
Paper ID #47142

Optimizing auto-graded programming activities: A data-driven approach for
presenting assessments in a scaffolded format.

Jamie Emily Loeber, zyBooks, A Wiley Brand

Jamie Loeber is an Assessment Specialist at zyBooks, a Wiley Brand. She earned her B.S. in Computer
Science at the University of California, Irvine. She has taught programing and machine learning to
students across the globe. Jamie is passionate about improving computer science education and creating
better learning experiences in STEM.

Ms. Efthymia Kazakou, zyBooks, A Wiley Brand

Efthymia Kazakou is Sr. Assessments manager at zyBooks, a startup spun-off from UC Riverside and
acquired by Wiley. zyBooks develops interactive, web-native learning materials for STEM courses.
Efthymia oversees the development and maintenance of all zyBo

Dr. Yamuna Rajasekhar, zyBooks, A Wiley Brand

Yamuna Rajasekhar is Director of Content, Authoring, and Research at zyBooks, a Wiley Brand. She
leads content development for the Computer Science and IT disciplines at zyBooks. She leads the
authoring and pedagogy team at zyBooks, developing innovative learning solutions that drive measurable
student success. She is also an author and contributor to various zyBooks titles. She was formerly an
assistant professor of Electrical and Computer Engineering at Miami University. She received her M.S.
and Ph.D. in Electrical and Computer Engineering from UNC Charlotte.

Nicole Kehaulani Collins, zyBooks, A Wiley Brand

Nicole Collins is an Author Trainer and former Assessment Specialist at zyBooks, a Wiley Brand. She
earned her B.S. in Computer Science and her M.Ed. in Learning, Design & Technology from UNC
Charlotte. Her professional interests include computing education, online learning, educational technology,
instructional design, curriculum development, and DEI in STEM. Nicole is passionate about creating
engaging and effective learning experiences for students, leveraging her expertise in instructional design
and technology to enhance educational outcomes for STEM disciplines.

Dr. Annie Hui, zyBooks, A Wiley Brand

Annie Hui is a zyBooks assessment specialist. She has 15 years of experience teaching computer science,
information technology, and data science courses, in both in-person and online modes. She has taught in
Northern Virginia Community College and George Mason University. She specializes on course design
to maximize student engagement and success.

©American Society for Engineering Education, 2025

Optimizing auto-graded programming activities: A data-driven
approach for presenting assessments in a scaffolded format

Abstract

Research has shown that in introductory programming courses, breaking complex concepts into
smaller, manageable units is highly effective. Additionally, using scaffolding techniques helps
learners progressively develop programming skills. However, determining the appropriate size of
each conceptual unit depends on factors such as the learners' aptitude and experience.

In this paper, we present a data-driven approach to designing auto-graded activities in our online,
interactive STEM textbooks, focusing on effectively breaking down complex concepts into
smaller, more achievable steps for learners. We analyzed two types of activities: 1) activities on
challenging topics as reflected by high struggle rates and 2) activities on introductory topics with
lower struggle rates, but where students still needed assistance based on their feedback and
incorrect submissions as they began learning programming. For both types of activities we
examined multiple metrics such as students' average completion rates and common errors.

Based on these insights, we further refined the activities by dividing them into smaller
components and measured the impact on student struggle rates. By comparing the metrics before
and after these changes, we identify key best practices for designing and improving auto-graded
programming problems, aimed at enhancing student learning outcomes in programming courses.

Introduction

Classroom-based learning can be distilled into a three-step process: 1) the instructor introduces
the materials to be learned, 2) the learner completes assessments to demonstrate their
understanding, and 3) the instructor provides feedback based on the learner's performance. When
steps two and three are repeated in an iterative cycle, the learner’s success typically improves
with each iteration. This cycle of assessment and feedback forms the basis of effective learning
[1], [2].

However, in today’s classroom, a few common challenges exist that hinder the learner’s success.
A common issue is the disconnect between the materials and the assessments, leading to
struggles and the inability to complete the assessments. Another frequent problem is the lack of
timely and suitable feedback on the learners' assessments which prevents learners from
identifying and correcting their mistakes. These issues are particularly common in STEM
education and can cause frustration, anxiety, and low performance that may eventually result in
increasing class drop rates [3], [4]. Fortunately, these challenges can be mitigated by improving
the design of the course material and with the assessments, and along with improving feedback
provided to students to better meet their needs.

