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Work in Progress: Towards a Cross-National Mathematical Skills
Inventory for Engineers

Abstract

This Work-in-Progress (WiP) paper outlines the development of a mathematical skills inventory
tailored for undergraduate engineering students. While traditional concept inventories (CIs)
primarily assess students' conceptual understanding, the proposed skills inventory focuses on
evaluating the practical competencies and cognitive abilities essential for mastering fundamental
mathematical concepts. By adopting this skill-oriented approach, the inventory aims to offer a
more accurate and comprehensive evaluation of students’ knowledge, skills, and abilities
(KSAs), capturing deeper levels of cognitive understanding. The broader implication of this
work lies in equipping educators with actionable insights that guide targeted interventions and
address skill deficits effectively.

Using the concept of functions as an exemplar, this paper lays the foundation for a competency-
based framework in engineering mathematics. While the concept of functions has been
extensively studied within the context of mathematics students and supported by a dedicated Cl,
existing instruments often lack an engineering perspective. Their limited contextual relevance
renders them less suitable for use with broader engineering cohorts, where foundational
mathematics is embedded within practical engineering contexts and applications. Moreover,
where engineering research does exist, they tend to focus on discipline-specific concepts, such as
frequency responses within control theory, equivalent circuits, and Newton’s laws, often
overlooking the underlying mathematical concepts that support engineering learning and
problem-solving.

Threshold Concepts in Mathematics

In educational literature, threshold concepts are discipline-specific ideas that act as learning
bottlenecks for students due to their troublesome and transformative nature. These concepts
encompass sets of KSAs that may initially seem unfamiliar, contradictory, or inconsistent but,
once understood, lead to a profound and irreversible shift in the learner's perspective of the
subject [1,2]. Mastering these concepts is inherently difficult, often leaving learners in a state of
liminality, a transitional phase marked by incomplete and inauthentic understanding
characterized by reliance on memorization [1,2]. Overcoming these "stuck places” demands not
merely the acquisition of knowledge but an ontological transformation, fundamentally reshaping
one’s way of thinking and being [3]. Examples of threshold concepts in mathematics include
limits [1,4], complex numbers [1], mathematical proofs [3] and functions [5,6].

Functions as a Threshold Concept

Functions pose two key troublesome aspects that contribute to their nature as a threshold
concept. The first is their representational complexity, requiring students to integrate and
translate between various modes, including symbolic, graphical, tabular and contextual forms [7-
10]. The second is the process of reification, where students transition from understanding
functions operationally as processes to perceiving them structurally as objects, as described in
the APOS theory [5-7].



APOS (Action, Process, Object, Schema) is a constructivist model in mathematics education that
describes how students construct and comprehend mathematical concepts [11-13]. It outlines
four developmental stages: ‘Action’ (where students perform explicit steps to solve problems);
‘Process’ (where actions are internalized into reversible mental operations); ‘Object’ (where
processes are encapsulated as manipulable entities); and ‘Schema’ (where actions, processes, and
objects are integrated into a coherent framework for problem-solving).

In the context of functions, the ‘Action’ stage involves perceiving functions as explicit rules,
focusing on evaluating input-output pairs or solving equations through substitution [8,9,11,12].
At the ‘Process’ stage, students internalize these operations, viewing functions as dynamic
mappings (e.g., mentally visualizing a quadratic function as a parabola without explicit
calculations) and recognize properties such as domain, range, and reversibility [8]. The ‘Object’
stage is characterized by the encapsulation of processes, enabling tasks such as composing,
inverting, or transforming functions through shifts and stretches [12,13]. Finally, at the ‘Schema’
stage, students synthesize these ideas into a unified framework, linking multiple representations
and applying function concepts to broader contexts, such as interpreting rates of change in
applied problems [11,13].

