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An Ontology-Based Reasoner in Aerospace Engineering Education

Abstract

Building on our previous research on bottom-up (student-led) and top-down (instructor-led)
approaches in aerospace engineering education, this paper presents an enhanced ontology-based
reasoner that evaluates two distinct methodologies: logical consequences and word embeddings.
The framework examines logical consequences’ structured and rule-based query capabilities
alongside word embeddings’ natural language processing abilities as paths toward creating
comprehensive educational tools. Our implementation demonstrates how these complementary
approaches enhance educational outcomes: students benefit from personalized learning pathways
and clear prerequisite relationships, while instructors gain tools for curriculum optimization and
adaptation to emerging technologies. Through representative use cases, we show how these
distinct approaches provide robust frameworks that balance precise, logical reasoning with
flexible natural language understanding, ultimately advancing aerospace engineering education
by serving both student and instructor needs.

1 Introduction

The philosophical wisdom of Aristotle, “the whole is greater than the sum of its parts,” captures
how true value emerges from the interactions between components, not merely their individual
contributions [1]. Modern universities embody this principle as they stand at the forefront of
exploring and integrating new technologies. In the early- and mid-1990s, as we started using the
Internet, universities played a crucial role in adopting Internet technology like the Internet
browser development of ViolaWWW and NCSA Mosaic by the University of California,
Berkeley and the University of Illinois Urbana-Champaign in 1992 and 1993, respectively [2, 3].
Fast forwarding 30 years, transitioning through Web 2.0 (e.g., social networks, blogs, and video
sharing) [4, 5, 6] in the 2000s and machine learning breakthroughs (e.g., deep learning [7], neural
networks [8], and reinforcement learning [9]) in the 2010s, universities are now at the forefront of
exploring and implementing artificial intelligence (AI). This tradition of technological leadership
in academia now extends to ontology-based knowledge systems that can transform engineering
education.

In this rapidly evolving landscape, engineering education faces challenges in the digital age’s
continuous development [10], particularly in complex fields such as aerospace engineering, where
theoretical knowledge and practical applications must be effectively integrated [11]. The
emergence of AI presents new opportunities to enhance educational frameworks and
methodologies. One of the prominent AI examples is natural language processing via large
language models (LLMs) using word embeddings [12].

To explore the integration of ontology with both logical consequences and word embeddings in
creating an ontology-based reasoner, we present this research paper in the following order. We
begin by reviewing existing knowledge on ontology in engineering education, followed by
analyses of both student-centered and instructor-centered methodological approaches. Next, we
present a theoretical framework that unifies ontologies with logical consequences (Path 1) and



with word embeddings (Path 2). We then illustrate and discuss this framework through a practical
use case in aerospace engineering education, demonstrating our ontology-based reasoner’s
application in student-centered course planning and instructor-centered curriculum development
and advising. In this paper, we adopt two key perspectives, as illustrated in Fig. 1: a bottom-up
approach focusing on student-centered aspects and a top-down approach addressing
instructor-centered aspects. Throughout our discussion, the term “instructor” encompasses both
instructors and administrators who oversee coursework.

Instructors

Students

Bottom-up approachTop-down approach

Instructor-centered
educational perspectives

Student-centered
educational perspectives

Figure 1: Educational Perspectives: Student-centered (Bottom-up) and Instructor-centered (Top-
down)

2 Background

2.1 Foundations of Ontological Reasoning

Ontologies [13, 14], logical consequences [15, 16], and word embeddings [17, 18] share
fundamental connections in AI, and combining these tools offers promising potential for
advancing engineering education. Ontological reasoning, a comprehensive approach to deriving
knowledge from structured representations, plays a crucial role [19]. Within the broader
framework of ontological reasoning, logical consequences and word embeddings serve as
fundamental mechanisms. We can perform various types of knowledge derivation through
ontological reasoning, including classification, hierarchical relationships, and consistency
checking. That is, combining the structured understanding of ontologies with the logical
consequences (i.e., SPARQL, which will be covered later) and word embeddings (i.e., the
foundation for LLMs) enables us to create powerful tools for educational applications, thereby
enabling the systematic derivation of new knowledge from existing ontological structures. These
foundational concepts form the basis for our educational framework.

2.2 Ontology in Engineering Education

Educational ontology development can employ two distinct methodologies: the top-down
approach starting with general concepts and specializing downward, and the bottom-up approach
beginning with specifics and organizing upward [20, 21]. The use of ontology provides a
framework enabling classification (e.g., alpha, beta, and gamma levels), consistency checks, and
gap identification in Aerospace systems engineering [22, 23], supporting more structured and



reliable processes in systems design and analysis [24, 25]. Similarly, structured visualization
frameworks in engineering education have demonstrated effectiveness in helping students
understand complex physical concepts such as deformation and stress in aerospace
structures [26].