In the next two sections, we explore key factors from the literature that can enhance the design of
course materials and their assessments. Additionally, we outline the motivation behind this study
and introduce our approach to authoring and improving course content.

Scaffolding

An important characteristic of an effective learning activity includes an appropriate level of
difficulty that builds upon prior knowledge through scaffolding. Scaffolding is an instructional
approach that involves breaking down learning tasks into smaller, more manageable pieces and
providing support at each step. In the context of introductory programming courses, scaffolding
helps students build their skills incrementally by gradually increasing the complexity of
programming tasks. Scaffolded activities present problems in a step-by-step manner, where each
step builds upon the previous one. Research indicates that this method is highly effective in
designing homework assignments, as it helps students retain concepts more effectively [5] - [8].
By significantly reducing the mental effort required to process information (known as "cognitive
load") [9], scaffolding increases student interest and learning potential.

By using scaffolding, educators can reduce cognitive load and struggle, thereby increasing
student interest and learning potential. This approach not only helps students understand
complex programming concepts but also boosts their confidence and motivation to pursue further
studies in computer science [10].

Feedback

In addition to scaffolding, an effective learning activity incorporates timely and constructive
feedback that is both immediate and clear. Timely feedback allows students to address mistakes
while the material is still fresh in their minds, maximizing the opportunity for learning.
Constructive feedback provides step-by-step explanations of the expected answers, using clear
language to guide students in identifying the specific areas of their mistakes. This approach
encourages students to discover and correct errors on their own without revealing the solution
outright. Furthermore, such feedback helps address student confusion, misconceptions, and
recurring gaps by clarifying difficult concepts and providing targeted guidance where needed
most [11], [12]. Together, these elements reinforce understanding, boost students' confidence,
and ensure a deeper grasp of the material.

Motivation

This paper presents a case study on an assessment design aiming to optimize learners’ success
through a continuous process of monitoring feedback, identifying common mistakes, pitfalls, and
misconceptions and iteratively revising assessments. Assessment revision includes better
scaffolding, more tailored feedback, and the use of code templates. In this paper, the
effectiveness of the described design is evaluated by comparing the learners’ total failure rates
and completion rates before and after multiple cycles of design improvement. This study shows
that designing assessment as a continuous process that adapts to learners’ needs is vital to
learners’ success.

Challenge Activities

Hands-on practice is essential for learning programming in CS1. Well-designed practice
activities increase student engagement by fostering interaction between the student and the
content [12], [13]. Common types of practice include multiple-choice questions, code ordering,
code output prediction, and code writing. Among these, code writing provides the greatest

opportunity for students to recall concepts and apply their knowledge to solve programming
problems. Code writing activities can vary in scale, with small-scale exercises requiring students
to complete a program with only a few words or lines of code.

In our online interactive programming textbooks, Challenge Activities (CAs) are mastery-based
assessments, consisting of a series of auto-graded, randomized questions, referred to as "levels".
Each level is scaffolded to increase in difficulty, requiring students to complete code snippets
correctly to progress. Randomization plays a key role in enhancing the learning experience, as
each retry presents students with a unique problem. This approach prevents memorization of
answers and fosters a deeper understanding of the material.

This paper focuses on improving CodeWriting CAs (Figure 1) which are designed to assess a
student's mastery in programming by providing incomplete code that a student must complete
given the activity's prompt. The prompt shows one or more examples of the expected
output/result depending on the different cases examined so that the expected behavior and output
of the code is clear to the student. An explanation is provided upon submission, regardless of
correctness, to guide students in approaching the problem. CodeWriting CAs are highly
randomized, meaning that the activities support three different forms of randomization:
meaningful, cosmetic, and test cases [14].

Figure 1. CodeWriting CA with 3 levels.

Methods and Metrics

In this section, we describe our data collection process, explain how we identified the CAs in
need for revision, and provide the metrics that measure the effectiveness of the revisions.

Once published, a CA is monitored regularly for its usage and user feedback. Usage data include
passing and failure rates as well as the answers submitted by users. User feedback includes bug
reports and comments submitted by instructors, students and authors. A number of CAs were
identified for revision in 2023. Data on students' performance and feedback from 2022 to 2024
were collected to study the impact of these revisions.

