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 Abstract  

 

Generative AI, powered by Large Language Models (LLMs), has the potential to automate 

aspects of software engineering. This study implemented a monostrand conversion mixed-

methods approach to examine how computer science students utilize generative AI tools 

during a competitive programming competition across multiple campuses. Participants used 

tools such as ChatGPT, GitHub Copilot, and Claude and submitted transcripts documenting 

their interactions for analysis. Drawing from prompt engineering literature, the study mapped 

six key strategies to 14 areas of best practices for competitive programming. These practices 

included clarifying instructions, one-shot and few-shot prompting, chain-of-thought 

prompting, feedback to refine solutions, and leveraging of LLM meta-capabilities. The 

transcripts were analyzed through a directed content analysis to assess adherence to these 

practices and then converted to descriptive statistics. Findings revealed significant variability 

in adherence, with an average compliance rate of 34.2% across practices. While simpler 

practices achieved adherence rates as high as 98%, eight practices saw minimal or no usage. 

These results highlight that students often adopt basic prompt engineering techniques but 

struggle with more complex strategies, suggesting the need for structured prompt engineering 

instruction in computer science curricula to maximize the potential of generative AI tools. 

 

1 Introduction 

 

Generative AI is transforming software engineering and problem-solving. Despite growing 

interest in this technology, there is limited research on the extent to which students efficiently 

use these tools in real-world scenarios. This study addresses that gap by analyzing student 

interactions with LLMs during a competitive programming competition held across multiple 

college campuses. It evaluates adherence to prompt engineering best practices, including 

clarity of instructions, chain-of-thought prompting, and iterative feedback, and examines how 

these strategies impact success. In this study, the term “best practices” refers to guidelines 

that have been established for optimizing AI interactions during problem-solving tasks, for 

example in (Open AI, 2024; Google, 2024). 

 

An IRB-approved plan guided data collection from the competition, where teams of three 

undergraduate students were encouraged to use generative AI to solve programming 

problems. Over 100 students participated. After the competition, students voluntarily 

submitted transcripts documenting their interactions with AI tools. These transcripts were 

examined using a directed content analysis (Hsieh and Shannon 2005) to assess how well 

students followed prompt engineering best practices. 



 

 

 

The study findings reveal significant variability in adherence to best practices in prompt 

engineering, with an average compliance rate of less than 50%. Some of the practices were 

widely adopted, while others were rarely used, exposing gaps in students' understanding of 

effective LLM utilization. These results highlight the importance of incorporating prompt 

engineering principles into computer science (CS) curricula to prepare students for the 

demands of AI-assisted workflows. 

 

2 Literature Review 

 

Large language models (LLMs) have made significant advances in natural language 

processing. They excel in tasks such as code generation, question answering, and reasoning. 

These capabilities make them valuable in competitive programming, where accuracy and 

efficiency are critical. As a result, prompt engineering has become an essential skill for 

optimizing the use of generative AI tools like Claude, GitHub Copilot, and ChatGPT. A 

range of best practices for prompt engineering have been developed by both researchers and 

the developers of LLMs. 

 

These LLMs have begun to be incorporated into CS education. ChatGPT, for example, has 

provided instructional support for beginning students, providing template code to get students 

started and facilitate the identification and correction of programming errors (Yilmaz and 

Yilmaz 2023). Github’s Copilot has been used in similar ways to provide scaffolding for 

novice programmers (Prather et al. 2023). The literature also demonstrates that CS educators 

require support and training to help scaffold novice programmers and not just integrate 

generative AI for basic uses, but as a tool for personalized learning, adaptive feedback, and 

co-creative educational experiences (Zhai 2024). Moreover, previous research has found that 

barriers to participating in competitive programming events can be lowered using generative 

AI (Jayachandran et al. 2024a).  

 

Careful prompt engineering is especially important in competitive programming. Clear and 

contextually relevant prompts are essential for generating accurate and efficient solutions. 

LLMs are sensitive to prompt structure and content (Chang et al. 2024). Poorly designed 

prompts can lead to irrelevant or suboptimal outputs. Prompts act as task instructions, 

defining parameters and goals, which directly impact the quality of LLM responses 

(Lertbanjongngam et al. 2022). For example, specifying a programming language in the 

prompt not only ensures that the model generates code in the required syntax, but actually can 

improve system output (Jayachandran and Blum 2024).  

