
Paper ID #46995

Python GUI for Data Acquisition

Prof. David R. Loker, Pennsylvania State University, Behrend College

David R. Loker received the M.S.E.E. degree from Syracuse University in 1986. In 1984, he joined
General Electric (GE) Company, AESD, as a design engineer. In 1988, he joined the faculty at Penn State
Erie, The Behrend College. In 2007, he became the Chair of the Electrical and Computer Engineering
Technology Program. His research interests include wireless sensor networks, data acquisition systems,
and communications systems.

Prof. Teck Meng (Jonathan) Liaw, Pennsylvania State University, Behrend College

Jonathan Liaw earned his B.Sc. in Applied Physics from the University of Portsmouth, UK, in 1983,
followed by an M.Sc. in Computer Science from the University of Wyoming in 1985. He later obtained
a second M.Sc. in Embedded Software from Gannon University in 2009. After serving as an adjunct
professor at Gannon University, he joined Penn State Erie, The Behrend College, as a full-time faculty
member in 2019. His research interests include machine learning, embedded systems design, and quantum
computing.

Dr. Steven Nozaki, Pennsylvania State University, Behrend College

Ph.D. Engineering Education - The Ohio State University

©American Society for Engineering Education, 2025

Python GUI for Data Acquisition

Abstract

Data acquisition (DAQ) involves sampling signals utilizing sensors that measure various
electrical parameters, processing these signals, and displaying real-world results. This system is
often implemented with a USB DAQ device (e.g., myDAQ, etc.) connected to a PC, or a
controller module (e.g., Raspberry Pi Pico, Arduino, etc.), and software employed with graphical
or text-based programming (e.g., LabVIEW, Matlab, etc.). With the increasing availability of free
and open-source software package availability in Python and the increasing demand for Python
skills among graduates, some courses are now incorporating Python for software development in
practical applications. Python comes with a module called tkinter (short for “Tk interface”) that
allows users to create simple and quick GUI programs. The tkinter module provides various
graphical widgets (e.g., Button, Entry, Label, Radiobutton, etc.) with which the user can interact or
view. A more robust method for creating advanced Python GUI program uses PySide6 and Qt
Designer.

The goal of this paper is to utilize Python with the myDAQ to develop GUI programs suitable for
lab projects in electrical and computer engineering and engineering technology, software
engineering, and computer science programs. First, a lab project is shown to introduce students to
Python GUI development using the tkinter module for simulating various waveforms (sinusoidal,
square, and triangular), determining the spectrum of these signals, and displaying both the time-
domain and frequency-domain representation of these waveforms. The GUI allows the user to select
the waveform type, amplitude characteristics (peak amplitude, DC offset), frequency, signal
duration, and sample rate. The second lab project introduces students to Python GUI development,
using tkinter, for data collection with the myDAQ and plotting the time-domain and frequency-
domain representation of the data collected. Then, these programs are developed using PySide6 and
Qt Designer. Each project includes detailed engineering requirements, software code, and outcomes.

Introduction to Data Acquisition

Data acquisition (DAQ) involves sampling signals utilizing sensors that provide electrical
outputs based on physical inputs, processing these signals into real-world values, and displaying
the results. This system can be implemented with a USB DAQ device (e.g., myDAQ, etc.)
connected to a PC, and software employed with graphical or text-based programming (e.g.,
LabVIEW, Matlab, etc.).

A variety of courses in both electrical and computer disciplines involve data acquisition. One such
course is a Measurements and Instrumentation course [1]. This reference describes a junior-level
course, which uses the myDAQ device for data acquisition and LabVIEW as the programming
language, for designing and implementing measurement systems. Other courses that can include
data acquisition software programming, computer networking, communications systems, and
project-based courses.