Revision Triggers

Revision priority is given to bug reports, users' comments, and failure rate statistics in this order.
In the year 2023, the majority of the revisions were triggered by bug reports and reports on users'
comments. Table 1 shows the various types of events that triggered updates.

Table 1. Events that triggered CA revisions.

To investigate the impact of improvements on auto-graded CAs, 26 revisions were conducted on
21 CAs in the year 2023. These activities were based on two criteria: 1) their difficulty, as
determined by high failure rates and student feedback, and 2) their importance in teaching
foundational programming concepts.

In 2024, we re-examined the struggle data to identify any improvements in learners'
performance. For these CAs, we reviewed the comments and discussions on the platforms we use
to view and address feedback (Trello, GitHub, and Wrike), and documented the changes made to
address the struggles expressed by students in the bug reports and user feedback comments.
After documenting the changes for each CA, the team noted common actions taken, which we
categorized into six primary types of changes:

1.​ Scaffolding: Activities were divided into smaller, manageable components to reduce
cognitive load and help students focus on one aspect of a problem at times.

2.​ Simplified content: Redundant of extraneous information was removed to minimize
unnecessary cognitive load.

3.​ Added hints: Comments of syntax reminders were introduced to provide students with
immediate guidance.

Event categories Number of CAs revisions triggered

Bug reports 14

Weekly reports of users' comments 9

Bi-annual failure rate statistics 3

4.​ Detailed prompts and explanations: Instructions and explanations were rewritten for
clarity and depth to improve students' understanding of the task.

5.​ Better scenarios: Problem contexts were adjusted to be more realistic or relatable,
helping students connect the problem to real-world applications.

6.​ Other changes: These included updates such as fixing typos, changing fonts for
readability, and correcting provided code.

These six categories were used as a metric, as they summarize the changes to improve the CAs
displaying high failure rates.

Revision Frequencies

The frequency of each type of revision is shown in Table 2.

Table 2. Frequency of each revision type.
Revision Category Frequency

Scaffolding 5

Simplified 8

Added hints 4

Detailed prompts/Explanations 15

Better scenarios 4

Other 7

To evaluate the impact of these changes, we compared metrics from two periods, before and after
the revisions. The metrics included are:

●​ Number of attempts: The total number of students attempting the CA.

●​ Level failure rates: The percentage of students failing at each level of the CA.

●​ Total failure rates: The percentage of students who attempted the CA and failed at Level
1, and thus could not proceed to higher levels of the CA.

●​ Completion rates: The percentage of students who attempted and passed all levels of the
CA and thus completed the CA.

●​ Improvements: Reduction in failure rates and increases in completion rates across the
periods.

In the next section, we consider three case studies of these revisions. These three cases are
chosen to illustrate common challenges students encounter at the beginning, middle, and end of a
CS1 course.

Case study #1: Random numbers are often covered at the beginning of a CS1 course as an
application of one essential operator, namely, the modulo. The concepts of integer division and
reminder are not novel to students entering CS1. However, the novel use of the remainder in
integer division poses unique challenges to students when this technique is applied to random
number generation. Case study #1 reveals the struggles encountered by such students and the
remedy that helps them succeed.

Case study #2: While loops are generally introduced in the middle of a CS1 course and are often
considered a major component of logical reasoning. The concept of the while loop is relatively
simple compared to other programming constructs, even the for loop. However, the while loop's
versatility often makes problem solving very challenging to students at this stage. Case study #2
explores common struggles that students encounter on the while loops and reveals that the
remedy is found in guiding the students through their thinking process.

Case study #3: File input is an advanced topic usually covered at the last stage of CS1 because
this topic requires the understanding of various flags and different orders of operation involved
in handling files. The large amount of detailed information poses a daunting challenge to
students. Case study #3 shows how this complex topic can be decomposed into smaller
meaningful pieces to help students connect the details together progressively.

Case Studies and Results

Overall Results

Figure 2 illustrates each programming activity and the overall completion rates before and after
revision. Figure 3 illustrates each programming activity and the failure rates for each activity. For
each CA that went through the revision, the level failure rate is reduced while the corresponding
completion rate increases.

Figure 2. Οverall completion rates of all updated CAs before and after revision.

Figure 3. Total failure rates for each programming activity before and after the updates of
students who did not complete Level 1.
In the following three sections, we will present three case studies of CAs that have been
enhanced, highlighting the changes made and their impact on failure rates.