 

 

General or zero-shot prompting refers to prompting where the large language models are 

provided with a task without examples or advanced strategies. For some time now, models 

that have been fine-tuned with examples relevant to the desired task often perform well with 

zero-shot prompts (Wei et al. 2021). Moreover, when these prompts are sufficiently detailed, 

the LLMs can often meet precise requirements (OpenAI 2024). However, if these prompts 



 

 

are unsuccessful, prompt engineering guidelines suggest that users utilize additional 

strategies including chain-of-thought, few shot prompting, and LLM-based meta-prompting 

(Google 2024). 

 

Wei et al. introduced Chain-of-Thought (CoT) prompting enhances reasoning by encouraging 

LLMs to follow logical sequences (2022). This method involves structuring the prompt to 

break down a problem into smaller, step-by-step reasoning tasks. For example, a CoT prompt 

might ask the model to "explain each step before providing the solution." This approach 

reduces errors by making reasoning steps explicit and is especially useful for solving 

complex problems that require precision and logical progression (White et al. 2023). Indeed, 

researchers found that adding the simple phrase "Let's think step by step" to a prompt can 

significantly enhance the LLM performance in reasoning tasks (Kojima et al. 2022). 

 

Few-shot learning allows LLMs to adapt to new tasks by providing minimal examples within 

the prompt (Brown et al. 2020). This capability helps the model understand the task’s context 

and requirements without requiring extensive retraining. For instance, a few-shot prompt for 

contest programming could include sample inputs and expected outputs or an example of a 

correctly solved problem, followed by a new problem for the model to solve. 

 

Corrective feedback involves iteratively refining model outputs by providing targeted 

suggestions or corrections. For example, if an LLM generates incorrect or suboptimal code, 

the user can revise the prompt to include specific instructions like "Ensure the solution 

handles edge cases" or "Ensure that the solution runs in linear time." This iterative approach 

improves output quality by steering the model toward the desired solution. Previous research 

and OpenAI’s guidelines support this strategy, highlighting its value in resolving logical 

flaws in generated code (White et al. 2023; OpenAI 2024). 

 

The stochastic nature of LLMs significantly affects their behavior during task execution. 

LLMs rely on probabilistic sampling methods, such as nucleus sampling (top-p) and 

temperature tuning, to generate outputs. These methods introduce variability, enabling 

diverse responses rather than converging on a single answer. Techniques like majority voting 

can leverage this variability to improve accuracy, especially in quantitative tasks 

(Lewkowycz et al. 2024). While stochasticity benefits open-ended tasks, it poses challenges 

for precision-demanding problems, such as competitive programming. Controlling 

randomness through parameters like top-p and temperature can balance creativity and 

precision (OpenAI, 2023). Lower temperatures yield deterministic results, while higher 

values encourage exploration. Understanding and managing stochastic behavior is essential 

for optimizing LLM utility. 

 

Meta-prompting enables LLMs to self-refine prompts and align responses with user intent. 

This strategy involves designing prompts that instruct the model to adapt its responses based 

on specific user feedback. For example, a meta-prompt might include instructions like 

"Reframe this question to clarify the desired outcome." By automating parts of the prompt 



 

 

creation process, meta-prompting allows users to focus on high-level goals rather than 

micromanaging individual tasks (Brown et al. 2020). 

 

3 Methodology  

 

This study aimed to evaluate how students apply prompt engineering strategies identified 

from the literature when using generative AI tools. The analysis looked for evidence of 

student use of these strategies, including clarity of instructions, chain-of-thought prompting, 

few-shot and zero-shot learning, corrective feedback, managing stochastic sampling, and 

meta-prompting. 

 

As part of an IRB-approved study, participants were recruited from multiple campuses to 

participate in a generative AI-assisted competitive programming competition. The 

competition ran for two hours, during which teams of three undergraduate students were 

tasked with solving a problem set specifically designed to require interaction with generative 

AI systems such as ChatGPT, GitHub Copilot, and Claude. The problem set included 

challenges that could not be trivially solved by generative AI but instead were designed to 

test both the students' problem-solving skills and their ability to effectively engage with AI 

tools through well-constructed prompts. More details about the problem set and links to 

examples of the problem sets are provided in section 3.3 of this paper. 