Since the fundamental idea of ontology is to define relationships between entities in the form of
“A is a B,” the ontology-based approach facilitates the modeling and analysis of relationships
among various systems. Consequently, this approach can integrate concepts from different
academic disciplines. For instance, aerospace engineering can combine areas such as
aerodynamics, autonomy and control, propulsion, structures, and materials. As a result, the
ontology-based approach fosters cross-disciplinary learning for students and enhances teaching
experiences for instructors. This approach complements previous educational frameworks in
aerospace engineering that use interactive visualization technologies, which have demonstrated
effectiveness in helping students understand complex physical concepts in structural mechanics
through both virtual and hands-on experiences [27].

This ontology-based reasoner builds upon previous system-of-systems (SoS)-inspired frameworks
in aerospace engineering education. While SoS approaches use Definition, Abstraction, and
Implementation (DAI) process [28] to solve complex problems, our ontology-based reasoner
similarly provides structured pathways through complex engineering knowledge.

Definition

Abstraction

Implementation

Define problem

Formulate problem

(Refine)

(Refine)

Figure 2: SoS DAI Process

2.3 Educational Framework Integration

The Backward Course Design Model focuses on learning outcomes rather than teaching methods,
making it ideal for serving both instructor and student needs [29, 30, 31]. The model works in the
following steps: first, setting the learning goals, then deciding how to measure success, and
finally, planning the teaching activities. This approach works well with how we organize course
content using ontologies. For example, the learning goals match with broad concepts in the
ontology, while the detailed learning activities connect to specific relationships and topics within
the educational structure.

The Backward Course Design Model and ontological reasoning work together effectively in
engineering education, with the ontology-based reasoner built on established bottom-up and
top-down approaches [32]. The Backward Course Design Model helps structure how courses are
developed, while ontological reasoning helps organize engineering concepts and their
connections. This combined approach creates a flexible system that can adapt to meet the



changing needs of both students and instructors, leading to better educational outcomes at
universities.

2.4 Stakeholder Perspectives

From a pedagogical perspective, students tend to focus on their personal goals and interests when
managing their academic progress, while instructors tend to focus more on learning outcomes and
program-level objectives. These distinct perspectives naturally inform our ontology design
approach: the bottom-up student perspective helps to create practical relationships between
courses, prerequisites, and skills development, whereas the top-down instructor perspective helps
align course objectives and overall curriculum structure [32]. This dual perspective ensures the
ontology-based reasoner can become comprehensive in its knowledge representation, making it
valuable for all stakeholders in the education process.

One of the key advantages of the ontology-based framework is the flexibility it offers to students
pursuing diverse academic and industrial projects based on their chosen career paths. Prior work
on supervised homework sessions in aerospace structural mechanics courses demonstrated that
structured, outside-the-classroom academic support can enhance student engagement and
performance, particularly in complex topics such as stress and shear flow [33, 34]. Similarly, if
students are interested in multidisciplinary and advanced research fields (e.g., heat shields for
hypersonic vehicles) as academics, the students can use the ontology-based reasoner to identify
specific prerequisite knowledge (e.g., materials used in extreme temperatures and ablation during
hypersonic flight) and find where this knowledge is covered within the engineering disciplines
(e.g., materials courses within aerospace engineering, mechanical engineering, civil engineering,
and materials engineering).

For students preparing for careers in industry, the framework emphasizes practical applications of
aerospace engineering principles. For example, the ontology-based reasoner can guide students
through engineering design trade-offs, such as recommending Latin hypercube sampling over full
factorial sampling for efficient experimental design. This helps students understand the balance
between analysis fidelity and practical constraints while developing skills for real-world
engineering challenges.

From the instructor’s perspective, the ontology-based reasoner enables the design of modular
courses that align with individual students’ academic needs while maintaining curriculum
coherence. This modular approach allows instructors to map relationships between course
materials and prerequisite knowledge, bring in subject matter experts for specialized topics, and
create customized content paths. By enabling this flexibility in course design and delivery, the
framework helps instructors develop targeted curricula that enhance the educational experience
while meeting both individual student needs and broader program objectives.

2.5 Research Gap and Proposed Solution

While decision-making tools are established in fields such as defense applications [35] and space
applications [36, 37], and recent developments show increasing adoption of reasoner capabilities
in both aerospace engineering practice [38] and university research [39], aerospace engineering
education has yet to fully leverage these advancements. For example, structured decision



frameworks developed for managing intellectual property in defense acquisition highlight how
formal reasoning architectures support complex stakeholder negotiation and strategy
formulation [40, 41, 42]. Drawing inspiration from these findings, and to address this gap in
engineering education, we propose a novel dual-approach reasoner that combines Logical
Consequences and Word Embeddings, designed specifically for academic decision-making. This
tool integrates both bottom-up and top-down methodologies [32]. The bottom-up approach
empowers students in their academic planning, while the top-down approach provides instructors
with increased flexibility in curriculum development and advising.

