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Work-in-progress: Evaluating Course Learning Objectives with Generative 
AI using SMART criteria 

Introduction 

In recent years, integrating artificial intelligence (AI) in education has gained significant 
attention, particularly with the emergence of Large Language Models (LLMs). The LLM 
models, in general, are trained on a large corpus of data to produce human-like responses in text, 
images, or other sources [1]. Their ability to generate human-like responses has made them an 
invaluable tool in education, particularly for automating and enhancing various educational tasks 
[2-4]. One key area that significantly impacts LLMs’ ability to understand and process the text 
and generate responses is based on the prompt language used to instruct LLMs [5]. Due to their 
capability, researchers have used LLMs to perform various educational tasks, from simple 
conversation (e.g., [6]) to complex text analyses (e.g., [7]). For instance, in a study [8], the 
authors showed that the LLM model is an effective tool for creating engaging content for 
students. Similarly, another study [9] demonstrated its ability to evaluate students’ essays like 
human graders. 
 
As LLMs continue to transform various aspects of education, one critical area where their 
potential remains largely unexplored is their ability to help in curriculum design, particularly in 
evaluating learning objectives (LOs) [10]. Writing and implementing good LOs are essential for 
aligning the three aspects of curriculum design: course content, assessments, and instructional 
strategies [11]. The LOs provide a framework for students and instructors to ensure that learning 
outcomes are clearly defined and achievable. These basic building blocks can guide towards the 
sequence that builds upon each other and help describe how students will construct their 
understanding of the course material [11]. On the instructor's end, it allows students to be taught 
according to guiding principles. Also, it allows the examination of students' course progress with 
directed assessments and instructional strategies. On the student end, it lays out a clear plan of 
action to develop a complex understanding of the course's content. 
 
Despite the importance, creating effective LOs can be challenging and time-consuming for 
educators, often requiring significant expertise in instructional design [12]. In this context, the 
SMART (specific, measurable, Achievable, relevant, and time-bound) criteria ensure that LOs 
are well-defined and assessable [13]. The SMART criteria suggest that meaningful learning 
objectives should be Specific (clear and focused), Measurable (trackable progress), Achievable 
(realistic to attain), Relevant (aligned with course goal), and Time-bound (within a set 
timeframe). These criteria ensure that LOs are clear, focused, and aligned with desired course 
learning outcomes, a key to an effective curriculum. However, instructors, particularly new 
faculty, often struggle to draft and evaluate the learning objective [12]. 



Bridging the gap in the literature, this work-in-progress study explores the capability of 
Generative Pre-trained Transformer (GPT) version 4, an LLM model, to assess LOs based on the 
SMART criteria. We hypothesize that a well-prompted LLM can efficiently evaluate LOs, 
saving instructors time. Specifically, this study was informed by the research question: How well 
does GPT evaluation align with human experts when evaluating course learning objectives using 
the SMART criteria? 
 
Literature Review 
 
Advancements in AI technology, particularly the development of Large Language Models 
(LLMs), offer promising new tools that can revolutionize higher education in various ways, such 
as providing constructive feedback, designing assessments, grading, tailored curricula, and 
personalized guidance. Due to its abilities, LLMs can help the instructor design an effective and 
aligned curriculum. One area where LLMs’ potential can be very advantageous could be 
assisting in writing clear and specific learning objectives. Also, LLMs can assist in assessing the 
learning objectives by providing feedback to improve them. Prior literature highlights the 
importance of LOs in curriculum design for STEM (Science, Technology, Engineering, and 
Mathematics) education. More specifically, Los articulates expected learning outcomes, essential 
for guiding instructional strategies and assessment methods [14]. Effective learning objectives 
ensure students' educational experiences are directly aligned with the desired outcomes, 
particularly crucial in STEM fields where concepts and skills are complex and foundational for 
future learning [15]. 
 
Prior literature suggests that LLMs can be used to assess or entirely generate the learning 
objective. For instance, Sridhar et al. [10] explore using LLM to generate the learning objective 
and found that LLM was able to generate LOs based on their established criteria. However, 
studies also discussed the need for further refinement of this process. As the nature of the prompt 
bounds the LLMs' ability to perform, it is important to provide effective evaluation guidelines for 
effective judgment. To make the contextual and effective prompt, it is essential to provide clear 
evaluation criteria [16]. SMART is one such criterion that can be used to evaluate course 
learning objectives [17]. Prior literature dates back to the 1940s and 1950s when specific and 
measurable goals were discussed in engineering and educational publications [18]. These criteria 
ensure that objectives are well-defined, achievable within a specific timeframe, and aligned with 
the course goals [17]. Implementing SMART objectives facilitates assessment and supports 
pedagogical strategies to meet these ends, optimizing student engagement and learning outcomes 
[19 - 20]. 
 