Embedded systems are an alternative to PC-based data acquisition systems [2]. Embedded
systems are used to read/analyze sensor data to perform data acquisition at a higher sample rate

than what the PC is able to do, and adhere to a fixed sample rate requirement, which may be
necessary for data processing and analysis. Courses that can use embedded systems include
digital design, introduction to microprocessors, embedded systems design, intermediate
microprocessors, and advanced microprocessors. Also, there are additional courses that can use
embedded systems as an integral component to the course. These courses include wireless
communications systems, control systems, and senior-level project-based courses. The
inexpensive Raspberry Pi Pico W is an example of a hardware device for embedded systems.
MicroPython (a small subset of the Python standard library) can be used for software programming,
and Thonny can be used as the software development environment for writing code and
downloading it to the device.

Due to the free and open-source software availability of Python and with the growing interest in
graduates having Python experience, Python can be used for software development [3]. The goal
of this paper is to utilize Python with the myDAQ to develop graphical user interface (GUI)
programs suitable for lab projects for electrical and computer engineering and engineering
technology programs.

Introduction to Python Coding Using PyCharm

For the software development environment, the Community Edition of PyCharm is a free
download [4]. Various online resources are available for learning PyCharm [5-6]. Additionally,
an open educational resource (OER) text is available online for students that are new to Python
[7]. An example of a Python project within PyCharm is shown in Figure 1 [8]. This program
calculates the average value of 10 temperature readings, where each temperature reading is a
floating-point number generated from a random number that is scaled to represent temperature in
°C between 30 and 50. A delay for one second is used after each number is generated. After all
10 temperatures have been displayed, the average temperature is displayed.

Figure 1. Average Temperature Reading Python Project

Introduction to GUI Programming Using tkinter

A module named tkinter (short for “Tk interface”) allows users the ability to create simple GUI
programs [3]. The tkinter module provides various graphical widgets (e.g., Button, Entry, Label,
Radiobutton, etc.) with which the user can interact or view. An example of a simple Python GUI
program that converts temperature from degrees C to degrees F is shown in Figures 2-3. This GUI
utilizes the following widgets.

• Frame – Container to hold the other widgets.
• Entry – Area in which the user enters the temperature in degrees C.
• Label – Area that displays one line of text (e.g., Enter a temperature in deg. C:)
• Button – Causes an action to occur when selected.

Figure 2 shows the program to create the main window and the function to convert the
temperature to degrees F. The main window contains a title, configures it for a grey background
color, and sets the size for width and height.

Figure 3 creates the top, middle, and bottom frames for the main window.

• Top frame contains the label specifying that the user enter the temperature in degrees C
and an entry field for the user to enter the value.

• Middle frame contains the label and value for the temperature converted to degrees F.
• Bottom frame contains the convert and quit buttons. When the convert button is selected,

the function shown in Figure 2 is executed. When the quit button is selected, the main
window closes.

Figure 4 shows the GUI for the application.

Figure 2. Convert C to F Python Project for Main Window and Callback Function

Figure 3. Convert C to F Python Project to create Frames

Figure 4. Convert C to F Python GUI

Python GUI Projects Using tkinter

There are two Python GUI projects using tkinter shown in this paper. The first project is a Python
GUI program for simulating various waveforms (sinusoidal, square, and triangular), determining the
spectrum of these signals, and displaying both the time-domain and frequency-domain
representation of these waveforms. The GUI allows the user to select the waveform type, amplitude
characteristics (peak amplitude, DC offset), frequency, signal duration, and sample rate. The second
lab project introduces students to Python GUI development for data collection using the myDAQ
and plotting the time-domain and frequency-domain representation of the data collected. The
waveforms are plotted using matplotlib, a Python library for creating static, animated, and
interactive visualizations [9].

Waveform Simulation GUI

The engineering requirements for the waveform simulation project are shown below.

• GUI development using Python with windows for user inputs and outputs
• Selection for sinusoidal, square, triangular waveform simulation
• Inputs for waveform peak amplitude, DC offset, and frequency
• Inputs for sample rate and signal duration
• Buttons for selection and quit
• Output window showing both the time-domain and frequency-domain plots

The waveform simulation project imports the following libraries.