Case study #1: Random numbers

The Random Numbers activity was designed with three levels of increasing complexity with the
following objectives:

●​ Level 1: Use rand() and modulo arithmetic to generate random numbers from 0 to a
given bound.

●​ Level 2: Use rand() modulo arithmetic, and addition/subtraction to generate a random
number in an adjusted range.

●​ Level 3: Use srand() to seed the pseudorandom number generator with a given input and
generate random numbers in a given range.

Over three semesters of Winter 2022, Spring 2023, and Fall 2023, the statistics of students'
performance on this activity is summarized in Table 3.

Table 3. Students' performance on the original Random Numbers activity.
 Level 1 Level 2 Level 3

Students attempted 8061 6604 6006

Students failed 1343 451 383

Students failed (%) 16.660 6.829 6.377

Further investigation showed that many students were having trouble understanding what the
problem was asking. To combat this issue, the problem was simplified and reworded to reduce
the cognitive load. The changes introduced a restructured problem with reduced cognitive load,
enabling students to better comprehend the task and arrive at a solution.

However, the primary cause of struggle did not appear to solely be the prompt. The most difficult
part of Level 1 that students seemed to struggle with was using the modulus operator (%) with a
variable such as largestVal as seen in Figure 3.

Solution:

val1 = rand() % largestVal;
val2 = rand() % largestVal;
val3 = rand() % largestVal;
val4 = rand() % largestVal;

Figure 3. A sample question and solution of Level 1 of the Random Numbers activity.

To address this struggle, a new Level 1 was created to improve the scaffolding of the CA, with
the goal of better preparing students for the transition to using the modulus operator with a
variable. The new Level 1 is identical to the original Level 1, but uses a constant instead of a
variable as the upper limit. The question added as the new Level 1 is shown in Figure 4.

Solution:

val1 = rand() % 24;
val2 = rand() % 24;
val3 = rand() % 24;

Figure 4. A sample question and solution of the new Level 1 of the Random Numbers
activity.

Since a new Level 1 was added to this CA, the remaining levels shifted up. The original Level 1
became Level 2, the original Level 2 became Level 3, and the original Level 3 was ultimately
dropped (discussed elsewhere).

The level now known as Level 2 was revised with prompt updates for clarity of the program's
expected behavior. Level 2 of the revised activity is shown in Figure 5.

Solution:

dataPoint1 = rand() % boundValue;
dataPoint2 = rand() % boundValue;
dataPoint3 = rand() % boundValue;

Figure 5. A sample question and solution of the new Level 2 of the Random Numbers
activity.

Level 2 of the original activity (Level 3 in the revised activity) had similar issues as the previous
level. The problem focused on the given inputs but introduced a complex question requiring
implicit knowledge, such as calculating a random number between two values. Level 2 of the
original activity is shown in Figure 6.

Solution:

cout << (rand() % (greatestInput - smallestInput + 1)) + smallestInput << endl;
cout << (rand() % (greatestInput - smallestInput + 1)) + smallestInput << endl;
cout << (rand() % (greatestInput - smallestInput + 1)) + smallestInput << endl;
cout << (rand() % (greatestInput - smallestInput + 1)) + smallestInput << endl;

Figure 6. A sample question and solution of the old Level 2 of the Random Numbers
activity.

This is a significant leap in difficulty from the original Level 1, which overwhelmed students
who were still new to the material. To address the students' difficulty with the original Level 2,
the level (now Level 3) had two changes: move outputting the result to the given code so the
student can focus on the level's task, and add in a note in the prompt to assist with assumed
prerequisite knowledge. Level 3 of the revised activity is shown in Figure 7.

Solution:

attempt1 = (rand() % (maxValue - minValue + 1)) + minValue;
attempt2 = (rand() % (maxValue - minValue + 1)) + minValue;
attempt3 = (rand() % (maxValue - minValue + 1)) + minValue;

Figure 7. A sample question and solution of the new Level 3 of the Random Numbers
activity.

The last level of the original CA, Level 3, assessed students' mastery of how to use srand() to
generate a random seed, generate multiple random numbers within certain bounds, and use the
generated results to calculate some basic arithmetic. While this level was intended to assess
overall mastery of random number generation, this activity was recognized to be difficult to
students, due to the increase of student feedback on this activity. The initial structure of the level
is shown in Figure 8.

