x
2025 ASEE Annual Conference & Exposition #§ ~

;iiiit Palais des congrés de Montréal, Montréal, QC - June 22-25, 2025 C"ASEE Paper ID #46734

Teaching Python to Secondary Students: A Backward Design Process

Dr. Wesley A Brashear, Texas A&M University
Dr. Sandra B Nite, Texas A&M University

Sandra Nite is trained as a mathematics educator and educational researcher. She is Director of AP
Institutes in Mathematics and Computer Science in the College of Arts and Sciences. Besides her
Ph.D. in Mathematics Education, she holds master’s degrees in mathematics and music and lifetime
Texas secondary teaching certification for mathematics, computer science, biology, chemistry, composite
science, music, English, and English language arts as well as Master Math Teacher (8-12) certification.
Dr. Nite has 17 years’ experience teaching high school mathematics, science, and computer programming.
She initiated a high school computer science program 1978, when such programs were rare. She taught
preservice mathematics courses for elementary and middle school teachers and mathematics methods for
elementary teachers. She has served as PI or Co-PI on secondary STEM summer camps for eight (8)
years. Since joining High Performance Research Computing, she has helped developed cybersecurity
curricula for summer camps, serving at the K12 expert on those camps. For the past 20 years she has
worked extensively with professional development curriculum for secondary teachers, both inservice and
preservice, to increase content knowledge and pedagogical content knowledge. As Co-PI for 3 years and
PI for 7 years on Teacher Quality grants, she designed and developed over 1,000 hours of professional
development. As Co-PI on a National Science Foundation Robert Noyce Scholarship Program grant, she
designs and delivers professional development for the scholarship recipients She has not only worked
with teachers in Texas and other states in the U.S. but also with teachers from Turkey and Qatar. Dr.
Nite’s research agenda has focused heavily on bridge programs for engineering calculus, STEM secondary
education, and STEM teacher professional development. She also conducts research in music education.
She is currently working in High Performance Research Computing at Texas A&M University.

Richard Lawrence, Texas A&M University
Dhruva Chakravorty, Texas A&M University

©American Society for Engineering Education, 2025

Teaching Python to Secondary Students: A Backward Design Approach
Abstract

Informal workshops and educational events are often restricted in the number of contact hours or
opportunities for extensive in-depth coverage of foundational material. This is not an issue when
educators are building on existing skill sets or covering a limited scope of material, but it is a challenge
that needs to be addressed when teaching students a skill like programming - a broad topic which students
might not have previously been taught. Project based learning is an effective pedagogical tool for teaching
computer science, and the end product or goal is often a solution to a particular coding problem or a
software application that performs a given task. However, students must be provided with some degree of
foundational knowledge in order for this approach to be utilized. The content and extent of this
knowledge is dependent on the focus and difficulty of the project, and can be particularly difficult to
establish when working with students without prior programming experience. Furthermore, when
teaching high-level general programming languages, the expansive suite of built-in tools coupled with
additional third-party packages or libraries present a dense landscape of topics from which to develop
curricular materials. To meet these challenges, we developed an effective approach to teaching Python
programming to secondary students with no prior programming experience in a week-long summer camp.
The method we used employs project based learning and highly curated foundational lessons. This
approach begins with the identification of an appropriate capstone project that falls within the theme of
the camp (e.g. coding, cybersecurity, data science) and that can be completed by students with minimal
instruction from camp staff. These projects should also be able to incorporate more advanced
programming techniques than those that are covered during the camp to keep all students engaged,
including those with previous coding experience or natural aptitudes for programming. For example, the
capstone project for one cybersecurity-themed camp required students to develop a simple application that
could accept user input (a password) and then assess the quality or strength of that password and provide
the user with feedback. In its simplest implementation, this application requires a basic understanding of
the following concepts: 1) the basic elements of Python code (data types, variables, operators), 2)
programming syntax, 3) built-in functions and methods, 4) acquiring user input, and 5) flow control (e.g.,
for loops, conditional statements). Many topics covered in traditional introductory programming courses
are not required for students to be able to complete the capstone project; concepts like data structures,
indexing, and user-created functions can be utilized in the project, but are presented as optional material
for advanced students. The limited instructional time afforded during these week-long camps necessitates
that instructional material be restricted to what we consider the essential “building blocks” required for
students to successfully produce the final product. This stream-lined curriculum enhanced with optional
bonus material ensures that both novice and experienced students remain engaged and are equipped with
the tools necessary to challenge their skills while they build their own applications. In this paper we detail
the process to design Python learning objectives for capstone projects, in which we start with the end
product in mind, determine the Python programming elements needed, and work backwards to ascertain
the order in which the elements should be taught. We also discuss the optional topics embedded in the
Python Colab notebook for advanced students - topics designed to give the advanced students more
options in designing their product.

