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Work in Progress: Towards a Cross-National Mathematical Skills 

Inventory for Engineers 

Abstract 

This Work-in-Progress (WiP) paper outlines the development of a mathematical skills inventory 

tailored for undergraduate engineering students. While traditional concept inventories (CIs) 

primarily assess students' conceptual understanding, the proposed skills inventory focuses on 

evaluating the practical competencies and cognitive abilities essential for mastering fundamental 

mathematical concepts. By adopting this skill-oriented approach, the inventory aims to offer a 

more accurate and comprehensive evaluation of students’ knowledge, skills, and abilities 

(KSAs), capturing deeper levels of cognitive understanding. The broader implication of this 

work lies in equipping educators with actionable insights that guide targeted interventions and 

address skill deficits effectively.  

Using the concept of functions as an exemplar, this paper lays the foundation for a competency-

based framework in engineering mathematics. While the concept of functions has been 

extensively studied within the context of mathematics students and supported by a dedicated CI, 

existing instruments often lack an engineering perspective. Their limited contextual relevance 

renders them less suitable for use with broader engineering cohorts, where foundational 

mathematics is embedded within practical engineering contexts and applications. Moreover, 

where engineering research does exist, they tend to focus on discipline-specific concepts, such as 

frequency responses within control theory, equivalent circuits, and Newton’s laws, often 

overlooking the underlying mathematical concepts that support engineering learning and 

problem-solving. 

Threshold Concepts in Mathematics 

In educational literature, threshold concepts are discipline-specific ideas that act as learning 

bottlenecks for students due to their troublesome and transformative nature. These concepts 

encompass sets of KSAs that may initially seem unfamiliar, contradictory, or inconsistent but, 

once understood, lead to a profound and irreversible shift in the learner's perspective of the 

subject [1,2]. Mastering these concepts is inherently difficult, often leaving learners in a state of 

liminality, a transitional phase marked by incomplete and inauthentic understanding 

characterized by reliance on memorization [1,2]. Overcoming these "stuck places" demands not 

merely the acquisition of knowledge but an ontological transformation, fundamentally reshaping 

one’s way of thinking and being [3]. Examples of threshold concepts in mathematics include 

limits [1,4], complex numbers [1], mathematical proofs [3] and functions [5,6]. 

Functions as a Threshold Concept  

Functions pose two key troublesome aspects that contribute to their nature as a threshold 

concept. The first is their representational complexity, requiring students to integrate and 

translate between various modes, including symbolic, graphical, tabular and contextual forms [7-

10]. The second is the process of reification, where students transition from understanding 

functions operationally as processes to perceiving them structurally as objects, as described in 

the APOS theory [5-7].  



APOS (Action, Process, Object, Schema) is a constructivist model in mathematics education that 

describes how students construct and comprehend mathematical concepts [11-13]. It outlines 

four developmental stages: ‘Action’ (where students perform explicit steps to solve problems); 

‘Process’ (where actions are internalized into reversible mental operations); ‘Object’ (where 

processes are encapsulated as manipulable entities); and ‘Schema’ (where actions, processes, and 

objects are integrated into a coherent framework for problem-solving).  

In the context of functions, the ‘Action’ stage involves perceiving functions as explicit rules, 

focusing on evaluating input-output pairs or solving equations through substitution [8,9,11,12]. 

At the ‘Process’ stage, students internalize these operations, viewing functions as dynamic 

mappings (e.g., mentally visualizing a quadratic function as a parabola without explicit 

calculations) and recognize properties such as domain, range, and reversibility [8]. The ‘Object’ 

stage is characterized by the encapsulation of processes, enabling tasks such as composing, 

inverting, or transforming functions through shifts and stretches [12,13]. Finally, at the ‘Schema’ 

stage, students synthesize these ideas into a unified framework, linking multiple representations 

and applying function concepts to broader contexts, such as interpreting rates of change in 

applied problems [11,13]. 

