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GPThermo: An In-House Generative Artificial Intelligence Tutor for 

Thermodynamics 

Abstract 

Generative artificial intelligence (GenAI) has become ubiquitous. Convincing language 

complemented by constant modifications and upgrades have made GenAI models, such as 

OpenAI’s ChatGPT, an appealing tool to address complex problems. According to a survey by 

Intelligent.com nearly a third of college students in AY 2022-2023 used ChatGPT for schoolwork 

and 77.4% of them were likely to recommend using it to study to another student. Despite their 

appeal, these models have proven flawed in answering technical prompts. Their convincing 

language may entice the user to trust the responses without verifying them. For example, the 

authors failed to retrieve accurate thermodynamics properties of some common substances from 

three publicly available models (OpenAI’s ChatGPT, Anthropic’s Claude, and Google’s Gemini). 

Notwithstanding the inaccuracy of the responses, the conversation suggested some promising 

capabilities. For instance, with instructive prompts by the user, the models were able to reduce 

their error percentages significantly.   

Thermodynamics is one of the early core courses that students in Mechanical Engineering, 

Chemical Engineering, and Aerospace Engineering, among others take. This study aims to develop 

a GPT-based model focused on thermodynamics using publicly available resources, such as 

substance properties. Once proven successful, the model can be adopted by other institutions and 

adapted to similar courses. 
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1 Introduction 

Thermodynamics is one of the most challenging subjects for engineering students and 

professionals alike. It often serves as a so-called gateway course (John M Pfotenhauer, 2015; Koch, 

2017). Gateway courses are among the contributors resulting in students leaving STEM, even 

among high-performers (Koch, 2017). Thermodynamics requires high cognitive load–a primary 

factor that pushes students out–due to its heavy reliance on complex concepts, data-intensive 

calculations, and the application of intricate physical laws (Orlando M Ayala, 2017).  As such, it 

is often regarded by students as difficult and abstract (Patrick Tebbe, 2007) and consistently rank 

among the most challenging in engineering programs (Derek Baker, 2000; V Ismet Ugursal, 2015). 

Beyond its complex concepts, thermodynamics presents a practical challenge: it demands constant 

lookups of property values from massive data tables. Students and engineers must flip through 
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these tables, find the right values, and then use them in detailed calculations. Even simple problems 

can turn into lengthy processes as each new step requires another round of table lookups and 

number crunching.  

While there exist some commercial software such as EES (F-Chart Software, 2024), REFPROP 

(NIST, 2024), CoolProp (Ian H. Bell, 2014), Interactive Thermodynamics: IT (Shapiro, 2023) and  

free calculators (IRC, 2023), the thermodynamic properties of substances are still mostly extracted 

from extensive tables often found as appendices at the back of the reference textbooks. A typical 

thermodynamics table is shown in Figure 1. With more students opting out of owning textbooks 

and not having access to the commercial software packages, the properties of substances, which 

are the building blocks of any thermodynamics analysis, remain inaccessible to many students. 

This challenge is exacerbated once the student is no longer enrolled in the course. 

Figure 1 – A typical tabulated properties of a common substance in thermodynamics. The table is extracted 

from (Michael J Moran, 2010). 
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Another challenge that many students in engineering fields, including thermodynamics, face is the 

unnecessarily complex calculations. The authors believe in equipping the future engineers with 

tools to comprehend and analyze complex mathematical problems. However, we find the tedious 

and repeated calculations that involve mathematical operations on data with a wide range of order 

of magnitude and fine resolutions redundant. Complex calculations can be overwhelming and 

impede understanding of underlying concepts. Alternatively, simplifying calculations through 

software tools or alternative methods can free up cognitive resources, allowing students to focus 

on grasping the key principles. When calculations are simplified, students can see the connection 

between theory and application more clearly, leading to deeper understanding and improved 

retention of knowledge. By focusing on problem-solving strategies and interpreting results rather 

than intricate calculations, students can develop valuable critical thinking and analytical skills. 

