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Creating a Predictive Model of Innovation Self-Efficacy Based on Cognitive 

Dissonance Levels in Innovation-Based Learning Programs 

Abstract  

This study examines how cognitive dissonance (CD) affects innovation self-efficacy 

(ISE) in students enrolled in an Innovation-Based Learning (IBL) biomedical engineering 

program (BME). By exploring this relationship, this research aims to show how CD can be 

leveraged to enhance innovation skills in engineering education. IBL emphasizes applying 

engineering principles to solve real-world problems. IBL fosters creativity, critical thinking, and 

problem-solving skills through complex, open-ended projects that promote collaboration, 

iteration, and real-world application. This approach cultivates an innovation-driven mindset and 

leadership skills, essential for success in STEM fields, such as biomedical engineering.  

CD, the psychological discomfort from encountering conflicting ideas or challenges that 

contradict one’s knowledge, is common in IBL since norms differ from traditional education. 

This can initially amplify CD in students, particularly those accustomed to structured learning 

environments. IBL’s focus on open-ended problem-solving and real-world applications 

challenges students’ existing strategies and expectations. Rather than being merely a problematic 

side effect, CD is a natural consequence of engaging in IBL. When managed effectively, it 

fosters deeper understanding, enhances problem-solving skills, and strengthens ISE—confidence 

in one's ability to handle innovation tasks. Navigating and resolving CD helps students reconcile 

conflicting ideas, fostering creativity and resilience. However, if not addressed, CD can leave 

students feeling overwhelmed or disengaged. Therefore, managing CD help students successfully 

engage in innovation tasks.  

This study was conducted within a BME program with an IBL framework. The 

participants included undergraduate and graduate students who completed surveys at the 

beginning and end of the semester to capture changes in CD and ISE. The CD survey was 

adapted from a validated scale to reflect IBL-specific scenarios, assessing students' psychological 

discomfort when confronting conflicting ideas or ambiguous challenges. ISE was measured 

using an established scale, which evaluates confidence in completing innovation-related tasks 

such as generating creative solutions and addressing complex problems. Data collection was 

facilitated through the MOOCIBL platform (a custom LMS) to ensure consistency. Spearman’s 

rank correlation was used to explore initial relationships between the variables, while logistic 

regression modeling was implemented to predict ISE based on CD scores. These statistical 

approaches provided insights into the interplay between these constructs. 

The results revealed a positive relationship between CD and ISE, indicating that as 

students reduced their levels of CD over the semester, their ISE increased.  Logistic regression 

further demonstrated that decreased CD strongly predicted higher ISE, suggesting that as 

students managed CD, they grew more confident in their ability to innovate. These findings 

emphasize the importance of structured opportunities to help students navigate CD. The 

predictive model highlights practical pedagogical implications, showing that intentionally 

introducing CD while providing structured support strengthens students’ problem-solving, 

adaptability, and confidence in generating innovative solutions, ensuring students are better 

equipped to tackle complex, real-world STEM challenges. 



 

 Introduction 

Innovation-based learning (IBL) signifies a transformative change in engineering 

education, focusing on using engineering principles to address real-world issues in ways that 

extend past conventional project-based learning. IBL is an overall broad curriculum that includes 

many courses that are designed to equip students to confront intricate, open-ended challenges 

that demand innovative answers by promoting creativity, critical thinking, and problem-solving 

abilities. In IBL students engage in interdisciplinary projects that challenge them to identify real 

world problems, propose novel solutions and share their research outside of the classroom to 

create real world impact. A key component of IBL is fostering a culture where failure is not only 

accepted but seen as a natural and necessary part of the innovation process. Students are 

encouraged to iterate, refine, and learn from setbacks, reinforcing the idea that meaningful 

innovation often requires multiple attempts and adjustments. Assessments for students in these 

projects include milestone-based evaluations where students must successfully identify the gap 

they are trying to fill, the solution for that gap and how they are going to externalize their 

research. These assessments are used to ensure that students not only grasp engineering 

principles but can also apply them in a meaningful and innovative way. The increasing 

significance of innovation-oriented skills in STEM fields, particularly biomedical engineering, 

highlights the necessity to explore how teaching methods can improve students' innovative 

capabilities [1], [2], [3], [4], [5], [6].  