The Need for a Skills-based Inventory 

Building on the theoretical grounding of threshold concepts and the APOS framework, tools such 

as the Function CI [7,14], the Precalculus Concept Assessment (PCA) [8], and the Function 

Model [9] have been developed to assess understanding of functions. Though these instruments 

capture critical aspects of the function concept by offering insights into students’ conceptual and 

procedural knowledge, they also highlight pertinent gaps the proposed skills-based inventory 

seeks to address. 

For example, in Figure 1, item 6 of the Function CI [14], requires students to match a quadratic, 

cubic, and reciprocal function to their corresponding graphs, with the third option serving as a 

distractor for the reciprocal function. However, including multiple families of functions in a 

single question weakens the effectiveness of distractors. With only one quadratic and one cubic 

option, students can easily rely on pattern recognition or basic elimination, making it debatable 

whether correctly matching these graphs demonstrates a genuine conceptual understanding. 

Students’ existing familiarity with these basic functions (particularly at HE level) further limits 

the question's diagnostic value, as well as the diversity of cohorts and institutions across which 

the tool can be implemented. Additionally, the question in Figure 1 is highly susceptible to 

procedural approaches, such as substituting x = 0 to match the resulting y-values, given that all 

four graphs have unique intercepts. This assesses only basic arithmetic and reflects an ‘Action’-

level conception within the APOS framework; a construct from which we aspire our students to 

progress. While omitting axis values may prevent such procedural shortcuts and promote 

reasoning to some extent, this alone does not address the broader issue of failing to definitively 

assess whether students attain ‘Object’-level understanding, a limitation acknowledged by the 

authors themselves [7]. 



 

Figure 1. Item 6 from the Function Concept Inventory [14]. 

A more effective approach would involve restructuring the task into three separate questions, 

each focusing on one specific type of function. This would allow for three meaningful distractors 

for each question, that can test understanding more rigorously. While this introduces a trade-off 

by potentially lengthening the instrument and discouraging its use in classroom settings, 

prioritizing the ‘Object’-level handling of different function families over brevity is justified. For 

engineers, the ability to translate graphical representations of phenomena into equations is far 

more valuable than a comprehensive coverage of function types (an approach that traditional 

mathematical courses might emphasize more heavily).  

For example, a question focused on quadratic functions could include distractors that all 

resemble a parabola, but differ in stretches, shifts, or reflections, compelling students to employ 

higher-order skills such as decomposition. In this context, students would be required to break 

down the function its base form and then reconstruct it through a series of transformations [9]. 

For example, starting with the parent function of the quadratic family, 𝑦 = 𝑥2, students can form 

a mental image of the graph shifting 𝑏 units to the right to construct (𝑥 − 𝑏)2, then stretch or 

compress this image to account for the coefficient 𝑎, and finally shift it vertically to obtain 𝑦 =



 𝑎(𝑥 − 𝑏)2 + 𝑐. This process requires students to concurrently unravel the transformation 

coefficients while dynamically updating their mental image, thereby tapping into skills such as 

concurrent thinking, and multimodal translation. Such an approach fosters an understanding of 

relationships and transformations through advanced skills characteristic of higher-level 

conceptions in the APOS framework, promoting an ‘Object’-like treatment of functions. 

Furthermore, framing the question within an engineering context would increase its relevance 

and applicability to wider STEM curricula, while also assessing additional skills and 

competencies such as mathematical modeling and abstraction (e.g., the ability to work with 

simplified, abstract representations of reality). For instance, rather than asking students to 

identify the graphical representation of a quadratic expression, the task could be contextually 

designed to involve modelling the trajectory of a projectile. This shift from a theoretical exercise 

to a practical problem-solving scenario, such as predicting a projectile’s path from a given 

quadratic equation, would make the question more engaging and authentic. Additionally, this 

approach allows customization of the type of function tested to align with instructor goals and 

course contexts (e.g., logarithmic functions may be more relevant than quadratics in certain 

engineering disciplines and contexts).  

