miu Miller received her B.S., M.S. and Ph.D. from Cornell University. She is currently a
Professor in the Department of Electrical and Computer Engineering at Drexel University. Her educational
research and teaching interests has focused on electric power and energy delivery. systems.

Dr. Christopher Wayne Peters, Drexel University

Dr. Peters is currently a Teaching Professor in the Electrical and Computer Engineering department at
Drexel University. His interests are low-cost simulations for educational use and gaming in the classroom.

©American Society for Engineering Education, 2025

WIP: Interactive Software Platform for Undergraduate Nuclear

Engineering Education

Abstract

The energy sector is experiencing a revival in interest toward nuclear power as an attractive

compromise between fossil fuels and renewables, particularly to address concerns about energy

independence and carbon emissions. Conceptually, nuclear engineering fundamentals are

challenging to teach to undergraduates as it requires a multi-disciplinary approach. Yet, it is a

field that continues to power much of the world. Therefore, there is a continued need to educate

engineering students in the field of nuclear power; and this paper presents a software emulation

tool for nuclear power plant design. Engineering undergraduates can use the platform to explore

fundamental nuclear engineering concepts and better prepare themselves for careers in and

around nuclear power. A high-level controls interface allows for real-time adjustments by

students, and, for detailed or long-term controls, the Python source code is also provided to the

students. Modeling of the different plant subsystems and their interactions are illustrated and

discussed. Sample experimental procedures are discussed and results from the simulator are

presented. In summary, with the goal of increasing nuclear engineering education beyond post-

graduate and on-the-job training, the interactive tool allows for hands-on experimentation at

different levels of detail. Adoption of the tool into undergraduate power and energy courses seeks

to accelerate undergraduate students’ understanding of the integrated behavior between key

disciplines of nuclear power plant design.

1 Introduction

Nuclear power plant design requires cohorts of engineers trained in various aspects of reactor

theory, thermal-hydraulic analysis, and power system stability. Several fields of study must

synergize to effectively harness the power of the atom; yet most undergraduates are unfamiliar

with the fundamentals of atomic physics, radiation interaction, and basic reactor theory. Thus, a

layered, hands-on simulation approach can provide confidence and foster proficiency in key

educational topics across multiple disciplines.

To this end, one can find several institutions whose organizational goals include the advancement

of nuclear education and safety with simulation tools. The Nuclear Energy Agency (NEA)

maintains a catalogue of miscellaneous computer programs that are available to the public. As a

forum for discussion on these programs and to champion further development, the NEA also

recently started hosting the International School on Simulation of Nuclear Reactor Systems

(SINUS). This new annual program seeks to develop modeling/simulation tools in conjunction

with validation/verification methodologies. Participants in the program “engage in a dynamic,

hands-on learning experience through self-paced project assignments that introduce them to the

cutting-edge single- and multi-physics software packages” [1]. Furthermore, the International

Atomic Energy Agency (IAEA) has been committed to developing and distributing its

comprehensive power plant simulation software packages, such as the Advanced Two-Loop

Large PWR (Korean-OPR 1000), Russian-type PWR (VVER-1000), and Integral Pressurized

Water Reactor (SMR) [2]. The IAEA programs are highly detailed and are designed to both

demonstrate normal plant behavior and illustrate various fault scenarios. Similar work was

conducted by Ahnert et al. in [3] by implementing a detailed graphical interface for a simulation

of the Jose Cabrera Nuclear Power Plant. The interface included an interactive technical diagram

of the plant, alarm panels for different circuits, and lifelike controls/instrumentation. Classroom

feedback on [3] was positive from students and instructors alike, but this type of simulator is

only available to specific universities.

While programs exist that are designed to handle detailed nuclear design, safety, and licensing,

these tools are often expensive, closed to the public, and/or go far beyond the scope of a multi-

disciplinary undergraduate reactor theory course [4]. There are several open-source options

available that can simulate independent phenomena [1], [5] and others that capture some

integration between subsystems, such as the research reactor simulator in [6], and the reactor

kinetics package in [7].

This paper presents an interactive software package with a comprehensive commercial reactor

simulator that was specifically designed for an introductory nuclear reactor theory course at

Drexel University [8]. ECEP-402: Theory of Nuclear Reactors is designed for 3rd- and 4th-year

electrical, mechanical, and chemical engineering students who have some background in basic

quantum mechanics and differential equations. Because our institution follows an 11-week

course calendar and does not have a nuclear engineering major, our reactor theory course covers

many topics in a short time span; it was necessary to develop a new simulator that caters to the

specific mathematical models presented in our current course materials.