In IBL environments, students often experience cognitive dissonance (CD)—a 

psychological discomfort arising from conflicting ideas or beliefs when faced with novel and 

ambiguous tasks. CD occurs when individuals encounter information or situations that challenge 

their knowledge, beliefs, or expectations. Transitioning to an IBL classroom, where norms differ 

significantly from traditional education, can amplify CD, particularly for students accustomed to 

structured learning environments. IBL emphasizes open-ended problem-solving and real-world 

applications, in contrast to the linear approaches of traditional education. This shift requires 

students to identify technical challenges, inefficiencies, and knowledge gaps while generating 

innovative solutions—tasks that may conflict with their prior learning strategies and 

assumptions. Additionally, the unfamiliarity of navigating ambiguity and the iterative nature of 

innovation can further intensify CD. This discomfort, however, can catalyze growth. It drives 

individuals to reconcile inconsistencies by adjusting their perceptions or changing their 

behaviors. When managed effectively, CD can lead to deeper learning, enhanced creativity, and 

the development of problem-solving skills [7]. For example, Adcock [7] discusses how CD, 

when properly addressed in learning environments, serves as a catalyst for deeper engagement, 

encouraging students to reconcile conflicting information, think critically, and refine their 

problem-solving abilities—aligning with the idea that effectively managed CD fosters enhanced 

learning and creativity. However, CD is complex. While it fosters intellectual growth and 

innovation, unresolved CD can result in frustration, disengagement, and decreased 

performance[8], [9], [10]. The ability to balance and manage this psychological phenomenon is 

critical to optimizing learning outcomes and ensuring students fully benefit from the IBL 

experience 

Innovation self-efficacy (ISE), defined as confidence in one's ability to engage in 

innovation-related tasks, can be pivotal in determining students' success in an IBL program. 



Based on Bandura's social cognitive theory, self-efficacy affects how people tackle challenges, 

remain resilient in overcoming obstacles, and ultimately reach their objectives [11], [12]. In the 

context of innovation, self-efficacy represents students' confidence in their ability to develop 

creative concepts, try out new solutions, and make significant contributions to innovation. High 

levels of ISE are associated with greater resilience, proactive problem-solving, and a willingness 

to take intellectual risks [13], [14], [15]. For example, Schar et al. [14],[15] further highlights 

that academic and life experiences play a critical role in shaping engineering students' ISE 

emphasizing that exposure to open-ended challenges, hands-on projects, and interdisciplinary 

collaboration enhances their confidence in tackling complex problems and driving innovation. 

Previous research shows that developing ISE requires exposure to challenging tasks, 

opportunities for iterative learning, and experiences that build confidence in one's abilities and 

CD is essential in this process as it encourages students to face and address intellectual 

challenges. However, the relationship between CD and ISE has not been thoroughly investigated, 

highlighting a lack of insight into how these factors affect student outcomes in IBL settings. 

This study aims to address this gap by examining how varying levels of CD impacts ISE 

among students in a biomedical engineering IBL program. We developed a predictive model that 

elucidates the dynamics between these variables by analyzing data collected from undergraduate 

and graduate students over a semester. Our research adds to the expanding body of literature on 

CD and self-efficacy within educational contexts, providing valuable insights for creating 

effective inquiry-based learning programs that bolster students' innovation abilities and self-

assurance. 

Methods 

This study was conducted in a biomedical engineering program at XX University which 

is of R1 designation, utilizing an IBL framework. Participants included both undergraduate and 

graduate students enrolled in the program. Two surveys were administered, one to measure CD 

and a second to measure ISE, at the beginning and end of the Fall 2024 semester. The CD survey 

was adapted from the Al-Adamat & Atoum Cognitive Dissonance Scale [9] to fit IBL concepts 

and scenarios. This survey provides ten scenarios related to IBL problems. For example, 

Scenario 10 states “Your team project is being compared with another teams project that appears 

to be more advanced.” Each scenario is followed up with two questions to assess how that 

student would respond. The participant is scored by giving them a one if they choose the most 

adaptable answer and a 0 if they do not with a possible score from 0-20. A higher score indicates 

that the participant is experiencing less CD, while a lower score indicates that the participant is 

experiencing greater CD. This was designed to assess the level of psychological discomfort 

students experienced when encountering conflicting ideas or ambiguous challenges in the IBL 

environment. Based on an established scale by Gerber et al., [18] the ISE survey evaluated 

students' confidence in engaging with innovation-related tasks, such as generating creative ideas 

and solving complex problems. In this survey, the first six questions collected demographic 

questions. This was followed by twenty-nine items where participants were to rate their degree 

of confidence that they can do that activity from 0-5 with 0 being not at all confident and 5 being 

extremely confident that they can do that activity. Both surveys were distributed via the 

MOOCIBL platform, an online learning management system tailored for IBL programs 

[16],[17],[18]. Students accessed the surveys through this platform, and their responses were  



 exported into Microsoft Excel for subsequent data analysis. This method guaranteed 

uniformity in conducting the survey and promoted effective data gathering.  