Introduction

Informal educational programs for K-12 students (e.g. summer camps) offer a unique chance to
foster interest and awareness of STEM fields outside of formal education settings and can
represent the only opportunities some students have to engage in specific STEM fields prior to
attending college [1] [2]. These informal programs must therefore be designed to cultivate a deep
appreciation and interest in these topics while also addressing limitations or constraints such as a
minimal number of contact hours and disparities in prior knowledge or experience. How can we
meaningfully cover an advanced subject over a limited timeframe in such a way that 1) fosters
individual student interest in the subject matter; 2) allows advanced students to remain engaged
and novice students to not be overwhelmed; and 3) leaves each student with a sense of
accomplishment and a better fundamental understanding of the covered material? Herein, we
discuss our approach to these challenges using a backward design approach [3] to teach coding
in Python to secondary students in week-long summer camp sessions.

The backward design process consists of three stages. First, teachers must identify the
desired results or instructional outcomes. That is, what would we like the students to learn or
understand or what skill would we like them to obtain. Next, teachers must determine what
constitutes acceptable evidence for successful attainment of the desired result. This could include
any number of assessment methods, including basic checks for understanding, quizzes/tests, or
completion of a specific task or project. Once these steps are completed, the teacher can then
plan the necessary learning experiences and instruction required for the students to demonstrate
their progress towards the desired outcomes [3].

The backward design process can be used when developing experiential project-based
learning approaches toward student learning objectives [4] [5]. In project-based learning,
students are given an “ill-defined task with a well-defined outcome™ [6]. This approach is
particularly well-suited for engaging students while teaching coding, as a specific project or task
can be completed with numerous approaches and with varying degrees of complexity. For
example, students can be tasked with something as simple as creating a program that can take
user input, perform a basic operation on the input, and return the result. A simple version of this
script could be written with 2-3 lines of code, whereas a more advanced version might
incorporate user-defined functions, flow control, and error handling. Both programs successfully
complete the “ill-defined task™, but the complexity can be modified to engage students with
varying degrees of previous experience. This flexibility is highly advantageous when teaching a
cohort of students with the disparate levels of maturity and experience inherent in an informal
educational environment such as a week-long summer camp.

Methodology
Summer Camp Structure

We have offered week-long summer camps for secondary students since 2017 [7]. These camps
are in-person, day-only programs centered around a specific theme relevant to computing (e.g.
cybersecurity, data science). Activities throughout the week include hands-on coding lessons in
Python, guest lectures, university campus and data center tours, and group projects (see Table 1).
Each camp hosts 35-50 students ranging in age from 13 to 17. Students are divided into groups
of 4 to 6 students with whom they will work on group projects and activities throughout the
week. Groups are balanced to include similar distributions among age and gender.

Implementation of the Backward Design Process

The first step in designing the curriculum for coding instruction for the week is to identify an
appropriate capstone project that aligns with the theme of the camp (e.g. cybersecurity, data
science). Capstone projects should be able to be completed by students with minimal oversight
from the camp staff after students have participated in relatively few foundational lessons and
exercises. These projects should also be able to incorporate more advanced programming
techniques beyond those covered in the camp to keep students with previous coding experience
or those with natural aptitudes for programming engaged.