3 Theoretical Framework on Ontology-based Reasoner

Logical consequences and word embeddings are distinct concepts. In logical consequences, a
path starts from what we know to be true and follows a clear path from start to finish. Logical
consequences describe the relationship between statements. In these statements, one statement
follows the other statement. On the other hand, in word embeddings, words are represented
numerically in a vector format. Word embeddings are an essential part of LLMs and help
computers understand words by seeing how they connect to other words.

While these two methods work differently, they help us understand information. In the following
sections, we will examine these ideas more closely. We will see how logical consequences help us
think clearly (aids proper thinking) and how word embeddings help computers understand human
language (enables computers to process human language).

3.1 Overall View of Data Propagation

The two distinct approaches of logical consequences and word embeddings do not compete.
Fig. 3 describes two paths of ontology-based reasoner. They complement each other in system
design since they serve different purposes. Logical consequences (Path 1) provide explicit
reasoning capabilities through well-defined rules and relationships, enabling precise query
processing and derivation in structured knowledge representations, meaning that the results are
presented in a structured format rather than natural language. Word embeddings (Path 2) offer
robust natural language understanding, allowing the system to process unstructured text and
capture nuanced relationships. When integrated, these approaches combine the strengths of
symbolic reasoning with probabilistic language processing capability. Logical consequences
(Path 1) ensure reliable rule-based operations and structured outputs, while word embeddings
(Path 2) facilitate flexible natural language understanding.

3.2 Path 1: Logical Consequences (SPARQL)

3.2.1 Introduction to Logical Consequences

Logical consequences form the basis of systematic reasoning. When we have a set of true
statements, logical consequences are the conclusions that must follow from those statements. This
straightforward principle helps us draw reliable conclusions from known facts, providing a
foundation for clear and structured thinking.

Example 1: Consider the following reasoning:



Ontologies

Path 1

Path 2

Logical Consequences
(SPARQL)

Word Embeddings
(LLMs)

Query Results
from Path 1

Query Results
from Path 2

Figure 3: Ontology-based Reasoner Paths: Logical Consequences vs. Word Embeddings, Illustrat-
ing the Complementary Approaches to Educational Knowledge Processing

Premises: All dogs are mammals, and Commander is a dog.
Reasoning: From these premises, it follows logically that:
Conclusion: Commander is a mammal.

In Example 1, the premises’ truth guarantees the conclusion’s truth. This is the essence of logical
consequences: the conclusion is not merely likely or probable but necessarily true given the
premises. That is, all B (dogs) are A (mammals); C (Commander) is B; therefore, C is A.

Example 2: Consider another example that is more in line with the theme of the current
research:

Premises: A student cannot enroll in required upper-division engineering courses
without completing calculus prerequisites, and no student can receive an engineering
degree without completing required upper-division engineering courses.
Reasoning: From these premises, it follows logically that:
Conclusion: No student can receive an engineering degree without completing
calculus prerequisites.

In Example 2, the logical consequences demonstrate that if calculus prerequisites are required for
upper-division engineering courses, and these engineering courses are required for an engineering
degree, then by necessity, calculus prerequisites are required for an engineering degree. The
reasoning chain works like a series of connected requirements - if calculus is needed for advanced
courses and advanced courses are needed for the degree, then calculus must be needed for the
degree. That is, if A (calculus) is required for B (upper-division courses), and B is required for C
(engineering degree), then A must be required for C.

When comparing Examples 1 and 2, they follow a similar logical consequence structure.
However, these examples show distinct types of relationships. Example 1 illustrates set
membership, where all members of the set “dogs” are the members of the more extensive set
“mammals.” In contrast, Example 2 represents requirements in academic sequential progression,
where the passing grades in calculus courses serve as a foundational requirement (prerequisite)
for advanced engineering courses. However, despite their different domains, both examples
represent the same principle of logical consequences: when A is connected to B, and B to C, then
A must be connected to C. This logical framework maintains its validity, whether applied to set
facts of animal classification or curricular prerequisites in university education. Thus, these
examples demonstrate the versatility of logical consequences across different contexts.



The systematic, step-by-step approach of logical consequences mirrors the SoS-inspired
frameworks that emphasized the DAI process to break down complex engineering problems into
manageable components [28]. The logical consequences approach presented in our current work
provides students with a structured pathway to navigate complex engineering problems, similar to
how the DAI framework creates organized problem-solving strategies in aerospace structural
mechanics education.

3.2.2 Key Characteristics of Logical Consequences

Logical consequences have some key features that make them a reliable way of reasoning [43].
First, they provide certainty: when we start with true statements, we can be completely confident
in our conclusions. Second, they work the same way regardless of the topic: the reasoning
patterns remain consistent whether we are talking about engineering, science, or any other field.
Third, logical consequences rely on clear reasoning rather than physical evidence: we can reach
valid conclusions just by carefully thinking through the relationships between
statements [43].