    Statistical analyses such as correlation analysis, one tailed paired t-tests, and regression 

modeling were performed in Excel to investigate the connections between these variables and 

evaluate trends in the data [19]. Python was also used to develop a predictive model using 

logistic regression to determine the likelihood of students achieving high ISE scores based on 

their CD scores (Appendix A and B). We chose a one-tailed t-test because our hypothesis was 

directional, based on prior research and theoretical frameworks suggesting that as cognitive 

dissonance (CD) decreases, innovation self-efficacy (ISE) increases. This assumption is 

grounded in cognitive dissonance theory, which posits that individuals experiencing dissonance 

are motivated to resolve it, often leading to cognitive and behavioral adjustments that enhance 

confidence in problem-solving and innovation-related tasks. Given that IBL encourages students 

to navigate uncertainty and adapt to novel challenges, we expected that as students became more 

comfortable with the open-ended nature of IBL, their CD levels would decrease, leading to 

higher ISE. A one-tailed test was appropriate because we were specifically testing for an increase 

in ISE as CD levels dropped, rather than assessing whether any change—positive or negative—

occurred. This aligns with our a priori expectation that lower dissonance facilitates innovation 

efficacy rather than inhibiting it. The results aim to elucidate how CD influences students' 

development of ISE within the context of an IBL biomedical engineering program. The 

University’s Institutional Review Board (IRB) approved the current study (IRB protocol 

#IRB0005373). 

Demographics Participants (n) 

UG 50 

Fr 23 

So 18 

Jr 5 

Sr 4 

Grad 18 

MS 9 

Ph.D. 9 

Online 28 

In-Person 40 

Figure 1: Demographics of participants with 68 total participants including Undergraduate (UG, n=50), and 

Graduate (Grad,n=18) students 



 Results  

There was a total of 107 students who were invited to participate in the study, this 

includes all students taking and IBL BME class at the University of North Dakota (UND). A total 

of 87 participants completed ISE surveys and 86 for CD. Certain surveys were excluded from 

analysis because participants either did not complete both the pre- and post-surveys for each 

measure or failed to complete all four required surveys (two for ISE and two for CD). As a result, 

68 participants who completed all four surveys were included in the final analysis. Out of the 68 

total surveys, 50 were undergraduate (UG), and 18 were graduate (Grad) students. Of those 

students 28 identified as an online student and 40 identified as In-person students. Of the 28 

online students, 16 online were UG and 12 were Grad. Figure 1 provides a full breakdown of the 

demographic distribution of the participants. The participants for this study were drawn from 

multiple classes across the IBL BME program. However, while UG and Grad students were 

enrolled in separate course sections, all IBL courses are designed to be interdisciplinary and are 

offered to both groups simultaneously. Importantly, students across these different levels actively 

collaborate on innovation projects, ensuring that graduate students are fully integrated with 

undergraduates throughout the course. This integration extends to the key learning assessments, 

including the gap, solution, and impact assessments, which remain consistent across all IBL 

courses, regardless of academic level. These assessments are centered around students’ 

innovative projects and evaluate their ability to successfully apply engineering principles to real-

world challenges. While the structure and expectations of these assessments remain uniform, the 

evaluation process considers the educational level of the student, ensuring that UG and Grad 

students are assessed based on appropriate academic rigor and depth analysis.  

Additionally, prior research indicates that being in an online learning environment does 

not diminish a student's ability to innovate or make a meaningful impact. Studies have shown 

that when properly structured, online courses can foster the same levels of creativity, problem-

solving, and collaboration as in-person settings. In the IBL program, online and in-person 

students engage in the same project-based curriculum, collaborate across modalities, and are 

provided with equal opportunities to externalize their research and create real-world solutions 

[20], [21]. 

By maintaining uniform expectations and interdisciplinary collaboration while adjusting 

evaluation criteria accordingly, the IBL framework ensures that all students, regardless of class 

standing, develop critical problem-solving and innovation skills in a shared learning 

environment. To address concerns regarding potential cohort effects, a separate subgroup 

analysis was conducted to assess whether undergraduate and graduate students exhibited 

significantly different patterns in cognitive dissonance resolution and innovation self-efficacy 

gains. 

There is a notable contrast in the number of undergraduate participants (UG, n=50) 

versus graduate participants (Grad, n=18). This can be explained by the organization of the 

biomedical engineering program, which has a greater enrollment of undergraduates. Likewise, 

there is a higher number of freshmen (Fr, n=50) in comparison to sophomores (So, (n=18), 

juniors (Jr, n=5), and seniors (Sr, n=4). This imbalance in class size could be attributed to several 

things, such as students' progress through their academic careers, specialization, and other 

academic commitments, which may reduce participation in such surveys or courses. 