However, contextualization also introduces certain challenges. Designing questions that remain 

broadly accessible across a wide range of disciplines, whilst maintaining disciplinary relevance, 

requires careful selection of contexts that are neither too niche nor too generic. Moreover, as 

many contextualized items tend to become familiar to students over time (especially with 

increasing global access), maintaining novelty may require periodic updates to the item bank. 

This is particularly important for an inventory intended to be cross-national and enduring in its 

utility. Despite these challenges, a well-structured pool of adaptable contextual problems can 

balance authenticity with longevity. Such a redesign would still align the inventory with the 

principles of the APOS framework and retain its mathematical rigor while still enhancing its 

utility for engineering and other STEM educators.  

As alternative assessment instruments, the Function Model [9] and the Precalculus Concept 

Assessment [8] provide valuable frameworks that that help inform the development of a skills-

oriented inventory. The Function Model is built around four core competencies: modeling, 

interpreting, translation, and reification. Grounded in a "problem-solving environment" with 

contextually rich questions, it concisely captures the essential aspects of functions. Similarly, the 

Precalculus Concept Assessment focuses on three core reasoning abilities: the process view of 

functions, covariational reasoning, and computational reasoning, with questions designed to 

probe each of these areas. While the conciseness of these models and their development around 

core competencies are valuable, and their alignment with our aim to develop a skills-oriented 

inventory are clear, we believe they could be expanded to include additional competencies, such 

as reasoning with transformations and engaging with multiple representations. Additionally, 

skills such as covariational reasoning, focusing on how students visualize changes in a function's 

output relative to its input (as emphasized in the Precalculus Concept Assessment), could serve 

as specific extensions to the existing four competencies in the Function Model. In this context, 

covariational reasoning constitutes part of the interpreting competency, and explicitly assessing it 

would provide a more nuanced evaluation of students’ ability to interpret in a way that is not 

presently addressed by the Function Model. Further, refining these with dynamic questions 

customized to multiple engineering contexts and use more modern survey techniques (e.g., 



adaptive surveys, coupled responses and qualitative elements) would enrich these models, 

making them more versatile for skill-focused assessment that emphasize flexibility, reasoning, 

and application in engineering contexts. 

Core Mathematical Skills 

Table 1 below highlights the core mathematical skills essential for developing an expert-level 

understanding of functions, as identified through preliminary scoping.  

Table 1. Description of essential mathematical skills and their application to functions.  

Skill Description Application to functions 
Perspective 

Flexibility 

Drawn from the idea of 

mathematical flexibility [15], this 

refers to the ability to shift 

specifically between perspectives 

or mental conceptions 

• Manifests as the ability to transition selectively 

between viewing functions as actions (e.g., 

evaluating function values at specific inputs), 

processes, and complete objects on which further 

transformations can be applied 

• Progress along the APOS continuum indicates a 

student navigating thresholds, with reification 

recognized as a key troublesome aspect [5-7] 

Visualization 

[7,8] 

The ability to effectively construct, 

interpret and manipulate 

representations that accurately 

capture mathematical relationships 

• Sketching of functions 

• Mentally mapping the effects of parameter 

changes on a function’s graphs 

• Instrumental in reducing abstractions 

Representational 

Translation [7-

10] 

The ability to seamlessly shift 

between different representational 

modes (e.g., tables, equations, and 

graphs) 

• Characterises the troublesome nature of functions 

• Integrating information from multiple 

representations simplifies problem-solving by 

leveraging the most effective representational 

mode for a given task 

Mathematical 

Language 

The ability to accurately 

communicate mathematical ideas 

through symbols, concept-specific 

notation and terminology 

• Symbolic literacy is a core component which 

demands understanding of function notation (e.g., 

those of inverse, and composite functions) 

• Definitional clarity particularly with function 

properties such as domain and injectivity 

Mathematical 

Modeling [9] 

The ability to formulate, use, 

interpret, and evaluate a 

mathematical model (the model 

being a mathematized abstraction 

of a real-world problem) 

• Understanding that contextualizing is merely 

another, advanced mode of representation [8,10] 