The logical consequences use SPARQL (SPARQL Protocol and RDF Query Language), a
W3C-standardized query language for accessing Resource Description Framework (RDF)
data [44]. SPARQL is a recursive acronym where “SPARQL” is part of its own definition, and
both SPARQL and RDF were developed by W3C [45, 46]. SPARQL enables precise querying of
ontological relationships through a structured format, allowing users to extract specific
information based on formalized logical pathways. While SPARQL requires users to understand
its specific query syntax and structure, it provides robust and accurate results by following
explicit logical pathways defined in the ontology [47].

3.2.3 Summary of Logical Consequences

Logical consequences are a fundamental concept in logic that describes when a conclusion must
follow from a given premise with absolute certainty [43]. Unlike scientific observations that rely
on real-world evidence, logical consequences work through the pure structure of arguments,
regardless of their specific content [43]. For example, if we know all dogs are mammals and
Commander is a dog, then Commander must be a mammal. This conclusion is guaranteed by the
logical form alone, not by any real-world knowledge about dogs or mammals. This combination
of necessity, structural validity, and independence from empirical evidence makes logical
consequences a cornerstone of rigorous reasoning [43]. SPARQL implements these logical
consequence principles in practical applications through a structured format, enabling precise
querying of relationships based on formalized logical pathways. Understanding logical
consequences is essential for implementing SPARQL queries in practical applications. While this
approach offers precision and explicit rule-based reasoning, it can benefit from complementary
capabilities to handle the natural language and semantic richness found in educational
contexts.



3.3 Path 2: Word Embeddings (LLMs)

3.3.1 Introduction to Word Embeddings

Word embeddings are a key component of LLMs, serving as the foundation for converting textual
data into numerical representations that machines can process. Fig. 4 depicts the fundamental idea
behind word embeddings, where words are mapped to high-dimensional vectors in a continuous
space, enabling mathematical operations on textual data. For instance, in a well-constructed
embedding space, technical terms from related engineering domains would be positioned closer
together (e.g., clustering terms like “stress,” “strain,” “deformation,” and “mechanics” in
aerospace solid mechanics) in proximity to reflect their interconnected conceptual relationships.
This transformation allows LLMs to capture semantic relationships between technical vocabulary
and process language in a computationally efficient manner.

Example 3: Consider an example in the context of engineering prerequisites:

Vector Space: Terms like “calculus,” “differential equations,” and “numerical
methods” are embedded near each other.
Relationship: These mathematical concepts build upon each other in engineering
education.
Result: The LLMs can recognize the progressive nature of these topics and their
interdependencies.

Example 4: Consider another example in the context of engineering concepts:

Vector Space: The terms “aerodynamics,” “fluid dynamics,” and “compressible
flow” are mapped close together in the vector space.
Relationship: These engineering terms share similar contexts in aerospace
engineering education.
Result: The LLMs can understand these terms as being closely related and likely
appearing in similar educational contexts

Input:
Text

Output:
Vectorized Data

Computation:
Word Embeddings

“Structures” {0.3, -0.1, …, 0.4}

“Vibrations” {0.2, -0.3, …, 0.1}

“Systems” {0.1, 0.7, …, -0.8}

“Controls” {0.7, 0.5, …, 0.3}

Figure 4: Word Embeddings



3.3.2 Key Characteristics of Word Embeddings

Word embeddings have several key features that make them especially useful for LLMs in
engineering education. They help computers understand relationships between words in ways that
mirror how we think about them. When words have similar meanings, like different types of
engineering topics such as structures, vibrations, systems, and controls, word embeddings place
them close together in their computational space. They can also understand relationships between
pairs of related concepts, such as how calculus relates to differentiation and how algebra relates to
equation solving.

Word embeddings are also smart about understanding context. They can figure out that the same
word might mean different things in different situations (e.g., “stress” in mechanics versus “stress
testing” in systems engineering). This ability to grasp different meanings based on context is
particularly valuable in engineering education, where technical terms often have specific
meanings depending on their field.

3.3.3 Summary of Word Embeddings

Word embeddings convert text into numbers (i.e., converting texts into vectors) while preserving
the meaning relationships between words. In LLMs, they serve as a bridge between human
language and computer calculations, enabling machines to understand and process complex
engineering concepts. Unlike logical consequences, which follow strict rules, word embeddings
capture the subtle nuances of language and context in engineering education. This number-based
representation has transformed how computers process language by capturing not just the literal
meaning of words but also their relationships, contexts, and domain-specific applications in
engineering education. When combined with the structured precision of logical consequences,
word embeddings can create a comprehensive approach that balances rigorous reasoning with
flexible understanding.