Additionally, some students may drop the program or switch majors as they progress, reducing 



the number of upperclassmen. Furthermore, this undergraduate program is new, which may 

explain the higher number of freshmen participants compared to upper-level students.  

Innovation Self-Efficacy  

The ISE survey results demonstrated minimal deviations from normality, supporting the 

use of a one-tailed paired t-test to analyze the pre- and post-survey scores. For the pre-survey, the 

kurtosis was -0.273, indicating a slightly platykurtic distribution with a flatter peak, while the 

skewness was -0.038, suggesting near-perfect symmetry in the data. Similarly, the post-survey 

results showed a kurtosis of -0.559, reflecting a slightly more platykurtic distribution, and a 

skewness of -0.225, indicating a minor negative skew with a slight tendency toward a longer left 

tail. These values demonstrate that the data approximated normality, making the paired t-test a 

robust and appropriate statistical method for significant differences to compare the pre- and post-

survey scores. A one-tailed paired t-test showed a statistically significant difference between the 

pre- and post-survey scores, with a p-value of 6.99x10-5 and a 95% confidence interval. Figure 2 

shows the descriptive statistics for the dataset. A subgroup analysis was done with just UG and 

Figure 2: Distribution of Innovation Self Efficacy Pre- and Post Survey Scores showing normal distribution with 

kurtosis of -0.27 and -0.56 and skewness of -0.04 and -0.23 



Grad students. The t-test showed a significant difference in ISE scored in UG students 

(p=2.57x10-5) but not for Grad students (p=0.37).  

 

Cognitive Dissonance  

The CD survey results demonstrated minimal deviations from normality, supporting 

using a one-tailed paired t-test to analyze the pre- and post-survey scores. For the pre-survey, the 

kurtosis was -0.383, indicating a slightly platykurtic distribution with a flatter peak, while the 

skewness was 0.198, suggesting near-perfect symmetry with a minor positive skew. Similarly, 

the post-survey results showed a kurtosis of -0.778, reflecting a slightly more platykurtic 

distribution, and a skewness of -0.007, indicating near-perfect symmetry in the data. These 

values demonstrate that the data approximated normality, making the paired t-test a robust and 

appropriate statistical method for significant differences to compare the pre- and post-survey 

scores. A one-tailed paired t-test showed a statistically significant difference between the pre-and 

post-survey scores, with a p-value of 8.80x10-5 and a 95% confidence interval. Figure 3 shows 

the distribution of scores for the pre- and post-CD surveys. A subgroup analysis was done with 

Figure 3: Distribution of Cognitive Dissonance Pre- and Post Survey Scores with kurtosis of -0.38 and -0.77 and 

skewness of 0.198 and -0.007 



just UG and Grad students. The t-test showed a significant difference in CD scores in UG 

students (p=0.00021) but not for Grad students (p=0.38). 

Relationship Between Cognitive Dissonance and Innovation Self Efficacy 

 A correlation analysis examined the relationship between CD and ISE. The Pearson 

correlation coefficient for the pre-surveys was 0.57, indicating a moderate positive relationship 

between the two variables. This suggests that students who experienced lower CD tended to have 

higher ISE at the beginning of the semester. The post-survey correlation coefficient was 0.63, 

indicating a positive relationship between cognitive dissonance scores and innovation self-

efficacy, where higher survey scores (reflecting less CD) were associated with greater ISE after 

students completed the IBL program.  

These results suggest that students who successfully resolved CD were more likely to see 

improvements in their ISE, supporting the theory that CD is crucial for developing ISE. The data 

indicates that all students experienced some level of CD during the semester, as reflected in their 

scores. Of the 68 students, 32 showed both a decrease in CD and an increase in ISE, suggesting 

that resolving CD played a significant role in fostering higher innovation confidence. 

Conversely, students who did not resolve CD or whose CD scores remained stable (n=36) were 

19.4% less likely to see improvements in ISE. These findings highlight that managing and 

resolving CD can increase ISE in an IBL environment. These findings correspond with the wider 

positive trends noted in both datasets, emphasizing the interaction between these essential 

concepts in a learning setting focused on innovation. While correlation analysis established a 

general relationship between CD and ISE, it did not account for the extent to which CD levels 

could predict shifts in ISE or identify patterns beyond linear associations. To address this 

limitation, predictive modeling techniques were employed to quantify the likelihood that changes 

in CD would lead to measurable improvements in ISE, offering deeper insights into how 

cognitive dissonance influences innovation self-efficacy over time. 