• tkinter
• matplotlib
• numpy
• scipy

Figure 5 shows the primary Python GUI code for this project. It includes the program code to
create the main window and the callback function. The main window contains a title and sets the
size for width and height. The callback function includes the following program code.

• User entry values for waveform parameters (e.g., peak amplitude, DC offset, frequency)
• User entry values for sampling (e.g., rate, signal duration)
• Radio button user selection for waveform type (e.g., sinusoidal, square, triangular)
• Plotting for both the time-domain and frequency-domain outputs

Figure 6 shows the user interface window. When a 1 KHz, 5V peak squarewave is selected,

Figure 7 shows the output window for the squarewave from this project. The time-domain x-axis
plot is limited to 10mS to show only 10 cycles of the waveform. The frequency-domain plot
(amplitude and frequency content of the spectrum) is consistent with the theoretical values from
the Fourier Series shown in Equation 1 [10].

Figure 8 shows the output window for a triangular waveform (same parameters as for the
squarewave from Figure 6) from this project. The frequency-domain plot (amplitude and
frequency content of the spectrum) is consistent with the theoretical values from the Fourier
Series shown in Equation 2.

Table 1 shows a summary of the spectrum (frequency content through the 5th harmonic) of the
three waveforms.

Figure 5. Waveform Simulation Project for Main Window and Callback Function

Figure 6. Waveform Simulation User Interface Window

Figure 7. Square Waveform Simulation Output Window

Figure 8. Triangular Waveform Simulation Output Window

∑ 2∗𝑉𝑉𝑝𝑝−𝑝𝑝

𝑛𝑛𝑛𝑛
∞
𝑛𝑛=𝑜𝑜𝑜𝑜𝑜𝑜 sin(𝑛𝑛𝑛𝑛𝑛𝑛) Eq. 1

∑ −4∗𝑉𝑉𝑝𝑝−𝑝𝑝

(𝑛𝑛𝑛𝑛)2
∞
𝑛𝑛=𝑜𝑜𝑜𝑜𝑜𝑜 cos(𝑛𝑛𝑛𝑛𝑛𝑛) Eq. 2

Table 1. Waveform Spectrum Results

Waveform Magnitude of Peak Voltage (V) and Frequency (Hz)
1st Harmonic 3rd Harmonic 5th Harmonic

Sinusoidal 5, 1000 N/A N/A

Square 20 𝜋𝜋� , 1000 20
3𝜋𝜋� , 3000 20

5𝜋𝜋� , 5000

Triangle 40
𝜋𝜋2� , 1000 40

(3𝜋𝜋)2� , 3000 40
(5𝜋𝜋)2� , 5000

Data Collection GUI Using the myDAQ

The engineering requirements for the data collection project are shown below.

• GUI development using Python with windows for user inputs and outputs
• Inputs for sample rate and number of sample
• Buttons for select and quit
• Output window showing both the time-domain and frequency-domain plots

The waveform simulation project imports the following libraries.

• tkinter
• matplotlib
• numpy
• nidaqmx

The nidaqmx package allows the development of data acquisition applications using the myDAQ
device in Python. Instructions for installing nidaqmx and for downloading example programs for
analog input are available online [11]. Figure 9 shows the callback function that performs the data
acquisition [11].

For performing the data acquisition, sinusoidal, square, and triangular waveforms are applied to
channel 1 of the myDAQ. Each waveform was generated using an Agilent 33120A
Function/Arbitrary Waveform Generator. The frequency was set a 1KHz with a peak voltage of
5V.

Figure 10 shows the user interface window. The sample rate was set at 40k samples/sec and 40k
were collected, resulting in a time record of 1 sec. Figures 11-13 show the output windows for
each waveform. The time-domain x-axis plots are limited to 10mS to show only 10 cycles of the
waveform. The frequency-domain plots show the voltage magnitude in dB.