• Handling of functions in contextualised problems 

by interpreting them within a mathematical 

framework and relating the solutions to real-world 

scenarios (e.g., function maxima interpreted as the 

highest point reached by a projectile) 

• Can be integrated easily into engineering contexts 

through problems of optimization 

Abstraction The ability to generalize and 

simplify complex functions by 

focusing on their essential 

properties and relationships rather 

than on specific instances 

• For example, the ability to use the general form of 

a quadratic to derive its roots in terms of 

coefficients 𝑎, 𝑏, and 𝑐, rather than evaluating 

them for specific values 

• This principle of computational thinking allows for 

generalization and simplification 



• In modeling, translating real-world problems into 

mathematical terms exemplifies representational 

abstraction, where non-essential details are shed 

during the mathematization process 

Covariational 

Reasoning  

The ability to interpret and analyze 

the changing nature of one 

quantity in relation to another 

within dynamic situations [7,8] 

• Enables students to perceive functions as dynamic 

relationships, instead of just static equations 

• Ensures progression from action to a process 

conception of functions, as underscored in [8] 

• Supports the embedding of contextual scenarios 

(e.g., how the height of a projectile varies over 

time) 

• Supports interpretation of rates of change, 

enriching understanding of function behavior such 

as growth, decay, and oscillation 

Decomposition The ability to break down a large, 

complex mathematical problem 

into smaller, more manageable 

sub-tasks 

• A fundamental principle of computational thinking 

• Evident in problems requiring the deconstruction 

of a complex function into its base and the 

subsequent reconstruction through a series of 

transformations 

• A skill particularly transferable to engineering 

applications, where boundary conditions are 

utilized as markers to segment problems into 

distinct regions for simplified or advanced 

treatments 

Concurrent 

Thinking 

A pattern of thinking that involves 

the ability to make progress on 

multiple aspects at the same time 

• In this context, this may relate to working with 

multiple representations of a function 

simultaneously 

• Unlike representational translation, this requires 

concurrent execution, such as forming a mental 

sketch of a function while computing its general 

shape, roots, and turning points 

Concluding Remarks and Future Work 

In summary, this Work-in-Progress paper emphasizes the need for a mathematical skills 

inventory tailored to undergraduate engineering students to address the limitations of traditional 

concept inventories by focusing on practical skills, competencies, and cognitive abilities. Using 

the function concept to motivate this notion, it underscores the importance of emphasizing core 

mathematical skills, such as perspective flexibility, visualization, and covariational reasoning, 

while emphasising their application in engineering contexts. Drawing insights from existing 

frameworks like the Function CI, Precalculus Concept Assessment, and Function Model, the 

proposed skills-based inventory aims to bridge the gap between theoretical understanding and 

practical application, equipping educators with insights to address skill deficits, enhance 

instruction, and support engineering students in navigating mathematical threshold concepts. 

Future work will shift toward the development of a skills-based inventory targeting a single, 

pertinent mathematical skill (one that extends across multiple mathematical concepts such as 

functions, typically covered by first-year engineering students). This focused approach will allow 



for more refined assessment design and precise evaluation of students’ understanding (and 

proficiency) within a specific cognitive domain. Building on the existing scoping review, the 

selected skill will be mapped against instructional needs and curricular goals within first-year 

undergraduate engineering mathematics courses. The development phase will engage faculty as 

integral stakeholders, ensuring the inventory provides actionable insights, is user-friendly and 

scalable for widespread implementation. Pilot studies will be conducted within engineering 

mathematics courses at two cross-national leading research-intensive institutions, Queen Mary 

University of London in the UK and Cornell University in the US. These studies will iteratively 

refine the instrument to improve its effectiveness and ensure its adaptability for use across a 

broader range of institutions. 

References 

[1] J. H. F. Meyer and R. Land, ‘Threshold concepts and troublesome knowledge: Linkages to 

ways of thinking and practising within the disciplines’, in ISL10 Improving Student Learning: 

Theory and Practice Ten Years On, Oxford Brookes University, 2003, pp. 412–424. 