With this study, we aim to describe that the systematic use of SMART criteria in crafting 
learning objectives and supporting advanced AI technologies can significantly improve the 
quality and effectiveness of curriculum design in STEM education. Educators can enhance 
instructional clarity and student achievement by integrating structured, objective frameworks 



with innovative technological tools, preparing learners effectively for their academic and 
professional futures. 

Methodology 
 
This study employs a quantitative, correlation research design approach to evaluate the 
effectiveness of LLMs in assessing the LOs from STEM courses using the SMART framework. 

Data Collection 
 
We collected 30 LOs from a publicly available syllabus of courses. The selection criteria for the 
LOs were that they belong to a STEM course, and the syllabus should have a separate section for 
learning objectives. The collected learning objectives cover programming, engineering design, 
and database systems courses. 

Evaluation Criteria 
 
We used the SMART as the criteria to evaluate the quality of LOs, which both the LLM model 
and experts used. The SMART rubric is an evaluation criterion that assesses learning objectives 
based on five key criteria. Specific: The objective should clearly describe what students can do. 
It should have an action or outcome for the students to achieve. Measurable: The objective 
should include measurable indicators of success. This means identifying how students' progress 
or achievement will be tracked or assessed. Achievable: The objective should be realistic and 
achievable, given the students' existing knowledge level and the time available for the course. 
Relevant: The objective should be meaningful and connected to the student's overall goals, 
career aspirations, or the course's long-term objectives. Time-bound: The objective should have 
a clear timeline or deadline, specifying when students are expected to complete or achieve the 
objective. 
 
An example of a LO for an introductory class that teaches to program using MATLAB would be 
By the end of the semester, students will be able to write MATLAB functions that solve linear 
equations using matrix operations. The LO is specific as it focuses on clear tasks, i.e., writing 
MATLAB functions to solve linear equations. It is measurable and can be assessed through 
coding assignments or exams on matrix operation. The objective is achievable, given the 
foundational nature of the course, ensuring it is realistic for students to achieve. It is relevant and 
aligns directly with the course content and goals. Finally, the objective is time-bound, with a 
clear deadline for completion set by the end of the semester. 
 
LLM Evaluation 
 
We used Generative Pre-trained Transformers (GPT) version 4 as an LLM model to evaluate the 



learning objective, as it is one of the most used and robust models for Natural Language 
Processing (NLP) tasks [1]. GPT belongs to the family of neural networks, which is based on the 
transformer architecture trained on a large corpus of data and is considered a key AI 
advancement [21]. It can mimic human-like responses such as text, images, music, etc. To 
interact with GPT, we provide a prompt that describes the task, and then the model generates a 
response based on its pre-trained knowledge. In our case, prompts were designed to guide the 
LLM in evaluating each learning objective according to the SMART rubric. Also, the prompt 
included the course description, the learning objective, and specific instructions to assess each 
objective against the five SMART criteria. The prompts also clarified that responses should be 
binary (Yes/No) for each criterion. 
 
Human Evaluation 
 
We asked two experts with experience in curriculum design for an independent evaluation of the 
Learning objectives based on the SMART framework. For evaluation, we gave them 15 LOs 
each by randomly selecting from the collected LOs for them to evaluate independently. Each 
expert evaluated each LO with a yes or no for each SMART if they met the criteria, similar to the 
LLM evaluation. Also, we asked them to follow the same criteria definition as discussed in the 
Evaluation Criteria section to ensure consistency in both evaluations. Experts were asked not to 
discuss their evaluation with each other to maintain independence in evaluation. 
 
Data Analysis 
 
For the analysis, we ensured that the same set of LOs across the LLM and human evaluators 
allowed for a more accurate comparison of their assessments. Table 1 shows the distribution of 
evaluation from the LLM and experts regarding whether the LOs meet the criteria. One key 
observation is that the LLM, along with Expert 1 and Expert 2, consistently agreed that the LOs 
were relevant to the course content or goals across 30 LOs. However, the experts largely 
believed that the LOs did not meet the criteria definitions for all other criteria. 
 
Table 1. Distribution of 'Yes' responses for each smart criterion 
SMART Criterion LLM (%) Expert 1 (%) Expert 2 (%) 
Specific 80 20.00 60 
Measurable 60 33.33 66.66 
Achievable 96.6 53.33 73.33 
Relevant 100 80.0 100 
Time-bound 3.33 73.33 100 

 
We calculated the percent agreement between the evaluations done by the LLM and the experts 
for each SMART criterion, as shown in Table 2. Percent agreement was calculated for each 
criterion. We compare whether the LLM and the human annotator agreed on the same decision 
for each LO, i.e., both marked the criterion as qualified or not. The percentage reflects the 
proportion of agreements over the total number of learning outcomes for each criterion. We 
interpret the agreement as suggested various authors, and it is considered acceptable if there is a 



75% to 90% agreement [22 - 23]. While looking at Table 2, it is notable that both Expert 1 and 
Expert 2 showed strong agreement with the LLM on the "Relevant" criterion, which was aligned 
with the findings in Table 1. 
Similarly, the LLM evaluation was aligned more closely with Expert 1 on "Specific" (80%) and 
"Achievable" (90%) and showed lower agreement with Expert 2, especially for "Specific" (20%) 
and "Measurable" (33.33%). We did not see a strong agreement for the other criteria and may 
need to revisit these criteria. 
 