In the current era, students frequently turn to AI technologies to assist them in understanding 

difficult subjects (Juan Dempere, 2023; Libert, 2023). A recent survey discovered over 89% of 

college students have used ChatGPT to help with a homework assignment (Libert, 2023). The 

current publicly available AI models (e.g., ChatGPT, Copilot, Claude, Gemini), however, are not 

designed specifically for engineering and thermodynamics problems. Consequently, they often 

produce inaccurate or incomplete responses when applied to the specialized nature of these 

courses. The inaccuracy of the results, coupled with convincing language of large language models 

(Carrasco-Farre, 2024), pose a significant risk as students may unknowingly rely on incorrect 

information. A sample conversation between the authors and ChatGPT is documented in Appendix 

A. In this conversation, ChatGPT failed to provide a clear and accurate response to the prompt: 

“What is the temperature of water at an enthalpy of 906 kj/kg and pressure of 894 mpa?” The 

input properties (enthalpy and pressure) are deliberately chosen outside the range of normally 

published tables in textbooks (Michael J Moran, 2010), and units are incorrectly typed to mimic 

typical student submissions. 

While general-purpose AI models are becoming more available, technical communities may still 

benefit from developing their own specialized AI models to incorporate their unique domain 

expertise, terminology, methodologies, and standards. This study addresses this gap by developing 

a robust AI model designed specifically for thermodynamics. The AI model, GPThermo, is 

equipped to handle vast data tables, perform precise calculations, and provide detailed and accurate 

feedback on complex thermodynamics problems.  

2 Model Design and Development 

Training a large language model (LLM) requires a significant amount of computing power. To 

save resources, a common strategy is to start with a pre-trained foundation model and then enhance 

it to fit the needs of a specific application (Aaron Parisi, 2022).  In the case of GPThermo, the key 

improvement over publicly available models like ChatGPT is its ability to work with private data 

and interact directly with code to determine substance properties and perform thermodynamics 

calculations. It builds on the GPT-4o foundation model by adding two features: tool 

augmentation and retrieval augmentation (Aaron Parisi, 2022).  
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1. Tool augmentation enables the model to run custom code, such as calling a function to 

determine substance properties or a calculator function to compute thermodynamic 

properties. 

2. Retrieval augmentation allows the model to access and use private or specialized data not 

included in its original training; such as proprietary property tables or specific fluid 

identifiers. 

These augmentations allow GPThermo to offer domain-specific functionality without needing to 

retrain or scale up the foundation model itself. The architecture of the model is illustrated in Figure 

2 and described below: 

1. Main Conversation Agent: 

The core of the system is a conversation agent built on GPT-4o, which is configured with 

detailed instructions. These instructions define the roles of various secondary agents and 

specify the conditions under which each should be activated. Upon receiving any user 

input, the conversation agent determines whether a secondary agent needs to be engaged. 

This decision is made through an if-else logic structure that routes the input to the 

appropriate secondary agent. In certain cases (e.g., complex calculations), a secondary 

agent may delegate specific tasks to even more specialized sub-agents (not shown in the 

diagram). 

2. Secondary AI Agents: 

There are two secondary agents, each with its own focused role and instruction set. This 

modular setup minimizes the computational load by keeping each agent lightweight and 

task-specific: 

Figure 2 - Multi-agent Architecture of GPThermo. 
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• Retrieval Agent: 

Responsible for extracting information from supervised sources such as proprietary 

property tables or specific fluid identifiers. 

• Calculation Agent: 

Executes mathematical operations using Python-based code to provide quantitative 

outputs. 

Figure 3 - GPThermo's response (top center) to the sample thermodynamics prompt (What is the 

temperature of water at an enthalpy of 906 kj/kg and pressure of 894 mpa?) versus the leading public AI 

models. 
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3. Output Loop and Response Generation: 

Each secondary agent returns its output to the main conversation agent. This process may 

iterate several times within a single user query to compile a complete and accurate 

response. Once all necessary information is gathered and processed, the conversation agent 

delivers a final, synthesized reply to the user. 

3 Validation and Results 

A benchmark test was required to validate the new model’s ability to interpret and correctly 

respond to thermodynamics questions. Twenty questions relating to fluid state and thermodynamic 

processes were tested against GPThermo. These questions were also tested against four leading 

publicly available models: OpenAI’s ChatGPT, Google’s Gemini, Anthropic’s Claude, and 

Microsoft’s Copilot. The questions were selected to have clear numerical answers, enabling a more 

precise quantitative comparison of the models. The performance of each model was then evaluated 

by measuring the accuracy of its results, considering answers correct if they fell within 1% of the 

analytical solution. The performance of GPThermo compared to the publicly available models is 

Figure 4 - The responses of GPThermo and leading models excel on the validation questions. Correct 
answers are marked with a 1, highlighted in green, while incorrect answers are marked with a 0, 

highlighted in red.  
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exemplified in Figure 3. The complete comparison of the performance of the models is shown in 

Figure 4. Overall, GPThermo responded accurately to 95% of the questions, as compared to the 

15%-25% by the four other publicly available models. The performance scores have remained 

relatively consistent as the authors have improved GPThermo in response to the continuous 

evolution of public models. The full list of questions is provided in Appendix B. 