4 Methodology

4.1 Ontology

The implementation of the ontology-based reasoner presents a novel approach to structuring and
optimizing aerospace engineering curricula by leveraging relationships between fundamental
concepts, courses, and classes. This ontology-based reasoner helps students develop personalized
study plans based on their academic interests and assists academic advisors when reviewing
proposed curricula. The reasoner follows a logical consequence framework built upon the
hierarchical nature of engineering knowledge acquisition, where courses typically progress from
fundamental concepts (first- and second-year engineering) to advanced applications (third- and
fourth-year engineering).

This methodology is structured upon two fundamental layers: concepts (Fig. 5) and courses
(Fig. 6), each forming a crucial component in the educational architecture. Together, these layers
create a comprehensive framework that maps the progression of knowledge throughout the
aerospace engineering curriculum.



4.1.1 Concepts in Aerospace Engineering

Fig. 5 depicts concepts. The framework begins with the basic concepts in aerospace engineering
and the fundamental mathematical concepts such as eigenvalue decomposition and differential
equations. These basic concepts can then easily be transferred to more advanced topics such as
optimization, entropy, and electromagnetism. The relationships between these concepts also
become apparent in the application of finite element analysis and control theory, where several
principles are required to form a solution to a problem.

[Concepts]
├── [Eigenvalue Decomposition]
├── [Optimization]
├── [Entropy]
├── [Electromagnetism]
├── [Linear Programming]
├── [Finite Element Analysis (FEA)]
├── [Control Theory]
├── [Fluid Dynamics]
├── [Kinematics]
├── [Vibration Analysis]
├── [Linear Algebra]
├── [Differential Equations]

Figure 5: Concepts in Aerospace Engineering

4.1.2 Courses in Aerospace Engineering

Fig. 6 shows courses. The next layer contains specific subjects that use these fundamental
concepts in learning activities. For instance, engineering mathematics provides the necessary
tools for advanced topics. From there, the students move on to application-based courses in areas
such as thermodynamics, mechanics of materials, and fluid mechanics, which link theoretical
ideas to aerospace. This proper sequencing of topics helps the students build on the knowledge
they have already gained before moving to the next level of subject matter .

Thus, the ontology-based reasoner can help LLMs identify gaps in the knowledge, ensure
understanding at the appropriate level, and provide focused responses at every level of learning.
This is because they are able to identify the relationships between aerospace engineering concepts
in a way that is beneficial to the development of education in this subject area.

4.2 Concept-Course Integration in Aerospace Engineering

Fig. 7 depicts the combined and interconnected nature of concepts and courses in aerospace
engineering education. The diagram maps how fundamental mathematical and engineering
concepts flow into specialized aerospace courses (shown in green). This visualization
demonstrates how basic principles, such as eigenvalue decomposition and differential equations,
serve as building blocks for advanced courses like thermodynamics and fluid mechanics. The
visualization depicts “teaches” and “uses” relationships between nodes, revealing the
prerequisites and knowledge transfer pathways, and highlighting how theoretical foundations
support application-based learning throughout the aerospace engineering curriculum.



[Courses]
    ├── [Engineering Mathematics]
    │     ├── [Linear Algebra] --Teaches--> [Eigenvalue Decomposition]
    │     ├── [Differential Equations] --Teaches--> [Optimization] 
    │     ├── [Optimization Methods] --Teaches--> [Linear Programming]
    ├── [Thermodynamics]
    │     ├── [Laws of Thermodynamics] --Teaches--> [Entropy]
    │     ├── [Phase Change] --Teaches--> [Entropy]
    ├── [Mechanics of Materials]
    │     ├── [Stress and Strain] --Uses--> [Linear Algebra]
    │     ├── [Elasticity and Plasticity] --Uses--> [Finite Element Analysis (FEA)]
    ├── [Control Systems]
    │     ├── [Linear Systems] --Teaches--> [Linear Algebra]
    │     ├── [Feedback and Stability] --Uses--> [Eigenvalue Decomposition]
    │     ├── [Optimization in Control] --Uses--> [Optimization]
    ├── [Fluid Mechanics]
    │     ├── [Fluid Properties] --Teaches--> [Fluid Dynamics]
    │     ├── [Navier-Stokes Equations] --Teaches--> [Fluid Dynamics]
    │     ├── [Optimization in Fluid Flow] --Uses--> [Optimization]
    ├── [Electromagnetism]
    │     ├── [Electromagnetic Fields] --Teaches--> [Electromagnetism]
    │     ├── [Maxwell’s Equations] --Teaches--> [Electromagnetism]
    ├── [Vibration Analysis]
    │     ├── [Mechanical Vibrations] --Uses--> [Eigenvalue Decomposition]
    │     ├── [Modal Analysis] --Uses--> [Eigenvalue Decomposition]
    │     ├── [Control of Vibrations] --Uses--> [Optimization]