Table 2. Percent Agreement between the LLM and human evaluators on each SMART criterion 
SMART Criterion LLM vs Expert 1 LLM vs Expert 2 
Specific 80 20.00 
Measurable 60 33.33 
Achievable 96.6 53.33 
Relevant 100 80.0 
Time-bound 3.33 73.33 

 
We then conducted Cohen's Kappa analysis to understand better the agreement between the 
evaluation done by the LLM and the human evaluator. The results of the analysis are shown in 
Table 3. The result was interesting as even though we found strong agreement in the evaluation 
done by LLM and experts, as shown in Table 3, the agreement was not statistically meaningful 
or consistent, particularly when adjusted for chance, as shown in Table 3. 
 
Table 3. Cohen's Kappa between the LLM and human evaluators on each SMART criterion 
SMART Criterion LLM vs Expert 1 LLM vs Expert 2 
Specific 0.22 -0.12 
Measurable 0.4 0.47 
Achievable 0.15 0.0 
Relevant 0.0 0.0 
Time-bound 0.035 0.0 

 
Discussion 

This work-in-progress study is part of a larger project that aims to facilitate the instructor in 
designing an effective and student-centered curriculum. In this regard, this study investigates the 
ability of LLMs to evaluate the LOs with a minimum context (e.g., course description) based on 
the SMART criteria. For that, we collected publicly available LOs from different STEM courses. 
Then, we used GPT-4 (i.e., LLM model) to evaluate the LOs using a prompt and asked two 
experts, with Expert 1 evaluating the first 15 LOs and Expert 2 evaluating the remaining 15 LOs. 
To inform our study, we used percent agreement and Cohen's Kappa to assess the alignment 
between the LLM and experts' evaluation of the LOs. 



The percent agreement result showed that LLM strongly agrees with expert evaluations when 
measuring the "Relevant" criterion. LLM has a good agreement when measuring “Achievable” 
with Expert 1, but it was much lower with Expert 2, highlighting a disparity between the 
evaluations. Similarly, for other criteria, such as "Specific" and “Measurable,” the agreement 
was notably lower with expert 2 as compared to expert 1. A mixed result was shown regarding 
the agreement between human experts and LLM evaluation of the LOs. Furthermore, we used 
Cohen's Kappa to understand the relationship between the evaluation done by LLM and experts. 
The rationale for using Cohen's Kappa for the analysis was that while percent agreement offers a 
simple measure of agreement, it does not account for the possibility of agreement occurring by 
chance [24]. 
Therefore, Cohen's Kappa can better help us understand the strength and significance of the 
observed agreement. The result of Cohen Kappa values is similar to the percent agreements, 
showing moderate agreement for "Measurable" criteria between the evaluation of LOs done by 
both LLM and experts. However, all the other criteria have zero kappa values, showing no 
agreement beyond chance or a random pattern of agreement/disagreement [25], and small kappa 
values showing fair or slight agreements in the evaluations. 

The mixed result of using LLM in education is consistent with the literature, where several 
studies have shown that LLM facilitates content creation [3] and evaluation [26]. At the same 
time, some studies found that LLM could generate sensible yet wrong responses, especially 
when subjective criteria are involved [27]. Furthermore, as this work-in-progress study, these 
mixed results in agreements may be due to the inherently subjective nature of SMART criteria 
used for LO evaluations, requiring evaluators to understand the course content and goal 
holistically. Therefore, there is potential to explore LLM's potential in assessing the LOs further 
by refining the LLM's contextual understanding and developing well-defined criteria. Overall, 
the result suggests that while LLM could effectively assess a certain part of learning objectives, 
further refinement of GPT with more contextual information is needed. 

Limitations and future directions 

As this is a work-in-progress study, several limits must be considered. These limits also provide 
an opportunity for future research on this topic. The first limitation was the limited LOs dataset 
(n= 30), which limited the generalizability of the findings. Therefore, one future direction for this 
study is to collect a large and more diverse dataset to improve the finding of generalizability. The 
second limitation was that we used a general-purpose GPT-4 model without any fine-tuned 
human annotator. Fine-tuning GPT-4 with human-annotated LO evaluation based on the 
SMART criteria may improve the LLM's performance. The third limitation was that although we 
used the SMART criteria, its criteria needed to be refined and evaluated by educational experts. 
This process will help us to design better guidelines for evaluating learning objectives. Lastly, 
we only used 1 LLM model (i.e., GPT-4) to evaluate LOs. Therefore, exploring the efficacy of 
other LLM models and comparing their ability to assess LOs is necessary. 
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