Solution:

srand(seedVal);

table1 = (rand() % (highestDiningTable - lowestDiningTable + 1)) + lowestDiningTable;
table2 = (rand() % (highestDiningTable - lowestDiningTable + 1)) + lowestDiningTable;
table3 = 104 - table1 - table2;

cout << table1 << endl;
cout << table2 << endl;
cout << table3 << endl;

Figure 8. A sample question and solution of the old Level 3 of the Random Numbers
activity.

The decision was made to drop this level from the revised CA for two reasons:

1.​ The level was deemed too difficult at the time of evaluating struggle

2.​ The trigger for this CA was treated as a bugfix. Therefore, to ensure students who
completed all levels of the activity prior to the bugfix received proper credit (i.e. 3 out of
3 possible points), the CA needed to maintain three levels.

After the revisions, the final objectives for the revised Random Numbers activity are as follows:

●​ Level 1: Use rand() and modulo arithmetic to generate random numbers given a constant.

●​ Level 2: Use rand() and modulo arithmetic to generate random numbers from 0 to a
given bound.

●​ Level 3: Use rand() with modulo arithmetic, and addition/subtraction to generate a
random number in an adjusted range.

The data for the revised Random Numbers activity is shown in Table 4, which shows decreased
failure rates.

Table 4. Improved students' performance on the revised Random Numbers activity.
 Level 1​

(New)
Level 2
(Original Level 1)

Level 3
(Original Level 2)

Students attempted 8128 7333 7165

Students failed 691 86 275

Students failed (%) 8.501 1.173 3.838

Across all levels, the problem and solution were restructured to clearly define expectations,
making it easier for students to understand both the task and the desired outcome. The
comparison of student failure per level before and after the revision is shown Figure 9.

Figure 9. Student failure rate per level of the Random Numbers activity. Left: before
revision. Right: after revision.

Case study #2: While loops

The While Loops CA was identified as a challenging exercise for students. The activity, designed
for a Java programming course, includes three levels of increasing complexity.

●​ Level 1: Complete a partially written while loop with missing syntax.

●​ Level 2: Write a while loop to calculate basic arithmetic.

●​ Level 3: Write a while loop combined with another programming structure, such as an
if-statement, to emulate a real-world coding problem.

Students must complete each level sequentially, meaning failure at Level 1 prevents progression
to subsequent levels.

Over two semesters of Winter 2023 and Spring 2023, the statistics of students' performance on
this activity is summarized on Table 5.

Table 5. Students' performance on the original While Loops activity.
 Level 1 Level 2 Level 3

Students attempted 875 713 564

Students failed 128 124 72

Students failed (%) 14.629 17.391 12.744

Level 2 exhibited the highest failure rate, followed by Level 1. This suggests that students
struggle significantly when transitioning from completing pre-written code to writing
independent loops.

Level 1 failures were commonly observed to be from syntax errors and an incomplete
understanding of loop mechanics, while Level 2 failures are primarily related to difficulties in
constructing functional loops from scratch. Further analysis into both levels is demonstrated.
Figure 8 shows a sample question followed by a sample solution for a question in Level 1.

Solution:

value != 'e'

Figure 8. A sample question and solution for Level 1 of the While Loops activity.

A typical solution for a question in Level 1 involves a simple boolean operation to check if a
variable is equal or not equal to a value. Further examinations showed that many students who
failed the level were having issues with the syntax of the placeholder comment. To address this
issue, Level 1 was edited to include a note, as shown in Figure 9.

Solution:

inVal != 'q'

Figure 9. A sample question and solution for Level 1 of the revised While Loops activity.

Compared to Level 1, Level 2 jumps from requiring students to complete partially written code,
to understanding how to utilize the functionality of a while loop to calculate basic arithmetic.
The activity is illustrated in Figure 10, showing a sample question and a corresponding sample
solution.

Solution:

while (userInput < 24) {
 userInput = userInput + 6;
 System.out.println(userInput);
}

Figure 10. A sample question and solution for Level 2 of the While Loops activity.

A typical solution requires a while loop structure to be used to calculate some basic arithmetic.
Further examination into common student failures revealed that students did not understand the
logic behind the arithmetic. A solution to this problem was to include a note on how the
arithmetic could be calculated, as shown in the revised version in Figure 11.

Solution:

while (userInput < 0) {
 result = result + userInput;
 userInput = scnr.nextInt();
}

Figure 11. A sample question and solution of Level 2 of the revised While Loops activity.