 

Following the competition, students were invited to voluntarily submit transcripts 

documenting their interactions with the generative AI systems during the contest. These 

transcripts provided detailed records of how students formulated prompts, incorporated 

feedback from the AI, and iteratively refined their queries and solutions. 

 

To assess adherence to the prompt engineering best practices identified from the literature, 

the transcripts were analyzed qualitatively using a directed content analysis method. Directed 

content analyses use existing theories or research to identify key concepts and extend a 

framework or theory (Hsieh and Shannon 2005). The framework that guided the directed 

content analysis was derived from the strategies and best practices identified in the literature 

review. Key aspects from each transcript were first categorized into prompt engineering 

strategies, such as the clarity and relevance of prompts, the use of logical reasoning (e.g., 

chain-of-thought prompting), and the application of corrective feedback to refine AI-

generated outputs. Additionally, the extent to which students leveraged stochastic behaviors 

and meta-prompting techniques was examined. The prompt engineering strategies were then 

mapped to a set of 14 best practices for competitive coding scenarios identified from the 

literature. Lastly, these qualitative best practices were converted to descriptive statistics to 

analyze the frequency of each best practice applied by the participating student teams. This 

monostrand conversion mixed-methods approach (Teddlie and Tashakkori, 2006) allowed the 

researchers to closely examine the prompt engineering practices that were implemented by 

the participants during the competition and identify which specific practices were used more 

or less frequently.  

 



 

 

3.1 Prompt Engineering Strategies 

 

The literature review identifies a set of prompt engineering strategies that are particularly 

relevant to competitive programming tasks. These strategies were selected based on their 

potential to enhance the performance of LLMs in generating accurate, efficient, and 

contextually appropriate code solutions. 

 

1. Provide Clear Directions: Prompts should include a context for the answer that is 

being provided. It should for example include constraints, desired output format, 

programming language, and examples. For instance, instead of asking, "Write a 

program that adds two numbers," a more effective prompt would be, "You are a 

competitor in a programming contest. Write a Python program that takes two space-

separated integers from standard input and prints the sum of the integers to standard 

output." 

 

2. Break Complex Procedures into Steps: LLMs will tend to provide better solutions for 

smaller steps. Moreover, this approach reduces cognitive load for the user, increasing 

the likelihood that the user can identify and fix a flaw in the approach used by the 

LLM. For example, rather than having the LLM directly produce a result, a user 

might ask the LLM to first provide an outline for a solution approach. After ensuring 

that the approach seems sound, the user could then ask for code to be generated. 

 

3. Leverage Chain-of-Thought Prompting: Chain-of-Thought prompting guides the 

model through logical reasoning, ensuring thorough and consistent outputs. Phrases 

like "Let's solve this step-by-step" prompt the model to break down its response into 

intermediate steps. For a contest programming problem, a prompt could tell the LLM 

to first describe the algorithm, then to reason about its correctness, and finally, when 

it is sure the approach is correct, to write the code. 

 

4. Provide Feedback to Improve Output: Providing feedback to improve output is a key 

to successful, iterative refinement. Users can correct errors or make suggestions to 

enhance the solution. For example, if the model provides an incorrect response, a user 

can provide details for where the solution is failing, for example, indicating if the 

approach is too slow, whether it causes a runtime error, or whether it fails for small or 

large test cases. 

 

5. Leverage the stochastic nature of LLMs: Leveraging the stochastic nature of LLMs 

involves exploring multiple potential solutions by generating several outputs for the 

same problem. If the first solution provided by an LLM is incorrect, simply starting a 

fresh chat and providing the prompt again may provide a correct answer 

 

6. Use the LLM as a Prompt Engineer: If one is in doubt about what an effective prompt 

might look like, the LLM can be used to develop a good prompt. For example, if the 

output from LLMs has not worked, one might prompt: “Your output for programming 



 

 

problems has produced a solution that is inefficient, misses edge cases, and considers 

only some of the possible inputs. Given the following meta-prompt, which is the 

specification of a programming problem, generate a new prompt that could potentially 

lead to better results. Aim for prompts that are clear, concise, and can guide the model 

effectively. {{Meta-Prompt}}” 

 

3.2 Mapping Strategies to Best Practices 

 

The strategies from the literature review were then mapped to a set of best practices for 

competitive coding scenarios. A set of 14 best practices were identified, which covered the 

six strategies from the previous section. These best practices include: 

 

1. Start a fresh chat: Beginning a new chat ensures that contextual noise from prior 

conversations does not affect the model’s responses. This helps maintain focus on the 

current problem and prevents unintended interference. 