Once the project has been established, the Python coding lessons held throughout the
week can be planned (see Table 1, Fig. 1). The selection of Python lesson topics might not follow
the order in which topics are covered in a formal class setting: lessons should be curated to cover
only the material needed for the students to complete the project. For example, some capstone
projects might require external modules or advanced data structures that might need to be
covered instead of simpler concepts or built-in functions. We visualize this approach using an
analogy to building with bricks (Fig. 2). A formal course might take a complete bottom-to-top
approach in terms of building a more complete understanding of a particular coding language,
completing each row or layer of foundational material before moving on to the next. Our
approach only uses those building blocks necessary for the students to complete a project that is
relevant to the camp’s theme and for which they will gain a sense of accomplishment. This
patchwork approach allows students to achieve a basic understanding of some components of
coding in the limited time offered by week-long camps while also (hopefully) inspiring them to
continue to learn independently outside of these educational settings or to consider enrolling in
formal coding classes.

Table 1. Example schedule for a week-long computing camp for secondary students.

Time Monday Tuesday Wednesday Thursday Friday
8:00 Arrival and Dropoff
8:15 Group projects
Summer Camp
8:30 Orientation Camp-themed Camp-themed Camp-themed Camp-themed
Game Game Game Game
9:00 Introductions and Non-codin
Laptop Checkout | Secure System e Coding in
computing
Lecture tivit Python
9:30 Escape Room activity
Data Center
9:50 Break Break Break Break Tour and Project
Preparation
10:00 Escape Room Safe Online
Industry Behavior and
10:30 Camp Theme Speaker Social
Discussion Engineering
11:00 Break Break Break Campus Tour Break
11:10 Academic Guest Proiect Applied
Coding Python Lecture and Pre aJr ation Concepts
11:30 Activity p Activity
12:00 Lunch Lunch Lunch Lunch Lunch
1:00 Flying Drones Introduction to RaspberryPi Academic Guest Camp Sul"veys
and Drone .. and Project
) AI/ML Activity Speakers .
Security Preparation
1:50 Break Break Break Break Break
2:00 Group Project Coding in Coding in Cryptography
Overview Python Python activity
2:50 Break Break Break Break Group Project
Presentations,
3:00 Enterprise IT Coding in Project Capstone Camp
Guest Speakers Python Preparation Python Project | Certificates, and
Closing
3:50 Break Break Break Break
4:00 Group Projects, Daily Reflections, and Laptop Check-In
4:40 Dismissal / Pickup

™

Conceptualization of
capstone project

=

™

P

Instructors create

Identification of

core concepts

required for the
project

Y ™

Instructors create
intermediate to
advanced version
of capstone project

-

C

_4

minimalistic version|
of capstone project
A= 4
<

Identification of
beneficial bonus
material to make

available to
advanced students

Iﬁ)urriculum Finalizatio_rhl

and Notebook Creation

Lesson 1

Required concepts

Bonus materials

Lesson 2

Required concepts

AES O\

Bonus materials

D

f

Lesson 3

Required concepts

Bonus materials

k_\

—— SN NI S

Figure 1. Backward design flowchart for developing lessons in coding for a week-long summer camp.

If we consider teaching a particular subject as analogous to building a structure, traditional

education approaches often seek to build a strong foundation covering introductory topics to completion

before advancing to intermediate or advanced topics. To overcome time constraints, we employed a
backwards design approach to identify only those skills necessary to complete a particular project. The

blue bricks in Figure 2 were topics needed for a project in the summer camp. The project required a
knowledge of methods at the highest level. Instructors identified other topics needed to complete the

project as well as topics needed at lower levels to provide the foundation for the higher levels needed.

This provided the framework for creating a Google Colab to prepare students for the project assignment.

Managing Regular List
A Generators oop Memory Expressions Comprehension

=
o Methods Error Handling Classes User Functions
W
o
o
o Conditionals For Loops While Loops Imports Keywords
(@]
—_
a , S
— Lists Dictionaries Tuples Sets
=
w

IDE Interface Operators Variables Data Types Comments

Figure 2. Skill progression for teaching Python programming.