The initial logistic regression model, optimized using GridSearchCV, achieved an 

accuracy of 71.4%. GridSearch CV is a method used to check how well a predictive model will 

work on new data. It does this by splitting the data into multiple parts, training the model on 

some parts, and testing it on others, helping to ensure that the results are not just a coincidence 

but meaningful. The model's performance varied across the two classes. For Class 0 (low ISE), 

the model achieved a recall of 100% but had a low precision of 33%, leading to an F1-score of 

0.50, indicative of a high false positive rate. For Class 1 (high ISE), the model performed more 

effectively, with a precision of 100%, a recall of 67%, and an F1-score of 0.80. These results 

highlight that the model is better at identifying high ISE cases but struggles to classify low ISE 

cases accurately. The macro-average F1-score of 0.65 and weighted F1-score of 0.76 reflect the 

imbalance in class distribution and the model's emphasis on Class 1. 

Additional modeling techniques and optimizations were explored to improve the model 

results. Advanced machine learning algorithms, including Random Forest, Gradient Boosting, 

and XGBoost, were implemented to capture potential non-linear relationships and interactions in 

the data. Random Forest, Gradient Boosting, and XGBoost are advanced computer-based 

methods used to make predictions by combining multiple decision-making steps. Random Forest 

works by creating many small decision trees and averaging their results to improve accuracy. 

Gradient Boosting builds decision trees one at a time, learning from mistakes to get better with 

each step. XGBoost is an improved version of Gradient Boosting that is faster and more efficient, 



making it useful for finding patterns in large and complex datasets. These methods help make 

better predictions by reducing errors and improving reliability. The Random Forest model 

achieved the highest accuracy at 78.6%, with an AUC of 0.79. It demonstrated strong 

performance for Class 1 (high ISE) with a precision of 100%, a recall of 75%, and an F1-score of 

0.86. However, for Class 0 (low ISE), while recall was perfect at 100%, precision was lower at 

40%, reflecting a high false positive rate. Similarly, the XGBoost model achieved an accuracy of 

78.6% with an AUC of 0.75, showing comparable performance to Random Forest, with identical 

precision and recall values for both classes. 

In contrast, the Gradient Boosting model performed less effectively, with an accuracy of 

64.3% and an AUC of 0.67. Gradient Boosting struggled particularly with Class 0, achieving a 

recall of 50% and a precision of only 20%, resulting in a macro-average F1-score of 0.52. 

Overall, Random Forest and XGBoost demonstrated superior performance, particularly in 

identifying high ISE cases. At the same time, further improvements are needed to address the 

imbalance and improve precision for low ISE predictions. 

Discussion 

This study demonstrates that lower levels of cognitive dissonance (CD) are associated 

with higher ISE in an IBL biomedical engineering program, highlighting that effectively 

reducing cognitive dissonance enhances students' confidence in their ability to innovate. The 

results indicate statistically significant advancements in resolving CD and ISE throughout the 

semester. Additionally, correlation analysis showed a moderate positive relationship between 

these two variables, which became more robust following the intervention, emphasizing the 

possible benefits of IBL approaches in enhancing ISE. The analysis of pre- and post-surveys 

demonstrated notable improvements in both areas, with the average ISE rising from 3.9 to 4.1 

and CD scores increasing from an average of 9.5 to 10.9 (reflecting less experience of CD). 

These results support effectively managing CD, promote deeper learning, and boost students' 

confidence in their innovative capabilities. Moreover, the stronger correlation identified in the 

post-survey indicates that as students engaged with the open-ended, problem-solving elements of 

IBL, their ability to handle CD became more closely associated with their ISE. 

The subgroup analysis revealed notable differences between UG and Grad students in 

both ISE and CD changes. A t-test showed a significant increase in ISE scores for UG students 

whereas no significant change was observed for Grad students. Similarly, UG students 

experienced a significant reduction in CD over the semester, while Grad students did not. These 

findings suggest that UG students, who may have less prior experience with open-ended, 

innovation-driven learning environments, undergo greater shifts in both CD and ISE when 

exposed to the IBL framework. In contrast, Grad students, who are likely to have more 

familiarity with self-directed problem-solving, may enter the course with a more stable level of 

ISE and CD, resulting in less measurable change. Future research should explore whether 

different instructional scaffolding approaches are needed to maximize ISE development across 

academic levels. 

The predictive modeling efforts further emphasized the importance of this relationship. 