 

2. Provide the entire, relevant portion of the problem statement: Providing the entire 

problem statement directly to the model ensures that all relevant details are included. 

In the problem set, each problem had a section of text that was not relevant to the 

problem, and therefore, should not be provided as part of the prompt. This irrelevant 

or extraneous information should be removed to avoid confusing the model. 

 

3. Clarify the problem statement: Ambiguities in the problem can hinder the model's 

performance. By clarifying unclear aspects, users help the model interpret tasks 

accurately and generate appropriate solutions. 

 

4. Specify constraints and limitations: The constraints on input or memory are required 

so that the model can provide a solution that can handle potential input values and an 

algorithm that is efficient enough given the potential complexity of input. 

 

5. Include sample test cases: Providing sample input and output from the problem 

statement helps the model understand the expected input-output behavior. Moreover, 

ChatGPT would run the generated code against the test cases. In the event that the 

code did not pass a test case, ChatGPT automatically refines its output in an attempt 

to pass the provided testcases. 

 

6. Include additional test cases: Adding custom examples can address nuanced scenarios 

that may not be covered by the given examples. This provides additional guidance 

tailored to specific edge cases. 

 

7. Request specific programming language: Specifying the programming language 

ensures that the generated solution is technically compatible with the requirements of 

the task, and previous research has shown that specifically requesting a language can 

improve the system output. 



 

 

 

8. Ask for comments or explanations: Requesting code comments or detailed 

explanations helps users understand the logic behind the model’s output. This is 

especially useful for verifying correctness and learning from the solutions generated. 

In addition, this output provides context which can help the LLM produce better 

output. 

 

9. Iterative improvement: Follow-up questions refining the model's responses. Users can 

address errors or ask for enhancements, such as optimizing algorithms or handling 

edge cases. 

 

10. Create multiple chats for the same question: Starting new chats for the same problem 

allows users to explore alternative solutions. This resets the context for the prompts 

and leverages the stochastic nature of the LLM output, which can lead to diverse and 

potentially better implementations. 

 

11. Prompt model to adopt a persona: Instructing the model to emulate a specific domain 

expert, such as a senior developer or a CS professor, can improve task performance. 

This approach leverages the model’s ability to adopt domain-specific expertise. 

 

12. Specify steps required to complete a task: Breaking the problem into discrete steps 

ensures logical, step-by-step reasoning. For example, one could instruct the model to 

first define an approach, then reason about its correctness, then provide test cases, and 

write and test the code. 

 

13. Chain-of-Thought prompting: Tests the model's capabilities relying on limited 

additional context in prompts, that steers the model to perform better. 

 

14. Meta-prompting: Users can prompt the model to refine or create a better prompt for 

solving a given problem. For instance, asking the model, "Can you suggest a better 

way to ask this question?" allows the system to enhance the interaction itself. 

 

As shown in Table 1, the authors map the best practices into the strategies. As shown in the 

table, many of the best practices apply to multiple strategies. In addition, most of the best 

practices have at least some elements of providing clear instructions for the LLM. 

  



 

 

 

Table 1: Mapping of Best Practices to Prompt Engineering Strategies 

  Best Practice 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 

S
tr

a
te

g
y

 

Provide Clear 

Directions 
X X X X X X X X     X X X   

Break Complex 

Procedures into Steps 
                X     X     

Leverage Chain-of-

Thought Prompting 
              X         X   

Provide Feedback to 

Improve Output 
    X   X X     X           

Leverage the stochastic 

nature of LLMs 
                  X         

Use the LLM as a 

Prompt Engineer 
                          X 

 

 

3.3 Contest Environment and Problem Set 

 

The contest problem set consisted of 12 problems, and teams had two hours to solve these 

problems. These problems were evenly divided between easy problems, medium problems, 

and difficult problems. Each problem was worth 100 points. If a team passed only a subset of 

testcases, their score for that problem would be proportional to the proportion of testcases 

passed. There was no penalty for making multiple submissions. 