Results
Capstone Project Example I - Password Strength Checking Program

Project Description. This capstone project was chosen for one of our GenCyber [8] camps
focused on cybersecurity. The task given to the students is to write a Python program that can
evaluate the quality of a password based on its content and length (e.g. number of characters,
presence of both upper and lower case letters, numbers, and special characters). A simple version
of this program can be completed with relatively little programming knowledge: variables,
conditional statements, Python keywords, and arithmetic operations (Figure 3a). These topics can
be covered sufficiently within the time allotted for coding instruction during the summer camp.
For more advanced students, this project can also incorporate additional coding methods or
techniques, such as user-defined functions, data structures, flow control, error handling, modules,
and user interactivity (e.g. Figure 3b).

Python Lessons. We used Google Colab to build instructional notebooks for each summer camp.
This platform is a free service in which students are able to login to run Jupyter-style notebooks
that contain code chunks/cells and explanatory text. Students are first introduced to the Google
Colab interface as instructors go over topics like the environment runtime, code execution, and

}\) # Set pw variable as password you wish to check
pw= (&)

for char in pw:

if char in ‘abcdefghijklmnopgrstuvwxy’ :
lower_count=lower_count+1

elif char in 'ABCDEFGHIJKLMNOPQRSTUVWXYZ® :

upper_count=upper_count+1l

elif char in '©123456789°:
numeral_count=numeral_count+1

else:
other_count=other_count+1

score=upper_count*lower_count*numeral_count*other_count
print(score)

13) def GetUserPassword():
password = input(“What password would you like to check?\n")
return(password)

def GetPasswordContents(pw):
upper = False
lower = False
number = False
special = False
length = len(pw) >= 8
for char in pw:
if char.isupper() == True:
upper = True
if char.islower() == True:
lower = True
if char.isnumeric() == True:
number = True
if char.isalnum() == False:
special = True
return{[upper, lower, number, special, length])

def ScorePassword(pw_contents):
if pw_contents.count(True) == 5:
return{"Your password is great!")
else:
return("Your password could use some work.")
if _name__ == ' _main__':
password = GetUserPassword()
password contents = GetPasswordContents(password)
user_answer = ScorePassword(password_contents)
print(user_answer)

Figure 3. Two examples of python programs that evaluate the strength of a password. A) A simple
version of the seript that utilizes relatively few coding concepts, but does include comments, variables,
flow control, and operators. B) A more advanced example of the same python program that includes
user-defined functions, built-in methods, and user interactivity.

notebook navigation. Students execute their first code during this session: a version of the
traditional ‘Hello World’ program [9].

The second Google Colab notebook used during this summer camp covered several
introductory topics concerning the elements of code. We first cover comments in code,
discussing the syntax in Python and why it is considered good practice to use comments in
general. We then cover data types, discussing strings, integers, floats, and logical data. We also
use this section to cover syntax highlighting the syntax specific to Google Colab (e.g., valid
string data displayed in red text, logical data in blue). Next we discuss simple arithmetic
operators in Python, including the order of operations and conditional operators. Our backward
design approach helped us identify the utility of the Python ‘in’ operator for our capstone project,
and this was covered in detail with exercises, following the conditional operators. Lastly, we
covered the assignment operator and variables, including arithmetic with variables and variable
errors. This notebook also contains bonus exercises and deeper coverage of data types, operators,
and variables [9].

The next Google Colab notebook covered functions and methods in Python. In order to
get user input for the capstone project, we covered the Python ‘input’ function and showed
students how to store the output of that function in a variable. We also covered the ‘range’
function, which can then be utilized in the next notebook to teach concepts like for and while
loops. The next notebook covers flow control (including for and while loops), where we teach
the basic syntax of loops in Python, giving examples of iterating over ranges of numbers and
characters in string variables. We then built on these concepts and combined loops, conditional
statements, breaks, and functions from additional Python libraries (e.g. ‘random”). Each of these
topics again contain bonus materials to help ensure engagement from all students [9]. Upon
completion of the notebook covering flow control and loops, students are well-situated to create
their own Python script to “grade” the strength of a user-defined password.