Specifically, because of its widespread use, the pressurized water reactor (PWR) plant was

chosen for the platform. Models for the reactor neutronics, control rods and chemical shim,

fission product concentrations, coolant loops, steam generator, and steam turbine are developed

and integrated in a Python environment. Each of the PWR subsystems align with corresponding

lecture modules from our reactor theory course.

Students work through a Node-RED graphical user interface (GUI) to control the simulation in a

real-time setting and perform experiments, like changes in demand and moving of control rods.

Students may also manipulate the reactor design criteria and initial conditions in the Python case

file. Programmatically interacting with the simulator allows for more detailed analyses, such as

criticality and prompt criticality, coefficient of reactivity, and Xenon/Samarium precluded

startup. The existing final project for our course tasks students with developing a static PWR

design based on given design constraints. This simulator enables students to perform transient

experiments with their designs too, expanding the range of procedures they can perform.

2 Mathematical Modeling

The interactive tool simulates a commercial PWR plant by modeling several key subsystems as

groups of differential algebraic equations (DAEs) and then integrating them simultaneously. The

process begins in the reactor core with the nuclear chain reaction. Energy from fission transfers

from the fuel to the coolant in the primary loop, and the primary coolant transfers energy to the

secondary coolant in the steam generator. Energy from the steam is then transferred to the prime

mover of an electrical generator via the steam turbine system and then flows out to the electrical

grid.

The integrated DAE model is translated to a system of ordinary differential equations (ODEs) by

index reduction [9]. Since the plant exhibits behaviors on a wide range of time scales, the

variable step-size stiff/non-stiff ODE solver LSODA is used to determine the trajectory of the

state variables at each step [10]. To foster an interactive software package, a real-time integration

technique is implemented to keep the simulation running in time with the system clock [11].

Measuring the change in time since the start of the previous integration step and using this

difference as the target time for the next step enables the simulation to remain synchronized. A

multiplier may be applied to this duration to speed up or slow down the simulation; for instance,

a student may wish to run the program in double time to observe a longer-term behavior of the

plant while keeping the program interactive.

2.1 Nuclear Chain Reaction Model

The reactor core is modeled as a finite cylinder consisting of a heterogeneous lattice of uranium

dioxide (UO2) fuel rods and pressurized water which serves as both the neutron moderator and

primary coolant. Figure 1 contains a block diagram that visualizes the relationships between the

components of the neutron chain reaction.

Figure 1. Nuclear Chain Rection Model Block Diagram.

The concepts of criticality, reactivity, and prompt criticality are crucial for students to understand

the behavior of the neutron chain reaction. Whether the chain reaction can sustain itself and how

fast the reaction rate changes depend on the criticality 𝑘 of the core. The reaction rate accelerates

if 𝑘 > 1 and decelerates if 𝑘 < 1. However, it is often useful to use the reactivity metric 𝜌 =
(𝑘 − 1)/𝑘 instead of criticality since 𝜌 describes a fractional deviation from the critical state.

This metric also makes it easier to identify the prompt criticality condition, in which the core is

critical on prompt neutrons alone rather than on both prompt and delayed neutrons. Criticality is

determined from Lamarsh’s model of a heterogeneous cylindrical core [12] and then transformed

to reactivity for use in the simulation.

To control the reactor, both control rods and chemical shim are used to absorb neutrons and slow

the chain reaction. Control rods are modeled as finite, cylindrical neutron absorbers radially

displaced from the center of the core, and they absorb essentially all incident neutrons (black

rods). Boric acid is used as chemical shim and homogeneously mixed into the primary coolant.

The worths of the rods and chemical shim are subtracted from the reactor’s reactivity [13].

As the uranium U-235 nuclear fuel splits during fission it yields several daughter isotopes.

Namely, iodine I-135 and promethium Pm-149 may both be produced from fissions, and they

decay respectively into xenon Xe-135 and samarium Sm-149. Both decay products slow down

the chain reaction as a result of very large neutron capture cross-sections [12]. The worths of

these poisons are also subtracted from the reactor’s reactivity to determine the net reactivity.

The six-group point kinetics equations are used to model the neutron concentrations in the core

over time. The state variables include the prompt neutron concentration and the concentrations of

six groups of delayed neutrons [13]. As the net reactivity of the core depends on several other

state variables in the whole plant, it is considered an algebraic variable for the simulation. The

neutron source term is considered a control variable. Control rod drive and boron drip rates are

also control variables for the plant but are embedded within the net reactivity expression. The

thermal power generated from fission is a function of the thermal neutron flux, which is in turn a

function of the prompt neutron concentration.