The initial logistic regression model provided a solid baseline with an accuracy of 71.4% but 

struggled to classify low ISE cases due to class imbalance. Advanced machine learning models, 

including Random Forest, Gradient Boosting, and XGBoost, achieved improved accuracy and 



AUC scores, with Random Forest and XGBoost reaching 78.6% accuracy and AUC values of 

0.79 and 0.75, respectively. These models effectively identified high ISE cases but continued to 

exhibit challenges in accurately classifying low ISE cases, as evidenced by lower precision for 

Class 0. The performance result highlights the critical need for balanced datasets and feature 

refinement to improve the robustness of these models. By leveraging machine learning, we gain 

insights into how CD levels contribute to ISE in ways that simple correlations cannot capture, 

particularly in identifying key features that influence student outcomes. The performance results 

further highlight the critical need for balanced datasets and feature refinement to improve the 

robustness of these models, ensuring they can better predict and support students who may 

struggle with innovation self-efficacy. 

The results of this study highlight the importance of CD as an educational tool for 

improving ISE. Unlike traditional methods that primarily focus on technical skill development, 

this study demonstrates that actively managing cognitive dissonance within IBL environments 

can significantly enhance students’ ability to innovate. Educators can promote deeper 

engagement and enhance critical thinking skills by creating learning environments that 

encourage students to confront and resolve opposing ideas. The moderate relationship between 

CD and ISE emphasizes the need to incorporate activities focused on creative problem-solving 

and iterative learning within engineering programs. Furthermore, this study is among the first to 

apply predictive modeling techniques to examine how cognitive dissonance impacts innovation 

efficacy in engineering education, offering a data-driven approach to optimizing instructional 

design.  The effectiveness of these predictive models indicates that machine learning can serve as 

a powerful tool for identifying key factors that influence ISE, allowing for more targeted 

interventions. By integrating CD theory with engineering education and leveraging machine 

learning for deeper analysis, this research provides a new framework for fostering innovation 

mindsets, marking a significant advancement in how engineering programs approach student 

learning and development. 

While this study supports the idea that resolving CD can contribute to ISE development, 

the findings also suggest that ISE growth can occur even in students whose CD levels remain 

stable. This indicates that while CD resolution may serve as a mechanism for enhancing ISE, it is 

not necessarily a prerequisite for its improvement. Other factors, such as increased exposure to 

innovation-based challenges, peer collaboration, and structured feedback within the IBL 

environment, may independently foster ISE. These factors are critical in understanding how 

engineering students develop confidence in their ability to innovate. Some students may 

experience growth through the resolution of CD, while others may benefit from repeated 

engagement in innovation-driven activities regardless of their CD levels. Future research should 

further investigate the different pathways through which ISE can develop, distinguishing 

between students who gain confidence through overcoming CD and those who build ISE through 

iterative learning experiences. 

However, several limitations should be noted. First, the analysis was based on a relatively 

small dataset, including only 68 participants, which may have impacted the findings' 

generalizability and the predictive models' reliability. Second, the dataset demonstrated an 

imbalance in class distribution, with a notably higher number of cases showing high ISE. This 

likely affected the models' accuracy in identifying low ISE cases. Additionally, the study 

depended on self-reported survey data, which could introduce response bias. 



To overcome these limitations, upcoming research should prioritize broadening the 

dataset by involving participants from various academic programs and institutions. A more 

extensive and representative dataset would enhance the applicability of the findings and elevate 

the effectiveness of predictive models. Moreover, employing advanced data augmentation 

methods like SMOTE or under-sampling could alleviate class imbalance and strengthen the 

robustness of the models. Future investigations might also assess different machine learning 

algorithms, such as Support Vector Machines, neural networks, and ensemble stacking, to better 

understand the complex relationships between CD and innovation effectiveness. Additionally, 

integrating qualitative data, like interviews or observational studies, could offer more significant 

insights into how students navigate and reconcile CD within IBL contexts. 

Conclusion 

This research explores the interaction between CD and ISE within an IBL biomedical 

engineering program, using both pre- and post-survey data to analyze changes over the semester. 

The results demonstrated a statistically significant improvement in CD and ISE among 

participants, with pre-survey and post-survey mean scores increasing from 9.5 to 10.9 and 3.9 to 

4.1, respectively. Correlation analysis further revealed that lower levels of CD were associated 

with higher ISE, as indicated by a post-survey correlation coefficient of 0.63, suggesting a 

moderately strong positive relationship. These findings reveal that as students experience lower 

levels of CD, their confidence in their ability to innovate improves. The study highlights the 

critical role of structured pedagogical strategies in managing CD in fostering students’ ISE. 