Capstone Project Example 2 - Encrypting Messages to Friends

Project Description. This capstone project is from another GenCyber camp [8], during which the
topic of cryptography was covered during several lectures and hands-on (non-coding) exercises.
This project tasked the students with using the RSA (Rives-Shamir-Adleman) cryptosystem [10]
to send and receive encrypted messages with other students at the summer camp. The Google
Colab notebook for this exercise utilized the Python rsa package to create public and private keys
and then use these keys for encryption/decryption. The background required for this specific
project is limited, but an understanding of the dictionary data structure in Python is beneficial to
both disambiguate shared terminology (i.e., key) and to better understand the syntax of the
methods specific to the rsa package.

Python Lessons. Our initial Python lessons closely aligned with the first two Google Colab
notebooks described, for the previous capstone project. For this specific camp, however, we
devoted an entire notebook to covering data structures in Python. We began by covering lists,
discussing the basic Python syntax and terminology and the concept of ordered and unordered
data structures. We then covered data types of elements in lists, as well as useful functions for
working with this and other data structures (e.g., ‘type’, ‘len’). We next covered dictionaries,
again covering basic terminology (i.e., key, value) and syntax. We then covered indexing in
Python, first using strings as an example to explain 0-based versus 1-based indexing, as well as
the backwards indexing functionality in Python. These concepts were then applied to data
structures in subsequent examples. We then covered modifying data structures, which allowed us
to build on indexing to cover slicing. Lastly, we covered methods specific to different data
structures, including ‘.sort()’, “.append()’, ‘.keys()’, ‘.values()’ and ‘.items()’ [9].

Assessment

Because of the informal learning environment at the summer camp, there was no pretest/posttest
of student learning for programming in Python. The application does ask them to rate their
programming experience so that we have an idea of how many are new, intermediate, or
experienced in programming in general. It would be difficult to test their Python knowledge
because asking if they know about variables, loops, etc. would not really tell us the level of
competency in using these concepts. We would need a task at the beginning and end of the camp,
which time does not permit. However, campers completed daily reflections the first four days of
the camp, and a reflection for the week on the final day of the camp. In the reflection for the days
that included sessions in Python programming, we asked students how much they learned. Table
2 shows the percentage of students who selected each choice to the question about how much
Python they learned on the first two days of camp. On the first day (Monday), the total
attendance for the two one-week camps was 68, and the total on Tuesday was 70.

Table 2. Percentage of campers who made each choice on the question about how much Python
they learned that day.

Choice A lot Quite a bit A little bit Not at all
Monday 29% 34% 24% 13%
Tuesday 33% 36% 19% 12%

In the free response section about what students liked most or learned most from among the
plethora of camp activities on Monday and Tuesday (days Python was taught) Python was
mentioned as a favorite activity in 34 of the 68 responses and as an activity from which they
learned the most in 44 of the 70 responses. It was also mentioned on Friday 17 times in response

to the greatest learning experience of the entire week. Below we have shared a few of our
favorite responses from students:

“I learnt the most from the python activities since I was able to learn a language in demand [in]
today's society, and the [opportunity] fo learn it from amazing instructors and staff.”

“My favorite activity this week was Cryptography with Python because I got to encrypt and
decrypt messages and send my public key to my friends so that they can encrypt or decrypt my
secret message. I learned that people in World War Il used Cryptography to send secret
messages without the enemy knowing.”

“My favorite activity for the week was doing cryptography in Python because I enjoyed
decrypting secret messages that my friends sent. This enhanced my Python skills immensely.”

Discussion

Although the backward design process is fairly often used in curriculum design, especially when
students must take a standardized test at the end, much of current teaching in programming is
based on starting with foundation skills and building on those skills, not leaving out anything that
the learner might need later. This makes sense when teaching a programming language for which
learners need a deep understanding of all or most topics in the language. However, when an
important purpose of the programming instruction is to arm students with the tools needed for a
specific project, and there is not time to teach everything in depth, the backward design process
is very effective. In addition, student success is important to strengthen and maintain their desire
to learn more [13]. Coding in summer camps has been shown to increase STEM interest [11][12]
However, learning a programming language can be a daunting task. Thus, teaching Python
programming with the backward design process in camps, clubs, or after school activities can
give students a sense of success and increase students’ interest in learning more about Python or
other programming languages [14]. This strategy could also be used in formal education with a
careful selection of projects that lead to learning the programming language in depth over the
course of the year. Over the long run such strategies can broaden participation in computing by
increasing interest and confidence in learning programming languages.