Analysis into student answers showed that arithmetic was the main factor contributing to student
failures. By providing more guidance on how to implement the arithmetic, students were able to
focus on the logic of the while loop over the logic of the arithmetic asked of them. The data for
the revised While Loops activity is shown in Table 6.

Table 6. Students' performance on the revised While Loops activity
 Level 1 Level 2 Level 3

Students attempted 25239 23573 22107

Students failed 1248 1128 932

Students failed (%) 4.945 4.785 4.216

The significant reduction in failure rates across all levels can be attributed to addressing
fundamental areas of student confusion in Levels 1 and 2. The difference in failure rates is
illustrated in Figure 12.

Figure 12. Student failure rate per level of the While Loops activity. Left: before revision.
Right: after revision.

Case study #3: File Input

Topics on files are considered challenging to students because reading a file involves various
status checks, error handling, and file operations to be executed in a certain order. The
programming CA on reading a file in C++ covers the following objectives in increasing order of
complexity:

●​ Level 1: Use file.open() and file.is_open() to open a file, check for status and read one
data entry from the file.

●​ Level 2: Use file.fail() to detect any error encountered in file input, and handle read
errors.

●​ Level 3: Use a while loop with file.fail() and file.eof() to read all the data entries from the
file and output all the entries read.

●​ Level 4: Use a while loop to read all the entries from a file in which each entry has two
data types.

Over the three semesters of Spring 2022, Fall 2022, and Spring 2023, the statistics of students'
performance on this activity is summarized in Table 7.

Table 7. Students' performance on the File Input activity.
 Level 1 Level 2 Level 3 Level 4

Students attempted 7881 5657 5272 4680

Students failed 1763 236 475 56

Students failed (%) 22.37 4.17 9.01 1.20

Data shows that Level 1 has the highest failure rates, followed by Level 3. Furthermore, the
percentage of failure at Level 1 is significant. In each CA, a student is required to pass a level
before proceeding to the next level. Failing Level 1 means that the student is unable to proceed to
higher levels. The cause of student failures is examined. Figure 13 shows a sample question
followed by a sample solution for that question in Level 1.

A typical solution for a question in Level 1 involves a sequence of commands that include a file
opening operation, a file status check, and two alternative branches of follow-up actions that
depend on the file status. It is observed that the tasks expected in Level 1 may be too many and
too complex for students. Therefore, the activity was revised to enhance scaffolding, simplify
tasks, provide syntax hints, and reduce the cognitive load of the question.

Solution:

deskFS.open(dataFileName);

if (!deskFS.is_open()) {
 cout << dataFileName << ": failed to open file" << endl;
 return 1;
}

deskFS >> deskQuantity;

cout << deskQuantity - 8 << endl;

Figure 13: A sample question for Level 1 of the File Input activity.

In the updated version, Level 1 focuses solely on the file-opening operation, while Level 2
addresses the required status check along with one branch of follow-up actions. The activity's
learning objectives are revised to:

●​ Level 1: Use file.open() and file.is_open() to open a file.

●​ Level 2: Use file.is_open() check for file status. Terminate the program if the file is not
open.

●​ Levels 3 and 4: No change.

Samples of the revision are shown Figure 14 and Figure 15.

Solution:

dataFS.open(fileName);

Figure 14. A sample question and solution for Level 1 of the revised File Input activity.

Solution:

if (!bedFS.is_open()) {
 cout << dataFileName << ": failed to open file" << endl;
 return 1;
}

Figure 15. A sample question and solution for Level 2 of the revised File Input activity.

After the revision, students' performance is monitored over the next two semesters, from Fall
2023 to Spring 2024. Before revision, the completion rate and total failure rates are at 58.67%
and 22.37%, respectively. After the revision, the complete rate increases to 85.65% and the total
failure rate is reduced to 4.73%. Table 8 summarizes student performance on the revised File
Input activity. The difference in failure rates before and after the revision is illustrated in Figure
16.

Table 8. Students' performance on the revised File Input activity.
 Level 1 Level 2 Level 3 Level 4

Students attempted 6069 5682 5515 5269

Students failed 287 68 190 71

Students failed (%) 4.73 1.20 3.45 1.35

Figure 16. Student failure rate per level of the File Input activity. Left: before revision.
Right: after revision.