Specifically, within the IBL framework, strategies such as milestone-based assessments, and 

structured innovation project that generate real world impact and allow students to practical 

implement engineering concepts may support students in managing CD and build confidence in 

their innovation abilities. By addressing and reducing CD, students enhance their problem-

solving skills and develop the resilience and creativity necessary for innovation.  

The findings emphasize the importance of designing educational environments that 

challenge students to confront and resolve conflicting ideas, as these cognitive challenges 

directly contribute to building innovation-driven mindsets, which are essential for success in 

STEM fields. By embedding structured opportunities within the IBL framework—such as 

milestone-based assessments, interdisciplinary collaboration, and iterative problem-solving—

educators can create learning experiences that not only help students navigate cognitive 

dissonance but also develop the adaptability, resilience, and problem-solving skills necessary for 

innovation. These findings contribute to engineering education by providing a deeper 

understanding of how CD can be intentionally leveraged to enhance ISE and highlight the need 

to create structured opportunities where students encounter and resolve conflicting ideas, 

enabling them to develop critical thinking, adaptability, and confidence in generating innovative 

solutions, which are skills that are essential for thriving in STEM disciplines. 
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Appendix A – Python Code for Predicting Innovation Self-Efficacy 

 1. import pandas as pd 
 2. from sklearn.model_selection import train_test_split 
 3. from sklearn.linear_model import LogisticRegression 
 4. from sklearn.preprocessing import StandardScaler 
 5. from sklearn.pipeline import Pipeline 
 6. from sklearn.model_selection import GridSearchCV 
 7. from sklearn.metrics import classification_report, accuracy_score 
 8.   
 9. # Load the dataset 
10. file_path = r'your.csv'  # Replace with the path to your csv 
11. data = pd.read_csv(file_path) 
12.   
13. # Feature Engineering 
14. data['cd_change'] = data['cd_post'] - data['cd_pre'] 
15. data['ie_change'] = data['ie_post'] - data['ie_pre'] 
16. data['high_ie'] = (data['ie_post'] >= 3.5).astype(int) 
17.   
18. # Define features and target 
19. X = data[['cd_pre', 'cd_post', 'cd_change']] 
20. y = data['high_ie'] 
21.   
22. # Split the data into training and testing sets 
23. X_train, X_test, y_train, y_test = train_test_split( 
24.     X, y, test_size=0.2, random_state=42, stratify=y 
25. ) 
26.   
27. # Standardize features and define logistic regression model 
28. scaler = StandardScaler() 
29. log_reg = LogisticRegression(max_iter=1000, class_weight='balanced') 
30.   
31. # Create a pipeline 
32. pipeline = Pipeline([ 
33.     ('scaler', scaler), 
34.     ('log_reg', log_reg) 
35. ]) 
36.   
37. # Define hyperparameter grid for optimization 
38. param_grid = { 
39.     'log_reg__C': [0.01, 0.1, 1, 10, 100], 
40.     'log_reg__solver': ['liblinear', 'lbfgs'] 
41. } 
42.   
43. # Use GridSearchCV to find the best model 
44. grid_search = GridSearchCV(pipeline, param_grid, cv=5, scoring='accuracy', n_jobs=-1) 
45. grid_search.fit(X_train, y_train) 
46.   
47. # Retrieve best parameters and evaluate the optimized model 
48. best_params = grid_search.best_params_ 
49. best_model = grid_search.best_estimator_ 
50.   
51. # Test set evaluation 
52. y_pred_optimized = best_model.predict(X_test) 
53. optimized_accuracy = accuracy_score(y_test, y_pred_optimized) 
54. optimized_classification_report = classification_report(y_test, y_pred_optimized) 
55.   
56. print("Best Parameters:", best_params) 
57. print("Optimized Accuracy:", optimized_accuracy) 
58. print("Classification Report:\n", optimized_classification_report)1.   

  