Figure 9. Data Collection Project for Callback Function

Figure 10. Data Collection User Interface Window

Figure 11. Sinusoidal Waveform Data Collection Output Window

Figure 12. Square Waveform Data Collection Output Window

Figure 13. Triangular Waveform Data Collection Output Window

Introduction to GUI Programming Using PySide6 and Qt Designer

The Python tkinter package, included with Python installations, offers a quick and simple way to
create desktop GUI applications. However, as the demand for more sophisticated GUI design
and intuitive visual layout tools with real-time inspection grows, a more advanced framework
like Qt for Python becomes a logical choice [12]. The current version, called PySide6, is a
Python library for developing GUI applications using the Qt toolkit. PySide6 enables developers
to build rich, interactive desktop applications in Python. This is suitable for more sophisticated
projects in the upper-level engineering, engineering technology, and computer science courses.

A key component of PySide6 is the Qt Designer, a visual drag-and-drop tool for designing GUIs
[13-14]. Qt Designer allows users to create interfaces without writing code, streamlining the
design process. Once designed, the interface can be exported as a .ui file and loaded into a
PySide6 application, or the .ui file can be compiled into a Python file for integration into the
project. The latter method is preferred, as it offers more detailed information about the widget
components used and greater flexibility.

Designer is automatically installed when PySide6 is installed via pip. After installation, Qt
Designer can be launched from the command line using the built-in launcher within the project's
virtual environment [15].

When launched, Figure 14 appears, prompting the selection of a form style.

Figure 14. Qt Designer Launch Window

As an example, a simple temperature converter program, shown in Figure 15, is used to illustrate
the basic operations of Qt Designer. The Main Window form can be selected and resized by
grabbing one of its edges using the mouse to a desired dimension. The components (e.g., buttons,
text fields, combo boxes, etc.) from the left pane are placed in the window. The right pane shows
the component properties (e.g., window title, programming linked code to a component’s event,
etc.) that can be changed or manipulated. The ‘Close’ button has an associated close window
event. This can be achieved by selecting the Signals/Slots Editor mode, with no coding required.
The designer has many standard event handlers for deployment.

Figure 15. Layout of Temperature Converter Program

Enter Signals/Slots
editing mode

Use this to save the
UI design file with
extension .ui

To preview the window design, shortcut key ctrl-r can be used. The preview can reveal certain
behaviors like the numeric entry behaviors of the Celsius entry box, including
minimum/maximum values, decimal points, etc. The Python code of this UI design can be
exported be selecting Form option → View Python Code. A popup screen showing the Python
code generated is shown in Figure 16. The save icon is selected to save the code to the desired
project folder to be integrated into the main project code.

Figure 16. Python Code for UI Design

Since the UI Python code will be generated every time there are changers made, the user should
not modify this code manually. Finally, this Python file (ui_C2F.py for this example) is
integrated with the project main code. The project code for the temperature converter is shown in
Figure 17.

Select this save icon
to save the generated
Python code below

Generated Python
code for the UI
design

Selecting this option
will pop up the screen
shown on the left

Figure 17. Python Code for Temperature Converter Project

Python GUI Project Using PySide6 and Qt Designer

In the following section, a more sophisticated screen layout is presented which provides similar
functionality as compared to the previous two tkinter GUI projects. A grid layout component for
the graphical output simulation of various waveforms (sinusoidal, square, and triangular), and for
displaying both the time-domain and frequency-domain representation of these waveforms, is
shown in Figure 18.