2.2 Thermo-Mechanical Energy Transfer Model

The thermo-hydraulic loop consists of a primary loop with pressurized liquid water, and a

secondary loop in which feedwater transitions to steam and proceeds to drive the steam turbine.

Figure 2 shows the relationships between the lumps of the thermo-mechanical energy transfer

model.

Figure 2. Thermo-Mechanical Energy Transfer Model Block Diagram.

Overall heat transfer coefficients are calculated using the physical and geometric properties of

the fuel assemblies, primary coolant, steam generator tube metal, and secondary coolant. These

coefficients along with the mass flow rates of the primary and secondary coolant loops determine

the thermodynamic relationships between the average temperatures of the fuel and the coolant

lumps [14].

The mechanical torque applied to the prime mover depends on both the steam pressure and steam

valve position [15]. Any instantaneous difference between the mechanical torque and electrical

demand causes the speed of the prime mover to change. To maintain synchronicity with the grid,

the steam governor controls the steam valve with a simple proportional-integral (PI) controller to

drive the difference between the mechanical power and electrical demand to zero [16].

Overall, the reaction controls and generator controls influence the behavior of the state and

algebraic variables for each subsystem. Simulation outputs are representative of measurable

phenomena, including thermal neutron flux, reactor period, average fuel and coolant lumps

temperatures, steam pressure, steam valve coefficient, shaft frequency, and turbine power. The

remaining states are, of course, numerically calculated over time and could be accessed by

programmatically interfacing with the simulator. However, students are expected to use the

mathematical relationships introduced in the lecture materials to infer these other parameters,

such as the net reactivity over time. The selected inputs and outputs are displayed on an

interactive GUI for students to monitor and control.

3 Software Overview

3.1 Organization of Software Components

The software package consists of a Python-based backend and a GUI that is accessible by web

browser and managed by a Node-RED flow [17]. Figure 3 illustrates the relationships between

the software components.

Figure 3. Illustration of Interaction Between Software Components.

Numerical simulation of the PWR plant is handled by a Python program that constantly runs in

the background. Sending a pause signal causes the current state of the plant to be saved and stops

the simulation loop. The simulation always begins in a paused state and waits to receive a resume

signal from the GUI. While the simulation is running, the state, algebraic, and control variables

are periodically recorded to an SQLite database that students can pull from the server to retrieve

their data at the end of each experiment.

At the same time, the Python program manages a WebSocket server to mediate incoming

requests for the system measurements, as well as convey control signals from the user to the

simulation loop. This arrangement allows students to remotely access and manage their

simulation(s) remotely over the Internet. Separately, Node-RED is used to both manage the GUI

and make requests to the WebSocket server. Students may access the GUI through a web browser

by navigating to a specified URL. The use of Node-RED also allows for rapid deployment of

additional dashboards that are individually tailored for specific experiments.

3.2 Graphical User Interface Demonstration

Figure 4 shows the GUI during a sample experiment. The leftmost column of the GUI contains

the simulation controls. At the top of this section are elements for managing the program, such as

a pause/resume switch, a dropdown menu for the time multiplier, a button to reset the charts, and

a button to reset the simulation to its full-power/steady-state initial conditions.

Figure 4. Sample Load-Following Demand Change Experiment Screenshot.

Underneath these are the actual control signals for the plant. The nuclear reaction controls

include the sliders for the neutron source term, the boric acid drip rate, the control rod drive

signal, and the reactor SCRAM button. The generator controls include the numeric inputs for the

electric demand and synchronous frequency setpoints.

The remaining three columns provide measurements for select system state and algebraic

variables.

• Nuclear Chain Reaction

o Thermal neutron flux chart

o Control rod insertion fraction chart

o Boric acid concentration

o Reactor period gauge

• Coolant Transport

o Average fuel temperature

o Average, hot leg, and cold leg primary coolant temperatures

o Steam pressure in secondary loop

• Synchronous Generator

o Steam valve coefficient

o Turbine shaft frequency

o Turbine mechanical torque and electrical demand

Hovering the mouse cursor over a point on a plot gives a tooltip which displays the values of

each series at that point in time. This is particularly useful for performing calculations and

observing relatively small changes to the states.