4 Boarder Impacts and Conclusions 

The proposed project has the potential to significantly advance discipline-based educational 

research, particularly in engineering fields that rely heavily on thermodynamics concepts, such as 

Mechanical, Aerospace, and Chemical Engineering. By developing GPThermo, a generative AI 

model tailored to specific engineering domains, this work contributes to the expanding field of AI-

assisted learning and the creation of intelligent educational tools. 

A key innovation of this project lies in the development of a subject-specific AI model alongside 

a companion validation tool, moving beyond general-purpose educational AI. It contributes to the 

fields of engineering education, AI in education, and educational technology by (1) demonstrating 

the feasibility of customizing large language models for STEM education, and (2) providing a 

framework for validating such tools rigorously. 

In particular, GPThermo offers promising benefits for underrepresented and resource-limited 

students. By providing instant, accurate, and domain-specific feedback, the model has the potential 

to fill instructional gaps often found in under-resourced learning environments. It promotes greater 

equity and accessibility by supporting self-guided learning and reducing dependency on instructor 

availability. Additionally, the lightweight, modular design of the system could make deployment 

easier for institutions with limited computational infrastructure. 

While the study notes the potential for GPThermo to be adopted at other institutions, the tool’s 

successful adoption will depend on factors such as curriculum alignment, faculty acceptance, and 

institutional support. Integrating AI into existing courses poses challenges, including the risk of 

resistance to automation and the need to train faculty on the tool’s pedagogical uses and limitations. 

Additionally, providing students with access too early in their learning process may lead to 

overreliance on the model, potentially preventing them from developing foundational skills such 

as determining thermodynamic properties or performing calculations independently. 
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Appendix A  

A sample conversation between the authors and ChatGPT (GPT-4o) 

 

User: What is the temperature of water at an enthalpy of 906 kj/kg and pressure of 894 mpa? 

 

Assistant: To determine the temperature of water at a specific enthalpy (h) and pressure (P), we 

can use water's thermodynamic properties based on steam tables or the International Association 

for the Properties of Water and Steam (IAPWS) correlations. 

 

1. Given Data: 

   - Enthalpy (h): 906 kJ/kg 

   - Pressure (P): 894 MPa 

 

2. Observation: The pressure 894 MPa is extremely high and not within typical ranges of liquid 

water or saturated steam under standard conditions. At this pressure, water likely exists in a 

compressed (subcooled) liquid state or a supercritical state, depending on the temperature. 

 

3. Procedure: 

   - Use thermodynamic property tables for water (e.g., IAPWS-IF97) to find the temperature 

corresponding to this enthalpy and pressure. 

   - At extremely high pressures like 894 MPa, the data would likely fall in the supercritical region. 

Here, specific temperature-enthalpy relationships govern the properties. 

 

4. Calculation Tool: 

   The exact answer would require specialized software or reference to detailed thermodynamic 

data tables. 

 

User: Yes. 

 

Assistant: To calculate the temperature for water at h = 906 kJ/kg and P = 894 MPa, I'll use an 

approximation based on thermodynamic principles for supercritical water. 
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Here's how we'll proceed: 

 

1. Supercritical Region: Since P = 894 MPa, this is far beyond the critical pressure of water 

(P_crit = 22.064 MPa). At this pressure, the relationship between enthalpy and temperature 

requires detailed thermodynamic tables or equations of state. 

 

2. Estimation Tools: I'll use a thermodynamic calculation to narrow down the temperature range. 

 

[Error in calculating...] 

 

Assistant: I could not use the IAPWS (International Association for the Properties of Water and 

Steam) library to perform the calculation in this environment. However, I can guide you on how 

to calculate it or approximate the value using other tools. 

 

Options for Determining the Temperature 

1. Online Tools or Software: 

   - Use a property calculator like Engineering Toolbox or CoolProp. 

   - Tools like REFPROP or EES can also provide detailed thermodynamic property calculations. 