Discussion

The results of our study underscore the effectiveness of a data-driven approach in designing and
refining auto-graded programming activities, aligning with existing research on scaffolding and
feedback in learning environments. Prior studies emphasize scaffolding's role in reducing
cognitive load and improving comprehension in programming education [5] - [8]. Our findings
confirm that structuring activities into progressively challenging components enhances student
performance.

By analyzing metrics such as completion rates and common student errors, we identified key
areas where learners struggled and addressed them by scaffolding the activities into smaller
components. This approach, shown to enhance knowledge retention and self-efficacy [9], [10],
proved especially effective for challenging topics with high struggle rates as well as for
introductory topics where students needed extra guidance. The observed reduction in average
failure rates from 12.90% to 4.35% (an 8.55 percentage point decrease) demonstrates the value
of our method in promoting mastery and reducing student frustration, aligning with studies that
advocate iterative assessment designs for better learning outcomes [11].

Case Study #1: The revised version of the activity led to a significant reduction in student
complaints and a notable improvement in overall success rates, indicating that adding a
scaffolded level to prepare students for the remainder of the activity was beneficial and reduced
struggle. These results are consistent with previous research that suggests effective scaffolding
enhances student engagement and problem-solving skills [6], [7]. Additionally, the rewording of
the prompts that prioritized clarity appears to be a beneficial change, supporting prior findings
that clear and structured instructions help reduce cognitive overload and improve comprehension

[12]. Simplifying the desired solution enables students to concentrate on demonstrating their
understanding of the concept without being hindered by excess numerical or printing errors.

The failure rates in Level 1 and Level 2 both decreased significantly, suggesting that the revised
wording and scaffolding effectively reduced student confusion. Furthermore, the decrease in the
failure rate for Level 3 suggests that the improvements in earlier levels as well as restructuring of
the level positively influenced students' understanding and performance at the advanced stage.

Case Study #2: Clarifying the questions presented and reducing ambiguity in the problem, helped
students better engage and complete Levels 1 and 2. This improvement facilitated greater success
in Level 3, as students were more prepared after progressing through the earlier levels. Research
indicates that reducing ambiguity in problem statements minimizes student frustration and leads
to better problem-solving performance [14].

Case Study #3: The improvements not only helped students master the basic tasks of file input,
but further prepared the students to handle the more advanced tasks of Levels 3 and 4. These
findings align with prior work emphasizing the role of structured and scaffolded practice in
developing programming competency [5].

The data from all revised activities exhibit trends consistent with those observed in the case
studies. This suggests that the implemented improvement strategies are effectively mitigating
student struggles and providing an appropriate level of guidance to support students in
strengthening their understanding in the concepts tested. Our results support existing literature on
assessment design in computer science education, highlighting the significance of scaffolded and
feedback-driven learning environments in fostering student success.

Future work

While our study has provided several valuable insights into the suggested design for auto-graded
programing activities, there are several avenues for future research and work. One important
direction is to continue refining and improving existing activities that demonstrate high struggle
and failure rates. By analyzing student feedback and performance data, we can pinpoint more
specific areas where learners face difficulties, and identify what topics scaffolding appears to
have a higher impact on performance, if any. However, our data is limited to what our platform
collects and is fully anonymized. In the future, we may have the opportunity to gain additional
insights from surveys on summative assessment results and students' comfort level when
transitioning from CS1 to CS2 and other advanced CS courses, though this is not guaranteed.

Additionally, we can extend our best practices beyond programming books and investigate if
scaffolding activities for other disciplines have a similar effect. It would be beneficial to apply
the same data-driven approach to ensure the effectiveness of CAs, thereby benefiting a broader
range and larger number of students.

Conclusion

This study demonstrates the effectiveness of a data-driven approach to designing auto-graded
activities in online, interactive STEM textbooks. By breaking down complex programming
concepts into smaller, manageable units and incorporating scaffolding techniques, we have
validated that student struggle rates can be significantly reduced achieving an average decrease
of 8.55% and demonstrating proficiency in programming activities. Our analysis of various
metrics such as completion rates and common errors, has provided valuable insights into the
areas where students face the most difficulties and how to address the difficulties effectively.

References

[1]​ A. Steen-Utheim and A. Wittek, "Dialogic feedback and potentialities for student learning,"

Learning, Culture and Social Interaction, vol. 15, pp. 18-30, December 2017.