4 Experimental Procedures

The software package allows for a variety of experiments that help students understand the

principles of reactor theory and operation. The web browser GUI best serves students performing

short-term transient analyses, such as:

• Adjustments to the electrical demand

• Control rod movements and rod worth estimations

• Approach to criticality using control rods and/or chemical shim

• Short-term behavior after reactor SCRAM

Experiments that require complicated/simultaneous control adjustments or long-term transient

analyses are better served by writing scripts that directly interact with the Python simulator,

including but not limited to:

• Long-term fission products transients in response to demand changes

• Long-term behavior after reactor SCRAM

o Iodine/xenon pit illustrations

o Equilibrium samarium after shutdown

• Analyzing moderator coefficient of reactivity for different chemical shim concentrations

The default values in the design file are specified to emulate the behavior of a 3,800 MW-

thermal commercial PWR plant. Students may also customize the design of the plant by editing

the design file in the Python portion of the program. For instance, the reactor theory course

instructs students in the calculation of thermo-hydraulic time constants as a function of both

physical properties like specific heat capacity, as well as design parameters, like coolant mass

flow rate, conduction heat transfer surface areas, etc. The course also instructs students to

calculate reactor reactivity based on fuel enrichment, fuel rod radius and lattice pitch, core

height-to-diameter ratio, etc. Students must then decide on number, size, and placement of

control rods to maintain an appropriate shutdown margin, as well as an appropriate concentration

of chemical shim so as to enable long-term reactivity control without inducing positive

temperature feedback.

4.1 Load-Following Demand Change Experiment

Most commercial reactors are designed and operated to supply the base load for a variety of

fueling, thermal, and economic reasons. However, showing an example of load-following

behavior provides students with a holistic understanding of the relationships between the plant

subsystems, especially those of negative reactivity feedback and conservation of energy. Figure 4

from the previous section illustrates this experiment.

For this experiment the simulated reactor begins at full-power/steady-state conditions. Students

slowly ramp down the electric demand by about 5% over the course of a minute. Once the plant

appears to be at its new steady-state, they then perform a step decrease in the electric demand

another 5% and allow the plant to once again approach a steady-state.

Students are provided with key physical and geometric design parameters of the plant and

expected to perform basic thermal calculations using their data. Students are also expected to

draw their own block diagram of the plant and use it in conjunction with their data to

explain/demonstrate:

• Change to the thermal power in the core,

• Thermal efficiency of the plant is not necessarily constant,

• Moderator temperature reactivity feedback working from the generator back to the core.

4.2 Control Rods Experiment

The control rods experiment illustrates the effect of control rod adjustments on the behavior of

the reactor over short periods of time. For this experiment, the simulated reactor begins at full-

power/steady-state conditions with the control rods all set to the same position. Figure 5 shows

two subsequent control rod insertions as would be expected in the first part of this experiment.

Figure 5. Sample Control Rods Experiment Part 1 Screenshot.

First the students decrease the time scale to ¼ time so that the prompt jump can be more easily

seen on the neutron flux graph. Then students inject a rod drive control signal to rapidly insert

the control rods by a specified small percentage of the core height. Using the prompt jump

approximation [18] and the change in position of the rods, students use their data to estimate the

incremental worth of all the rods about their starting positions.

The second part of the experiment returns the time scale to normal and starts after the reactor has

returned to a steady-state via its own temperature feedback. Students are then tasked with

reaching a target pressure in the steam generator by only adjusting the control rods.

5 Future Work and Conclusions

The most immediate need for future work is to test the software package in a classroom setting.

Feedback from students and evaluations from instructors would both support the implementation

of this package in the existing undergraduate curriculum, as well as inform the software

developers of key aspects to improve. Plans are being made to develop and deploy student

assessments for the tool within an introductory reactor theory course and an introductory power

systems course at our institution.

Further, plans are in place to continue development of the PWR simulator. Perhaps the most

obvious future works involve adding further subsystems to the plant, such as the pressurizer and

its control, as well as a simple decay heat model to demonstrate the need for long-term cooling

after shutdown. Several key modeling simplifications imposed on the physical laws driving the

simulation are summarized in Table 1. These assumptions stem from both the desire to target a

3rd- and 4th-year undergraduate engineering audience, especially those without a nuclear

background, as well as to align with the reactor theory course lecture materials and expected

prerequisite knowledge.

Table 1. Modeling Assumptions and Suggestions for Future Work.