Figure 6: Courses in Aerospace Engineering

Classes:
├── Concept
│ ├── Eigenvalue Decomposition (C1)
│ ├── Differential Equation (C2)
│ ├── Linear Algebra (C3)
│ ├── Modal Analysis (C4)
│ └── System Stability (C5)
└── Course
├── Engineering Mathematics I: Linear Algebra (CO1)
│ ├── teaches: C1, C3
│ └── uses:-
├── Vibration Analysis (CO2)
│ ├── teaches: C4
│ └── uses: C1
├── Control Theory (CO3)
│ ├── teaches: C5
│ └── uses: C1, C2
├── Engineering Mathematics II: Differential Equations (CO4)
├── teaches: C2
└── uses:-

Figure 7: Combined Concepts and Courses in Aerospace Engineering



4.3 Implementation Approaches

The ontological framework described above can be implemented through two distinct yet
complementary approaches. The first approach utilizes SPARQL queries to establish logical
consequences within the knowledge structure, enabling precise retrieval of relationships between
concepts and courses. The second approach leverages Large Language Models (LLMs) through
word embeddings to capture semantic relationships in the educational framework. These two
paths offer different strengths in implementing the ontology: SPARQL provides explicit,
rule-based querying capabilities, whereas LLMs can identify implicit connections and semantic
similarities within the educational content. Together, they provide a robust foundation for
navigating and utilizing the aerospace engineering curriculum ontology.

4.4 Path 1: Logical Consequence (SPARQL)

To demonstrate the framework for logical consequences (SPARQL), we queried courses that
teach and use eigenvalue decomposition in our Ontology for Engineering Education (OEE), as
shown in Fig. 8. The query showcases not only the relevant courses but also additional
ontological information. For instance, the current version displays semester offerings. However,
the ontological structure can be further expanded to include additional metadata. From a
bottom-up student perspective, this could include prerequisites, credit hours, required materials,
and program requirements. From a top-down instructor/administrator perspective, the metadata
could encompass course capacity, teaching assignments, equipment requirements (especially for
hands-on labs), and program accreditation details. This example illustrates how the ontological
structure enables retrieval of both direct relationships (courses teaching a specific concept) and
related metadata from multiple stakeholder perspectives, demonstrating the powerful querying
capabilities of the logical consequence approach.

Figure 8: Example of SPARQL Query

4.5 Path 2: Word Embeddings (LLMs)

To demonstrate the framework for word embeddings (LLMs), we queried courses that teach and
use eigenvalue decomposition in our ontologies, as shown in Fig. 9. This input file represents
educational ontologies in aerospace engineering, defining relationships between fundamental
concepts (C1-C5) and courses (CO1-CO4). It uses a structured format where each line describes
either a concept definition (e.g., “Eigenvalue Decomposition”), a course definition (e.g.,
“Engineering Mathematics I”), or relationships between them using “teaches” and “uses”
predicates. This input file shows how courses build upon and teach different concepts - for



instance, Engineering Mathematics I teaches eigenvalue decomposition and linear algebra, while
Control Theory teaches system stability while utilizing concepts from eigenvalue decomposition
and differential equations. This structure helps map the prerequisite relationships and knowledge
flow through the curriculum.

C1 is a concept
Eigenvalue Decomposition = C1
C2 is a concept
Differential Equation = C2
C3 is a concept
Linear Algebra = C3
C4 is a concept
Modal Analysis = C4
C5 is a concept
System Stability = C5

CO1 is a course
Engineering Mathematics I: Linear Algebra = CO1
CO1 teaches C1, C3
CO1 uses nothing

CO2 is a course
Vibration Analysis = CO2
CO2 teaches C4
CO2 uses C1

CO3 is a course
Control Theory = CO3
CO3 teaches C5
CO3 uses C1, C2

CO4 is a course
Engineering Mathematics II: Differential Equations = CO4
CO4 teaches C2
CO4 uses nothing

Figure 9: Example of LLM Query

5 Results

5.1 Path 1: Logical Consequences (SPARQL)

Fig. 10 depicts results based on the SPARQL query shown in Fig. 8. Fig. 10a indicates courses in
which teaching eigenvalue decomposition is a core concept. Fig. 10b demonstrates courses that
apply eigenvalue decomposition in their curriculum.

5.2 Path 2: Word Embeddings (LLMs)

Fig. 11 depicts results based on the LLM query shown in Fig. 9. Fig. 11a indicates courses in
which teaching eigenvalue decomposition is a core concept. Fig. 11b demonstrates courses that
use eigenvalue decomposition in their curriculum.



?CourseSelected ?ConceptName ?offerSemester
Engineering Mathematics Eigenvalue decomposition Fall

(a) Courses Teaching Eigenvalue Decomposition as a Core Concept

?CourseSelected ?ConceptName ?offerSemester
Control System Eigenvalue decomposition Spring
Vibration Analysis Eigenvalue decomposition Fall

(b) Courses Applying Eigenvalue Decomposition in Their Curriculum

Figure 10: Results based on SPARQL Query Depicted in Fig. 8

Question:
What courses teach eigenvalue decomposition?