Figure 18. Grid Layout for Waveform Simulation and Data Acquisition Project

import sys
from functools import partial # See reference [16]

from PySide6 import QtWidgets # PySide6 library
from ui_C2F import Ui_MainWindow # from generated UI Python code

class MainWindow(QtWidgets.QMainWindow, Ui_MainWindow):

def __init__(self):
super(MainWindow, self).__init__()
self.setupUi(self)

def convert_c2f(mw: MainWindow) -> None:

fahrenheit = round(32.0 + 9.0/5.0 * mw.doubleSpinBox.value(), 2)
mw.lineEdit.setText(f'{fahrenheit:.2f}')

def show_window(mw: MainWindow) -> None:

mw.doubleSpinBox.setValue(100)
mw.pushButton.clicked.connect(partial(convert_c2f, mw))
mw.show()

if __name__ == '__main__':

Create the Qt application and main window
app = QtWidgets.QApplication(sys.argv)
mainWindow = MainWindow()
show_window(mainWindow)
sys.exit(app.exec())

Standard boiler plate template
code for PySide6 integration

A UI window class to setup the
entire window layout via calling
self.setupUi()

This code is linked to the click event of
the ‘Convert’ button on the UI. The
event will invoke the function call to
convert_c2f()[16]

A grid layout area
can be used for
graphic placement.

Similar to the previous tkinter project, this GUI gives the user the ability to select the signal type
(sinusoidal, square, triangular, including the myDAQ for data acquisition), frequency, signal
duration, sample rate, peak amplitude, DC offset, and spectrum scale (linear or dB). As software
development becomes more sophisticated, students are required to learn object-oriented
programming concepts [17]. Since the notion of ‘Classes’ is permeated in almost all
programming languages, Python and PySide6 heavily use such programming constructs.

Figures 19-22 show various waveform outputs for the Waveform Simulation and Data
Acquisition Project. Figures 19-21 show the simulated waveform spectrums plotted with a linear
scale. Figure 22 shows the sinewave output captured from the myDAQ data acquisition device,
and the spectrum is plotted using the dB scale. All waveforms had a 200Hz frequency with a
peak voltage of 2V.

Figure 19. Sinusoidal Waveform for Waveform Simulation and Data Acquisition Project

Figure 20. Square Waveform for Waveform Simulation and Data Acquisition Project

Figure 21. Triangular Waveform for Waveform Simulation and Data Acquisition Project

Figure 22. Data Collection for Waveform Simulation and Data Acquisition Project

Student Assessment

Student assessment was performed with an electrical and computer engineering technology
senior design project team. The goal of the project was the design of an acoustical data
acquisition system that used Python for GUI development. As part of standard classroom
practice and instructional improvement efforts, an informal debriefing discussion was conducted
with student participants near the conclusion of their senior design project. This project involved
extensive use of Python-based GUI development tools and system-level integration of hardware
and software components. The purpose of the debriefing was to gather student perspectives on
the educational value of the project experience and to identify areas for pedagogical
enhancement.

Students reported that the project required significant self-directed learning, including mastering
new programming environments (e.g., PySide6), understanding hardware communication
protocols (e.g., I2C, SPI), and learning practical engineering skills such as PCB design and
soldering without formal coursework in these areas. This learning model emphasized situational
problem-solving and adaptability—characteristics highly valued in engineering education.

In addition to technical skill development (e.g., coding, GUI creation, system integration),
students cited growth in soft skills such as technical documentation, team communication,
meeting management, delegation of tasks, and professional accountability. The emphasis on self-
reliance and perseverance, particularly in overcoming hardware-software integration challenges,
reinforced the importance of "learning how to learn" - an essential outcome for engineering
graduates.

Students also reflected on the value of early exposure to hands-on tinkering, troubleshooting, and
independent projects during undergraduate coursework. They recommended that future students
cultivate a mindset focused on understanding the "why" behind technical content, rather than
only procedural knowledge, to better transfer skills to novel scenarios.

Overall, the senior design project experience provided an authentic, open-ended learning
environment that required persistence, critical thinking, and systems-level problem-solving.
Insights from this debriefing will inform future enhancements to project scaffolding, support
structures, and preparatory coursework to better prepare students for the demands of senior-level
capstone projects and professional practice.