[2]​ A. Smith, S. McCarthey, and A. Magnifico, "Recursive Feedback: Evaluative Dimensions of
e-Learning," in E-Learning Ecologies: Principles for New Learning and Assessment, Taylor &
Francis. 2017, pp. 118-142.

[3]​ M. D. Gurer, I. Cetin, and E. Top, “Factors affecting students’ attitudes toward computer
programming,” in Informatics in Education, vol. 18, no. 2, pp. 281–296, 2019

[4]​ L. B. Nilson, “Where STEM education falls short” in Teaching at Its Best: A Research-Based
Resource for College Instructors, 4th Ed. San Francisco, CA, USA: Wiley, 2016, pp 273.

[5]​ R. E. Mayer and R. Clark,“Applying the segmenting and pretraining principles” in e-Learning
and the Science of Instruction: Proven Guidelines for Consumers and Designers of Multimedia
Learning, 4th Ed. Hoboken, NJ, USA: Wiley, 2016, pp. 203–208.

[6]​ B. R. Belland, A. E. Walker, N. J. Kim, and M. Lefler, “Synthesizing results from empirical
research on computer-based scaffolding in STEM education: A meta-analysis.” Review of
Educational Research, vol. 87, no. 2, pp. 309–344, 2017.

[7]​ B. R. Belland. Instructional scaffolding in STEM education: Strategies and efficacy evidence.
Springer Open, 2017.

[8]​ M. C. Lovett, M. W. Bridges, M. DiPietro, S. A. Ambrose, and M. K. Norman, "How do students
become self-directed learners?" in How learning works: Eight research-based principles for
smart teaching, 2nd Ed. San Francisco, CA, USA: Jossey-Bass, 2023, pp. 210-211.

[9]​ I. Horvath, "Reducing cognitive load through scaffolding," eLearning Industry, December 18,
2023. [Online]. Available:
https://elearningindustry.com/reducing-cognitive-load-through-scaffolding [Accessed March
17, 2025].

[10]​ Grand Canyon University, "What Is Scaffolding in Education and How Is It Applied?," GCU
Blog: Teaching and School Administration, September 19, 2023. [Online]. Available:
https://www.gcu.edu/blog/teaching-school-administration/what-scaffolding-in-education-how-app
lied. [Accessed March 17, 2025].

https://doi.org/10.3102/0034654316670999
https://elearningindustry.com/reducing-cognitive-load-through-scaffolding
https://elearningindustry.com/reducing-cognitive-load-through-scaffolding
https://www.gcu.edu/blog/teaching-school-administration/what-scaffolding-in-education-how-applied
https://www.gcu.edu/blog/teaching-school-administration/what-scaffolding-in-education-how-applied
https://www.gcu.edu/blog/teaching-school-administration/what-scaffolding-in-education-how-applied

[11]​ M. C. Lovett, M. W. Bridges, M. DiPietro, S. A. Ambrose, and M. K. Norman, "What Kinds of
Practice and Feedback Enhance Learning?" in How learning works: Eight research-based
principles for smart teaching, 2nd Ed. San Francisco, CA, USA: Jossey-Bass, 2023, pp. 130-161.

[12]​ R. E. Mayer and R. Clark “Does practice make perfect?” in e-Learning and the Science of
Instruction: Proven Guidelines for Consumers and Designers of Multimedia Learning, 4th Ed.
Hoboken, NJ, USA: Wiley, 2016, pp. 275-278.

[13]​ R. E. Mayer and R. Clark “Engagement in e-learning” in e-Learning and the Science of
Instruction: Proven Guidelines for Consumers and Designers of Multimedia Learning, 4th Ed.
Hoboken, NJ, USA: Wiley, 2016, pp. 221-223.

[14]​ E. Kazakou, A. D. Edgcomb, Y. Rajasekhar, R. Lysecky, and F. Vahid, "Randomized, structured,
auto-graded homework: Design philosophy and engineering examples," in ASEE Annual
Conference and Exposition, Conference Proceedings, 2021 ASEE Virtual Annual Conference,
July 26-29, 2021. [Online].

	Abstract
	Introduction
	Scaffolding
	Feedback
	Motivation

	Challenge Activities
	Methods and Metrics
	Case Studies and Results
	Overall Results
	Case study #1: Random numbers

	
	Case study #2: While loops
	
	Case study #3: File Input

	Discussion
	Future work
	
	
	Conclusion
	
	References