Answer:
The course that teaches Eigenvalue Decomposition (C1) is:
Engineering Mathematics I: Linear Algebra (CO1)

(a) Courses Teaching Eigenvalue Decomposition as a Core Concept

Question:
What courses apply eigenvalue decomposition?

Answer:
The courses that apply Eigenvalue Decomposition (C1) are:
Vibration Analysis (CO2)
Control Theory (CO3)

(b) Courses Applying Eigenvalue Decomposition in Their Curriculum

Figure 11: Results based on LLM Query Depicted in Fig. 9



6 Discussion

6.1 Comparative Analysis: Logical Consequences vs. Word Embeddings

When comparing logical consequences (SPARQL) with word embeddings (LLMs), we observed
fundamental differences in both their underlying approaches and their practical results in
curriculum analysis. The SPARQL-based approach operates on precise, structured data
relationships defined in the ontology, using explicit rules and formal logic to follow deterministic
query paths. This is evident in our results (Fig. 10), where the SPARQL query produced clearly
structured outputs differentiating between courses that teach eigenvalue decomposition as a core
concept (Fig. 10a) and those that apply it (Fig. 10b). This explicit differentiation proves
particularly valuable for curriculum planning and prerequisite mapping.

In contrast, LLMs use probabilistic relationships between words in vector space, where
relationships are learned from training data rather than explicitly defined. The LLM-based results
(Fig. 11) demonstrate this different approach, presenting similar course classifications but through
natural language processing. While both approaches identified Engineering Mathematics I as a
primary course for teaching eigenvalue decomposition, the LLM approach provided additional
contextual insights about concept application in courses like Control Theory.

These differences reflect fundamental trade-offs in each approach. SPARQL delivers results in a
structured, precise manner but requires users to understand specific query syntax. To illustrate
this difference: if an ontology incorrectly states, “All birds can fly,” SPARQL will logically but
incorrectly deduce that ostriches and kiwis can fly, adhering strictly to the defined rule. On the
other hand, LLMs use probability-based pattern matching and offer a more user-friendly interface
through natural language processing. When asked about birds and flying, an LLM might correctly
identify that ostriches and kiwis do not fly despite being birds, based on learned patterns.
However, LLMs face challenges with reliability, particularly with large datasets where their
performance can vary for uncommon cases and occasionally lead to incorrect generalizations. As
datasets grow, the vector space becomes increasingly crowded, leading to more ambiguous
semantic relationships.

These contrasting characteristics suggest complementary strengths. While SPARQL excels in
precise relationship mapping and maintaining consistency regardless of dataset size, LLMs can
identify subtle conceptual connections that might not be explicitly coded in the ontology. This
complementarity suggests that an integrated approach using both paths could provide the most
comprehensive tool for curriculum development and academic advising. The SPARQL path
ensures rigorous logic-based course relationships, while the LLM path enriches this structure with
semantic context and potential relationships that traditional prerequisite structures might overlook.
These complementary strengths of both approaches become particularly evident when examining
their applications from different user perspectives, as discussed in the following sections.

6.2 Bottom-up Student Perspective

The ontology-based reasoner in this bottom-up approach leverages both logical consequences and
word embeddings to map students’ interests to relevant knowledge areas. Through SPARQL
queries, the reasoner can traverse the ontological relationships to identify both direct and indirect



connections between concepts, courses, and applications. Complementing this, the LLM
component enhances the system’s ability to understand and process natural language expressions
of student interests and goals, making the interaction more intuitive. This dual approach enables
the reasoner to provide comprehensive pathways that connect students’ career interests with the
necessary educational components while maintaining accessibility and precision. This
implementation demonstrates how the trade-offs identified in our comparative analysis manifest
in practical student applications.

The systematic approach of our ontology-based reasoner mirrors the DAI process [28] as students
define their learning goals, abstract necessary knowledge components, and implement their
understanding through practical applications. Our results showed that the LLM successfully
developed individualized learning pathways by aligning concepts, courses, and classes with
student needs. The system demonstrated particular effectiveness in identifying and addressing
knowledge gaps. For example, when students showed weakness in linear algebra fundamentals,
the system automatically prescribed targeted supplementary materials before introducing
applications in aerospace structures or flight dynamics. This personalization is particularly
valuable for students who have clear career goals and need to understand the specific prerequisite
knowledge required for their chosen path.

Our implementation demonstrated effective integration of concepts and courses from a student
perspective. The system successfully identified natural connections between foundational
concepts and their applications, helping students understand why certain prerequisites are
necessary. For example, eigenvalue decomposition’s crucial role in vibration analysis and control
theory was automatically linked with engineering mathematics courses, providing students with a
clear motivation for learning these fundamental concepts.