Subsystem Assumptions Notes & Suggestions

Reactor Core

• Constant fuel mass (no

burnup)

• Neighboring rods do not affect

each other’s worth

• Heat transfer with average fuel

and coolant temperatures

• Additional fission products may be

considered for burnup and decay

heat considerations

• Incorporate rod utilization

• Consider effects of non-uniform

thermal flux distribution

Coolant Loops

• Constant primary coolant

pressure and mass flow rate

• Inlet liquid mass flow rate

perfectly matches outlet vapor

mass flow rate

• Critical steam flow assumption

• Incorporate pressurizer and

primary coolant pump models

• Model of feedwater pump, water

level in steam generator, etc.

Electrical

generator

• Real power injection tied to an

infinite bus

• Detailed generator model required

for integration with realistic

electrical network

This paper presents a physics-based interactive program that emulates a PWR plant. Students can

remotely access the program and control the simulation in real-time. The mathematical models

can accommodate normal plant operations and are simplified to be approachable by an

undergraduate audience with a general engineering background. Students can reinforce the

fundamental nuclear engineering concepts they learn in the classroom with software laboratory

assignments designed around this software package. The hands-on aspects of the program help

engage students and can further inspire them to take an interest in nuclear power.

References

[1] Nuclear Energy Agency, “International school on simulation of nuclear reactor systems

(SINUS),” oecd-nea.org, 2025. [Online]. Available: https://www.oecd-

nea.org/jcms/pl_88778/international-school-on-simulation-of-nuclear-reactor-systems-

sinus.

[2] International Atomic Energy Agency, “Nuclear reactor simulators for education and

training,” iaea.org, 2024. [Online]. Available: https://www.iaea.org/topics/nuclear-

power-reactors/nuclear-reactor-simulators-for-education-and-training.

[3] C. Ahnert, D. Cuervo, N. Garcia-Herranz, J. M. Aragones, O. Cabellos, E. Gallego, “E.

Minguez, A. Lorente, D. Piedra, L. Rebollo, and J. Blanco, “Education and training of

future nuclear engineers through the use of an interactive plant simulator,” in

International Journal of Engineering Education, vol. 27, no. 4, pp. 722-732, 2011.

[4] U.S. Nuclear Regulatory Commission, “Computer codes,” NRC.gov, 2024. [Online].

Available: https://www.nrc.gov/aboutnrc/regulatory/research/safetycodes.html.

[5] P. K. Romano, N. E. Horelik, B. R. Herman, A. G. Nelson, B. Forget, and K. Smith,

“OpenMC: a state-of-the-art Monte Carlo code for research and development,” in

Annals of Nuclear Energy, vol. 82, Aug. 2015.

[6] J. Malec, D. Toskan, and L. Snoj, “PC-based JSI research reactor simulator,” in Annals

of Nuclear Energy, vol. 146, Oct. 2020.

[7] K. Huff, “PyRK: a Python package for nuclear reactor kinetics,” in Proceedings of the

14th Python in Science Conference, 2015.

[8] C. W. Peters, University Course, Title: “Theory of Nuclear Reactors.” ECEP-402,

College of Engineering, Drexel University, Philadelphia, PA. 2022.

[9] U. M. Ascher and L. R. Petzold, Computer methods for ordinary differential equations

and differential-algebraic equations, Philadelphia, PA: Society for Industrial and

Applied Mathematics, 1998.

[10] A. Hindmarsh, “Odepack: Fortran ode solvers,” Computing, 2022. [Online]. Available:

https://computing.llnl.gov/projects/odepack.

[11] J. W. Ross, “Remote monitoring and control of a simulated nuclear reactor,” M.S.

thesis, Drexel Univ., Philadelphia, PA, 2022.

[12] J. R. Lamarsh and A. J. Baratta, Introduction to nuclear engineering, 3rd ed., Upper

Saddle River, NJ: Prentice Hall, 2009.

[13] E. E. Lewis, Fundamentals of nuclear reactor physics, Amsterdam: Academic Press,

2008.

[14] T. W. Kerlin and B. R. Upadhyaya, Dynamics and control of nuclear reactors, London:

Elsevier Academic Press, 2019.

[15] S. E. Arda, “Implementing a nuclear power plant model for evaluating load-following

capability on a small grid,” M.S. thesis, Arizona State Univ., 2013.

[16] J. D. Glover, T. J. Overbye, and M. S. Sarma, “Transient Stability,” in Power System

Analysis & Design, 6th ed., Boston, MA: Cengage Learning, 2017, pp. 669–737.

[17] OpenJS Foundation & Contributors, “Node-RED,” nodered.org, 2024. [Online].

Available: https://nodered.org.

[18] G. Wakabayashi, T. Yamada, T. Endo, and C. H. Pyeon, Introduction to Nuclear

Reactor Experiments, Singapore: Springer 2022.