Summary

Data acquisition is a common topic in a variety of courses in electrical and computer engineering
and engineering technology, software engineering, and computer science programs. With the
increasing availability of free and open-source software package availability in Python and the
increasing demand for Python skills among graduates, some courses are now incorporating Python
for software development in practical applications. Python comes with a module called tkinter
(short for “Tk interface”) that allows users to create simple GUI programs. More sophisticated GUI
designs can be created using PySide6 and Qt Designer.

There are two Python GUI projects using tkinter shown in this paper. The first project is a Python
GUI program for simulating various waveforms (sinusoidal, square, and triangular), determining the
spectrum of these signals, and displaying both the time-domain and frequency-domain
representation of these waveforms. The second lab project introduces students to Python GUI
development for data collection using the myDAQ and plotting the time-domain and frequency-
domain representation of the data collected. Then, these programs are developed using PySide6 and
Qt Designer.

Preliminary results for developing Python GUI projects are promising. More Python data
acquisition projects will need to be developed and compared with using other graphical software
development tools (e.g., LabVIEW). Additional student feedback is needed to confirm
conclusions.

References

[1] D. Loker and S. Strom, “Innovative Laboratory Projects for a Measurements and Instrumentation Course,” Annual

Meeting, American Society for Engineering Education, 2019.
[2] D. Loker, “Data Acquisition Using the Raspberry Pi Pico W,” Annual Meeting, American Society for Engineering

Education, 2024.
[3] T. Gaddis, Starting out with Python, Pearson Education, 2018.
[4] JetBrains.com. [Online]. Available: https://www.jetbrains.com/pycharm/
[5] youtube.com. [Online]. Available: https://www.youtube.com/watch?v=SZUNUB6nz3g
[6] JetBrains.com. [Online]. Available: https://www.jetbrains.com/pycharm/learn/
[7] mvcc.edu. [Online]. Available:

https://www2.mvcc.edu/users/faculty/jfiore/CP/labs/LaboratoryManualForComputerProgramming.pdf
[8] D. Loker, "MicroPython in a Wireless Communications Systems Course," Annual Meeting, American Society for

Engineering Education, 2021.
[9] matplotlib.org. [Online]. Available: https://matplotlib.org/
[10] W. Tomasi, Electronic Communications Systems, Fundamentals Through Advanced, 5th ed., Pearson Education,

2004.
[11] GitHub.com. [Online]. Available: https://github.com/ni/nidaqmx-python/tree/master
[12] Qt.io. [Online]. Available: https://www.qt.io/qt-for-python
[13] pythonguis.com. [Online]. Available: https://www.pythonguis.com/pyside6-tutorial/
[14] youtube.com. [Online]. Available: https://www.youtube.com/watch?v=uzqDnB44qf4
[15] realpython.com. [Online]. Available: https://realpython.com/python-virtual-environments-a-primer/ -
[16] geeksforgeeks.com. [Online]. Available: https://www.geeksforgeeks.org/partial-functions-python/
[17] Irv Kalb, Object-Oriented Python: Master OOP by Building Games and GUIs, No Starch Press, 2022.

https://www.jetbrains.com/pycharm/
https://www.youtube.com/watch?v=SZUNUB6nz3g
https://www.jetbrains.com/pycharm/learn/
https://www2.mvcc.edu/users/faculty/jfiore/CP/labs/LaboratoryManualForComputerProgramming.pdf
https://matplotlib.org/
https://github.com/ni/nidaqmx-python/tree/master
https://www.qt.io/qt-for-python
https://www.pythonguis.com/pyside6-tutorial/
https://www.youtube.com/watch?v=uzqDnB44qf4
https://realpython.com/python-virtual-environments-a-primer/
https://www.geeksforgeeks.org/partial-functions-python/

	Python GUI for Data Acquisition
	Data acquisition (DAQ) involves sampling signals utilizing sensors that measure various electrical parameters, processing these signals, and displaying real-world results. This system is often implemented with a USB DAQ device (e.g., myDAQ, etc.) conn...