 

2. Approach with Thermodynamic Tables: 

   - Refer to supercritical water property tables for P = 894 MPa. The enthalpy h = 906 kJ/kg will 

correspond to a unique temperature. 

 

Would you like me to look up this value for you online or guide you to an appropriate tool? 

 

User: Yes. 

 

Assistant: Given the extremely high pressure of 894 MPa (which is 8,940 times atmospheric 

pressure) and an enthalpy of 906 kJ/kg, water is in a supercritical state. In this state, the distinction 

between liquid and vapor phases disappears, and water exhibits unique properties. 
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Determining the exact temperature corresponding to these conditions requires precise 

thermodynamic data. However, based on typical supercritical water behavior, an enthalpy of 906 

kJ/kg at such a high pressure suggests a temperature in the approximate range of 350°C to 450°C. 

 

For precise calculations, you can use specialized tools and resources: 

- NIST Chemistry WebBook: Provides thermophysical properties of fluid systems, including water. 

- Steam Tables Online: Offers calculators based on IAPWS formulations for water and steam 

properties. 

- Thermophysical Properties Calculator: An online tool for calculating properties of water and 

steam. 

 

These resources can help you obtain accurate thermodynamic properties for water under various 

conditions. 
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Appendix B  

The list of questions designed for the initial validation of the model. Note the questions 

intentionally include mistyped units and grammatical errors to mimic typical student submissions. 

 

1. What is the temperature of water at an enthalpy of 906 kj/kg and pressure of 894 mpa? 

2. Refrigerant r-134a enters a throttling valve at a temperature of 58C and pressure of .2 

mpa. Assuming the process is adiabatic and no work is done, what will be the pressure if 

the refrigerant exits at 55C? 

3. A water heater uses a heating element with a resistance of 750 ohms to raise the 

temperature of 1 kg of water from 60 to 96 degrees celcius. What is the minimum 

amperage required to achieve this in 30 seconds, assuming the process happens in an open 

container under atmospheric pressure?" 

4. what is the entropy of water at 310 K and 2 bar? 

5. A piston of area 4m^2 pushed against 400c steam with a specific volume of 990 m^3/kg. 

How much force is needed to hold the piston still? 

6. What will the change in internal energy of steam be if it is heated from 100c and 2 mpa to 

300c at a constant pressure? 

7. Natural gas enters a pipe at 300K. It is cooled to 200K at a constant pressure of 2 bar. 

What will the change in internal energy be due to this process? 

8. A piston-cylinder assembly containing 2kg of r-134a at 10c and .06mpa undergoes a 

cooling process to -20c. What is the total internal energy, in kj, of the fluid in the cooled 

state? 

9. An isothermal compression process instantly vaporizes 150c water at a quality of .3 to 1. 

What is the gain in entropy from this process? 

10. Steam is delivered to a paper plant at 550K and 4mpa. If the steam is delivered with a 

mass flow rate of 600kg/s, what is the power provided to plant? 

11. Steam enters a turbine at 545c and 6mpa. It exits as a saturated vapor at 2mpa. What is 

the work done by the turbine? 

12. Saturated steam enters a condenser at 2 mpa. How much work is required to pump the 

water leaving the condenser at 6mpa? 

13. The instructions on an MRE require it is boiled at for 8 minutes at 1atm to sufficiently 

cook the food. How long, in minutes, will it need to boil to transfer the equivalent energy 

if cooked on a mountain where the atmospheric pressure is only .8 atm? 

14. Steam undergoes isenthalpic expansion where the initial state was 9bar and 888C. After 

the process, the steam is at a pressure of 2bar. What is the temperature drop? 
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15. What is the enthalpy of steam held at 500c and 5.64 mpa? 

16. Saturated steam enters a pipeline at a mass flow rate of 400 kg/sec. If the temperature of 

the steam is 200c and the radius of the pipe is .5 meters, determine the velocity of flow. 

17. What is the specific volume of saturated water when it has temperature of 30c? 

18. What will be the specific entropy of steam that is half vapor and half liquid at 58c? 

19. Which has a greater internal energy, steam at 400c and 2mpa, or steam at 500c and 1.5 

mpa? 

20. A rigid tank contains 2 kmol of N2 and 6 kmol of CO2 at 300 K and 15 MPA. Estimate 

the volume of the tank using the ideal gas law. 
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