Appendix B – Python Code with Random Forest, Gradient Boosting, and XGBoost 

  1. import pandas as pd 
  2. from sklearn.model_selection import train_test_split, GridSearchCV 
  3. from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier 
  4. from sklearn.preprocessing import PolynomialFeatures, StandardScaler 
  5. from sklearn.metrics import classification_report, accuracy_score, roc_auc_score 
  6. from xgboost import XGBClassifier 
  7. from imblearn.over_sampling import SMOTE 
  8.   
  9. # Load your dataset here 
 10. file_path = r'your.csv'  # Replace with the path to your csv 
 11. data = pd.read_csv(file_path) 
 12.   
 13. # Feature Engineering 
 14. data['cd_change'] = data['cd_post'] - data['cd_pre'] 
 15. data['ie_change'] = data['ie_post'] - data['ie_pre'] 
 16. data['high_ie'] = (data['ie_post'] >= 3.5).astype(int) 
 17.   
 18. # Define features and target 
 19. X = data[['cd_pre', 'cd_post', 'cd_change']] 
 20. y = data['high_ie'] 
 21.   
 22. # Add polynomial features 
 23. poly = PolynomialFeatures(degree=2, include_bias=False) 
 24. X_poly = poly.fit_transform(X) 
 25.   
 26. # Split data into training and testing sets 
 27. X_train, X_test, y_train, y_test = train_test_split( 
 28.     X_poly, y, test_size=0.2, random_state=42, stratify=y 
 29. ) 
 30.   
 31. # Check class distribution before applying SMOTE 
 32. if y_train.nunique() > 1: 
 33.     # Handle class imbalance with SMOTE 
 34.     smote = SMOTE(random_state=42) 
 35.     X_train_balanced, y_train_balanced = smote.fit_resample(X_train, y_train) 
 36. else: 
 37.     print("SMOTE not applied as y_train contains only one class.") 
 38.     X_train_balanced, y_train_balanced = X_train, y_train 
 39.   
 40. # Standardize features 
 41. scaler = StandardScaler() 
 42. X_train_balanced = scaler.fit_transform(X_train_balanced) 
 43. X_test = scaler.transform(X_test) 
 44.   
 45. # Models 
 46. models = { 
 47.     'Random Forest': RandomForestClassifier(random_state=42, class_weight='balanced'), 
 48.     'Gradient Boosting': GradientBoostingClassifier(random_state=42), 
 49.     'XGBoost': XGBClassifier(eval_metric='logloss', random_state=42) 
 50. } 
 51.   
 52. # Hyperparameter grids 
 53. param_grids = { 
 54.     'Random Forest': { 
 55.         'n_estimators': [50, 100, 200], 
 56.         'max_depth': [None, 10, 20, 30], 
 57.         'min_samples_split': [2, 5, 10], 
 58.         'min_samples_leaf': [1, 2, 4] 
 59.     }, 
 60.     'Gradient Boosting': { 
 61.         'n_estimators': [50, 100, 200], 
 62.         'learning_rate': [0.01, 0.1, 0.2], 
 63.         'max_depth': [3, 5, 10], 



 64.         'subsample': [0.8, 1.0], 
 65.         'min_samples_split': [2, 5, 10], 
 66.         'min_samples_leaf': [1, 2, 4] 
 67.     }, 
 68.     'XGBoost': { 
 69.         'n_estimators': [50, 100, 200], 
 70.         'learning_rate': [0.01, 0.1, 0.2], 
 71.         'max_depth': [3, 5, 10], 
 72.         'subsample': [0.8, 1.0], 
 73.         'colsample_bytree': [0.8, 1.0] 
 74.     } 
 75. } 
 76.   
 77. # Perform Grid Search for each model 
 78. results = {} 
 79. for name, model in models.items(): 
 80.     print(f"Training {name}...") 
 81.     if y_train_balanced.nunique() > 1: 
 82.         grid_search = GridSearchCV(model, param_grids[name], cv=5, scoring='accuracy', 

n_jobs=-1, error_score='raise') 
 83.         grid_search.fit(X_train_balanced, y_train_balanced) 
 84.         best_model = grid_search.best_estimator_ 
 85.         y_pred = best_model.predict(X_test) 
 86.         accuracy = accuracy_score(y_test, y_pred) 
 87.   
 88.         # Conditional AUC calculation 
 89.         if len(best_model.classes_) > 1: 
 90.             auc = roc_auc_score(y_test, best_model.predict_proba(X_test)[:, 1]) 
 91.         else: 
 92.             auc = None 
 93.             print(f"AUC for {name} cannot be calculated due to a single class in 

predictions.") 
 94.   
 95.         report = classification_report(y_test, y_pred) 
 96.         results[name] = { 
 97.             'Best Params': grid_search.best_params_, 
 98.             'Accuracy': accuracy, 
 99.             'AUC': auc, 
100.             'Classification Report': report 
101.         } 
102.     else: 
103.         print(f"Skipping {name} as y_train_balanced contains only one class.") 
104.   
105. # Print results 
106. for name, result in results.items(): 
107.     print(f"\n{name} Results:") 
108.     print(f"Best Params: {result['Best Params']}") 
109.     print(f"Accuracy: {result['Accuracy']}") 
110.     print(f"AUC: {result['AUC']}") 
111.     print(f"Classification Report:\n{result['Classification Report']}") 
112.   

 