From the student perspective, the framework’s adaptability to curriculum changes ensures they
stay current with industry developments. As new technologies and concepts emerge in fields such
as materials science and robotics, students can see how their coursework connects to real-world
applications, maintaining the relevance of their education to industry needs. This student-centered
perspective illustrates how combining the structured precision of SPARQL with the flexible
understanding of LLMs creates an effective educational support system, leading us to examine
how these same approaches serve instructor needs.

6.3 Top-down Instructor Perspective

The ontology-based reasoner supports this top-down approach through complementary
mechanisms of logical consequences and natural language processing. Through SPARQL queries,
instructors can systematically identify knowledge gaps, track prerequisite chains, and ensure
comprehensive coverage of fundamental concepts across multiple courses. The LLM component
enriches this capability by processing instructors’ natural language queries about curriculum
relationships and offering context-aware suggestions for course content optimization. For
example, an instructor teaching advanced aerodynamics can use SPARQL queries to verify that
all necessary mathematical foundations, such as partial differential equations and computational
methods, are properly covered in prerequisite courses while using the LLM to explore potential
connections to emerging aerospace technologies and identify subtle concept relationships that



might not be explicitly coded in the ontology. This combination of precise semantic querying and
flexible natural language processing helps instructors maintain curriculum coherence while
enabling adaptive responses to evolving educational needs. This implementation from the
instructor’s perspective further validates the complementary nature of our dual-approach system
discussed in the comparative analysis.

Instructors can leverage the DAI framework [28] to systematically define learning objectives,
abstract core concepts, and guide implementation while using the ontology-based reasoner to
validate curriculum coherence. The framework proved particularly effective in supporting
instructors’ curriculum optimization efforts. By analyzing prerequisite relationships, the system
accurately identified critical learning sequences, such as the necessity of mastering differential
equations before progressing to fluid dynamics or control systems. This enables instructors to
make data-driven decisions about course sequencing and content coverage.

From the instructor’s perspective, the framework’s ability to adapt to curriculum evolution is
crucial for maintaining educational quality. The system allows instructors to integrate
cutting-edge knowledge and technologies while preserving logical consistency in the curriculum.
This enables them to effectively connect classroom learning with industry developments,
ensuring their teaching remains relevant and comprehensive. These instructor experiences with
both SPARQL and LLM approaches demonstrate how their respective strengths can be leveraged
effectively in curriculum development, providing a practical validation of our earlier comparative
analysis.

6.4 Summary of Discussion

This discussion analyzes the implementation of an educational ontology system in aerospace
engineering through the following main aspects. First, it compares two technical approaches:
logical consequences (SPARQL) queries, which offer precise but rigid rule-based results, and
word embeddings (LLMs), which provide more flexible natural language processing but with
potential reliability challenges. Second, from a bottom-up student perspective, the system
successfully creates personalized learning pathways and helps students understand prerequisite
relationships, which is particularly beneficial for those with clear career paths. Finally, from a
top-down instructor perspective, the system enables effective curriculum optimization and
maintenance, allowing instructors to verify prerequisite coverage and adapt to emerging
technologies while maintaining educational coherence. Throughout these aspects, the discussion
demonstrates how the approaches of logical consequence and word embeddings can contribute to
creating a comprehensive educational framework that serves both students’ and instructors’ needs
in aerospace engineering education.

7 Conclusions and Future Work

This paper has demonstrated how an ontology-based reasoner can leverage two distinct paths,
logical consequences (SPARQL) and word embeddings (LLMs), to create robust approaches for
aerospace engineering education. This integration extends the DAI process [28] into a
comprehensive educational framework that supports both structured reasoning and flexible
understanding in aerospace engineering education. The evaluation of SPARQL’s structured,



rule-based queries alongside LLMs’ natural language processing capabilities showed how each
path effectively addresses distinct educational needs, enabling personalized learning pathways
and clear prerequisite understanding for students while providing curriculum optimization tools
and technology adaptation capabilities for instructors. Through our implementation and use cases,
we have shown that these complementary approaches support both precise, logical reasoning and
flexible natural language understanding, advancing aerospace engineering education by creating a
more comprehensive and adaptable learning environment.

The significance of this work extends beyond its specific implementation. By bridging formal
reasoning with natural language capabilities, our approach addresses a fundamental challenge in
engineering education: balancing structured knowledge pathways with contextual understanding.
This ontology-based reasoner represents a step toward educational systems that adapt to
aerospace engineering’s interdisciplinary nature while maintaining technical rigor. Such
frameworks will become increasingly vital as curricula evolve to prepare students for complex,
real-world challenges.

Future research should explore integrating this framework with Model-Based Systems
Engineering (MBSE) [39, 48]. This integration could extend our semantic querying capabilities
from educational contexts to practical aerospace systems development, creating a bridge between
theoretical concepts and their implementation in real-world projects. The resulting framework
would serve as both an educational tool and a systems engineering platform, contributing to more
effective teaching of aerospace systems engineering while facilitating the transition from
academic learning to professional practice.
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