Acknowledgements
We gratefully acknowledge the GenCyber Program for the support to offer cybersecurity camps
free of charge to U.S. students.

References
[1]J. R. Warner, C. L. Fletcher, R. Torbey, and L. S. Garbrecht, “Increasing capacity for
computer science in rural areas through a large-scale collective impact model,” Proceedings of

the 50th ACM Technical Symposium on Computer Science Education, SIGCSE '19, Minneapolis,
MN, USA, February 27-March 2, 2019, New York: ACM, 2019. pp. 1157-1163.

[2] C. De Lira, R. Wong, O. Oje, G. Nketah, O. Adesope, A. Ghods, “Summer programming
camps - exploring project-based informal CS education in a rural community,” International
Journal of Computer Science Education in Schools, vol. 5, no. 4, ISSN 2513-8359, Sep. 2022.
[3] G. Wiggins, J. McTighe, “What is Backward Design?” in Understanding by Design,
Alexandria: Association for Supervision and Curriculum Development, 1998. [Online].
Available: https://educationaltechnology.net/wp-content/uploads/2016/01/backward-design.pdf
[Accessed December 18, 2024].

[4] J. Dewy, Experience and Education. New York: Macmillan Company, 1938.

[5]Y. Liao, M. Ringler, “Backward design: integrating active learning into undergraduate
computer science courses,” Cogent Education, vol. 10, no. 1, 2204055, Apr. 2023.

[6] R. M. Capraro, M. M. Capraro, and J. Morgan, STEM Project-Based Learning: An Integrated
Science, Technology, and Mathematics (STEM) Approach. Rotterdam, The Netherlands: Sense
Publishers, 2013.

[7] S. B. Nite, T. J. Gray, S. Lee, and S. Stebenne, “Engaging Secondary Students in Computing
and Cybersecurity,” in Practice and Experience in Advanced Research Computing, PEARC ‘24,
July 21-25, 2024, New York: ACM, 2024. 5 pages. https://doi.org/10.1145/3626203.3670624
[8] T. Ladabouche, S. LaFountain, “GenCyber: Inspiring the Next Generation of Cyber Stars,”
IEEE Security and Privacy, vol. 14, no. 5, 2016, pp.84-86. https://doi.org/10.1109/MSP.2016.107
[9] Github link with notebooks. Removed to retain anonymity.

[10] R. L. Rivest, A. Shamir, L. M. Adleman, “Cryptographic communications system and
method”. U.S. Patent #4405829.

[11] P. LePendu, C. Cheung, M. Salloum, P. Sheffler, P. and K. Downey. “Summer coding camp
as a gateway to STEM”. In Proceedings of the 51st ACM Technical Symposium on Computer
Science Education (SIGCSE ’20), March 11-14, 2020, Portland, OR, USA. ACM, New York,
NY, USA, 1 page. DOI: https://doi.org/10.1145/3328778/8.337263

[12] A. Bicer, Y. Lee, R. M.Capraro, M. M. Capraro, L. R. Barroso, D. Bevan, and K. Vela.
“Cracking the Code: The Effects of Using Microcontrollers to Code on Students’ Interest in
Computer and Electrical Engineering”. In 2018 IEEE Frontiers in Education Conference (FIE)
(pp. 1-7). IEEE.

[13] S. B. Nite, A. Bicer, K. C. Currens, and R. Tejani. “Increasing STEM Interest through
Coding with Microcontrollers,” In Proceedings of 2020 IEEE Frontiers in Education
Conference: Education for a Sustainable Future. Uppsala, Sweden (online due to COVID)..
https://doi.org/10.1109/F1E44824.2020.9274273

[14] S. B. Nite, D. C. Rice, and R. Tejani (2020). “Influences for engineering majors: Results of
a survey from a major research university,” Proceedings of the 2020 American Society for
Engineering Education (ASEE) Virtual Annual Conference. DOI: 10.18260/1-2--34825