 

The “easy” problems could occasionally be solved by ChatGPT, using GPT-4; however, most 

of the solutions generated by ChatGPT would fail multiple testcases. Nonetheless, if users 

tried multiple attempts to generate the solutions there was a high likelihood that they could 

receive a correct solution. Moreover, the solutions generated were likely to be mostly correct, 

and therefore, with further prompting, the students would be able to get the LLM to correct 

the mistake. 

 

With the medium difficulty problems, the initial solutions from GPT-4 were likely to have 

more problems that the students would need to work through. Some of these problems 

contained partial information, in an effort to encourage students to complete the information 

using the LLM.  

 

The solutions generated by LLMs for the difficult problems were more limited in their utility. 

Typically, these solutions were either logically flawed, or they were not efficient enough to 

solve the testcases within the given time constraints. Nonetheless, the LLMs could quickly 

provide code to handle the input and output, and they could provide ideas for solution 

approaches. 

 



 

 

This range of difficulty and specific learning objectives are illustrated in the following 

sample of problems.1 The following six problems illustrate the range of challenges and goals 

for the problem set. 

• We Are: This problem involves writing a simple program to handle a predefined call-

and-response interaction, the Penn State’s iconic "WE ARE" chant, which student 

should know well. This problem contained only partial information about the chant, 

which testing against LLMs at the time would require students to provide the model 

with the missing information in order to pass all test cases.   

• 54 States and Counting: This problem tasks students with implementing a lookup 

system that reflects historical and newly proposed changes to U.S. state names, 

abbreviations, and capitals. Only partial information was provided about current state 

abbreviations and capitals, to encourage students to use the LLMs to retrieve a 

complete listing of this information. Moreover, testing revealed that LLMs would 

typically produce code with bugs due to the introduction of new states and the 

redefinition of some of the abbreviations. The goal was to encourage students to either 

manually find and fix these bugs or to work with the LLM to fix the code. 

• RickRoll: This problem involves transforming a square matrix using a sequence of 

operations named Rick, Roll, and RickRoll. The operations were described using 

images, which at the time LLM’s were not able to correctly interpret. The goal was to 

encourage students to describe the image content as part of a prompt. In addition, the 

rotation operations changed both the location and orientation of the symbols. Testing 

revealed that LLMs would produce code that could handle the location changes but 

not the orientation changes, and the goal was to see if students were able to fix this 

code, either through interaction with the LLM or manually. 

• Crypto Trading Bots: This problem required students to recognize that the solution 

required a first-in, first-out queue augmented to support a median operation, with 

operations that ran in logarithmic or better time.  During testing the LLMs provided 

solutions that ran in linear time, and the goal was for the students to interact with the 

LLM to request a more efficient approach than the initial response provided using a 

basic prompt. 

• race fast safe car: This problem required the LLM to identify the minimum number of 

characters which need to be added to an input string in order to make it a palindrome. 

In testing, the LLMs made a variety of errors. Some of these errors included problems 

with edge cases that could be resolved through the use of few-shot prompting that 

included these edge cases as additional examples. 

• Evil Chutes: This problem involved a game that could be modelled as a Markov 

chain, with a target value that was obtainable via matrix inversion. However, because 

of the nature of the transition matrix, the best approach involved a straightforward, 

and fast back substitution. In testing the LLM failed to find the faster approach with a 

general prompt, and the goal was to see if students could use a more sophisticated 

prompting approach to find the best approach. 

 
1 A repository with these sample problems can be accessed at: 
https://www.hackerrank.com/challenge-repository-1745082795  

https://www.hackerrank.com/challenge-repository-1745082795


 

 

 

 

4 Results 

 

This study employed a monostrand conversion mixed-methods approach, qualitatively 

analyzing transcripts from the programming contest and converting those results into 

quantitative data. After the contest was over, students were asked to volunteer to provide their 

LLM transcripts, with an incentive that they would be entered into a drawing for $50 gift 

cards.  