[2] J. H. F. Meyer and R. Land, ‘Threshold concepts and troublesome knowledge (2): 

Epistemological considerations and a conceptual framework for teaching and learning’, High 

Educ, vol. 49, no. 3, pp. 373–388, Apr. 2005, doi: 10.1007/s10734-004-6779-5. 

[3] R. Land and J. H. F. Meyer, ‘Threshold Concepts and Troublesome Knowledge (5): Dynamics 

of Assessment’, in J. Meyer, R. Land, & C. Baillie (Eds.), Threshold Concepts and 

Transformational Learning, 2010, pp. 61–79. 

[4] S. Breen and A. O’Shea, ‘Threshold Concepts and Undergraduate Mathematics Teaching’, 

PRIMUS, vol. 26, no. 9, pp. 837–847, Oct. 2016, doi: 10.1080/10511970.2016.1191573. 

[5] K. Pettersson, ‘The Threshold Concept of a Function – A Case Study of a Student’s 

Development of Her Understanding’, Sweden: MADIF-8, 2012. 

[6] K. Pettersson, E. Stadler, and T. Tambour, ‘Development of students’ understanding of the 

threshold concept of function’, in Proc. 8th Congress of the European Society for Research in 

Mathematics Education CERME8, Antalaya, Turkey, Feb. 2013. 

[7] A. O’Shea, S. Breen, and B. Jaworski, ‘The Development of a Function Concept Inventory’, 

Int. J. Res. Undergrad. Math. Ed., vol. 2, no. 3, pp. 279–296, Oct. 2016, doi: 10.1007/s40753-

016-0030-5. 

[8] M. Carlson, M. Oehrtman, and N. Engelke, ‘The Precalculus Concept Assessment: A Tool for 

Assessing Students’ Reasoning Abilities and Understandings’, Cognition and Instruction, vol. 

28, no. 2, pp. 113–145, Apr. 2010, doi: 10.1080/07370001003676587. 

[9] B. R. O’Callaghan, ‘Computer-Intensive Algebra and Students’ Conceptual Knowledge of 

Functions’, Journal for Research in Mathematics Education, vol. 29, no. 1, pp. 21–40, 1998, 

doi: 10.2307/749716. 

[10] H. Akkoç and D. Tall, ‘The function concept: Comprehension and complication’, 

Proceedings of the British Society for Research into Learning Mathematic, vol. 23, pp. 1–6, 

Jan. 2003. 

[11] E. Dubinsky and M. A. Mcdonald, ‘APOS: A Constructivist Theory of Learning in 

Undergraduate Mathematics Education Research’, in The Teaching and Learning of 

Mathematics at University Level, vol. 7, D. Holton, M. Artigue, U. Kirchgräber, J. Hillel, M. 



Niss, and A. Schoenfeld, Eds., in New ICMI Study Series, vol. 7. , Dordrecht: Kluwer 

Academic Publishers, 2002, pp. 275–282. doi: 10.1007/0-306-47231-7_25. 

[12] V. Borji, H. Alamolhodaei, and F. Radmehr, ‘Application of the APOS-ACE Theory to 

improve Students’ Graphical Understanding of Derivative’, EURASIA J MATH SCI T, vol. 14, 

no. 7, May 2018, doi: 10.29333/ejmste/91451. 

[13] M. Yiğit Koyunkaya and B. Boz-Yaman, ‘Changes in students’ mental constructions of 

function transformations through the APOS framework’, INT ELECT J MATH ED, vol. 18, 

no. 4, p. em0747, Oct. 2023, doi: 10.29333/iejme/13515. 

[14] S. Breen, B. Jaworski, and A. O’Shea, "Concept inventory for functions," 2012. 

[15] W. Hong, J. R. Star, R.-D. Liu, R. Jiang, and X. Fu, ‘A Systematic Review of Mathematical 

Flexibility: Concepts, Measurements, and Related Research’, Educational Psychology Review, 

vol. 35, no. 4, Art. no. 4, Nov. 2023. 