 

Sixty (60) transcripts were voluntarily provided by teams. These transcripts were then 

analyzed for evidence that students followed best practices in their interactions with the 

LLMs. Note that the success rate for problems ranged from 0% to 33%, indicating that teams 

typically required multiple submissions before arriving at a completely correct solution. 

 

 

Figure 1: Percent of Teams Utilizing the Best Practices By Number. 

As shown in Figure 1, some of the best practices were common in many of the transcripts. 

However, the majority of best practices were found in few or no transcripts.  

 

Three of the best practices were evident in at least 90% of the transcripts. The most common 

best practice, present in all but one transcript (98%), was best practice 5, include sample test 

cases. Since the sample test cases were part of the problem statement, as long as teams copied 
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and pasted the entire problem statement, the sample testcases would be included. The second 

most common best practice, evident in all but two transcripts (97%), was the use of multiple 

chats for a single problem. The third most common practice, specify constraints and 

limitations, was present in 90% of the transcripts. As with the sample test cases, these 

constraints are a part of the problem definition, so simply copying and pasting the entire 

problem would provide the LLM with the problem constraints. 

 

The next three most common best practices appeared in about half of the transcripts. Sixty-

three percent (63%) of teams attempted to use iterative improvement to try to improve the 

initial solution provided by the LLM. Sixty-two percent (62%) of transcripts had evidence 

that teams provided the entire, relevant portion of the problem statement. These teams 

removed the portion of the problem statement that was not pertinent to the task. Forty-eight 

percent (48%) of teams started a fresh chat for each challenge. Interestingly, this means that 

more than half of the transcripts showed evidence of attempting to solve distinct problems 

while previous problems were in the context provided to the LLM. 

 

Four of the best practices appeared rarely, showing up between three and eight percent of the 

transcripts. These included asking for comments or explanations to try to understand issues in 

the solution, which occurred in 8% of the transcripts. Teams in only 5% of the transcripts 

clarified the problem statement. Teams specified included additional test cases only 3% of 

the time, and they request specific programming language only 3% of the time. 

 

The four best practices were not evident in any of the transcripts. None of the teams 

prompted the model to adopt a persona, specified steps required to complete a task, used 

Chain-of-Thought prompting, or tried meta-prompting. 

 

The limited evidence of best practice use surprised the researchers. Given that the majority of 

practices appeared rarely, the results support the need for integrating some prompt 

engineering education into the curriculum. This also prompts further research into how 

prepared and confident CS educators are in teaching these skills to students to enhance their 

use of generative AI tools. 

 

5 Conclusions and Future Work 

 

This study examined the use of generative AI tools in a competitive programming context, 

evaluating the use of prompt engineering best practices among teams of undergraduate CS 

students. While participants demonstrated basic prompt engineering skills, such as including 

sample test cases and specifying constraints, more complex strategies like chain-of-thought 

prompting and meta-prompting were absent. The average compliance rate of 34.2% across 

best practices highlights a gap in students' ability to fully leverage the capabilities of LLMs. 

These findings emphasize the need for structured, targeted curricula and instruction in prompt 

engineering. Further research is needed to investigate why students did not apply certain best 

practices that were rarely or never implemented.  

 



 

 

Moreover, the study revealed that while generative AI tools can assist in solving simpler 

problems and providing components of solutions for more difficult problems, their 

effectiveness is highly dependent on the quality of user prompts. The observed variability in 

adherence underscores the importance of explicitly teaching prompt engineering strategies to 

maximize the utility of AI tools in competitive and professional environments. It is 

imperative that future studies investigate how CS instructors are integrating generative AI 

best practices into their instruction to inform additional training/professional development 

efforts so instructors can help students develop and apply these skills. 

 

The results of this study open several avenues for future research and curriculum 

development. In particular, the authors are pursuing the design and integration of prompt 

engineering modules into CS courses. Such modules could include hands-on exercises, best 

practice demonstrations, and assessments to enhance students' proficiency in using LLMs 

effectively. These efforts can also help provide resources that will prompt CS educators to 

incorporate more best practice instruction into their teaching. 
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