The Need for a Skills-based Inventory

Building on the theoretical grounding of threshold concepts and the APOS framework, tools such
as the Function CI [7,14], the Precalculus Concept Assessment (PCA) [8], and the Function
Model [9] have been developed to assess understanding of functions. Though these instruments
capture critical aspects of the function concept by offering insights into students’ conceptual and
procedural knowledge, they also highlight pertinent gaps the proposed skills-based inventory
seeks to address.

For example, in Figure 1, item 6 of the Function CI [14], requires students to match a quadratic,
cubic, and reciprocal function to their corresponding graphs, with the third option serving as a
distractor for the reciprocal function. However, including multiple families of functions in a
single question weakens the effectiveness of distractors. With only one quadratic and one cubic
option, students can easily rely on pattern recognition or basic elimination, making it debatable
whether correctly matching these graphs demonstrates a genuine conceptual understanding.
Students’ existing familiarity with these basic functions (particularly at HE level) further limits
the question’'s diagnostic value, as well as the diversity of cohorts and institutions across which
the tool can be implemented. Additionally, the question in Figure 1 is highly susceptible to
procedural approaches, such as substituting x = 0 to match the resulting y-values, given that all
four graphs have unique intercepts. This assesses only basic arithmetic and reflects an ‘Action’-
level conception within the APOS framework; a construct from which we aspire our students to
progress. While omitting axis values may prevent such procedural shortcuts and promote
reasoning to some extent, this alone does not address the broader issue of failing to definitively
assess whether students attain ‘Object’-level understanding, a limitation acknowledged by the
authors themselves [7].



Q6. In the table given, match each of the functions in (a), (b), (c) below with one
of the graphs in (i), (ii), (iii) and (iv). Mark any key points on each of the
graphs to help show how the graph and function are related.

(@)y=9-x%, (b) y=3/(x+2), (c) y=(x-1)(x*-5x+6)
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Figure 1. Item 6 from the Function Concept Inventory [14].

A more effective approach would involve restructuring the task into three separate questions,
each focusing on one specific type of function. This would allow for three meaningful distractors
for each question, that can test understanding more rigorously. While this introduces a trade-off
by potentially lengthening the instrument and discouraging its use in classroom settings,
prioritizing the ‘Object’-level handling of different function families over brevity is justified. For
engineers, the ability to translate graphical representations of phenomena into equations is far
more valuable than a comprehensive coverage of function types (an approach that traditional
mathematical courses might emphasize more heavily).

For example, a question focused on quadratic functions could include distractors that all
resemble a parabola, but differ in stretches, shifts, or reflections, compelling students to employ
higher-order skills such as decomposition. In this context, students would be required to break
down the function its base form and then reconstruct it through a series of transformations [9].
For example, starting with the parent function of the quadratic family, y = x?2, students can form
a mental image of the graph shifting b units to the right to construct (x — b)?, then stretch or
compress this image to account for the coefficient a, and finally shift it vertically to obtain y =



a(x — b)? + c. This process requires students to concurrently unravel the transformation
coefficients while dynamically updating their mental image, thereby tapping into skills such as
concurrent thinking, and multimodal translation. Such an approach fosters an understanding of
relationships and transformations through advanced skills characteristic of higher-level
conceptions in the APOS framework, promoting an ‘Object’-like treatment of functions.

Furthermore, framing the question within an engineering context would increase its relevance
and applicability to wider STEM curricula, while also assessing additional skills and
competencies such as mathematical modeling and abstraction (e.g., the ability to work with
simplified, abstract representations of reality). For instance, rather than asking students to
identify the graphical representation of a quadratic expression, the task could be contextually
designed to involve modelling the trajectory of a projectile. This shift from a theoretical exercise
to a practical problem-solving scenario, such as predicting a projectile’s path from a given
quadratic equation, would make the question more engaging and authentic. Additionally, this
approach allows customization of the type of function tested to align with instructor goals and
course contexts (e.g., logarithmic functions may be more relevant than quadratics in certain
engineering disciplines and contexts).

However, contextualization also introduces certain challenges. Designing questions that remain
broadly accessible across a wide range of disciplines, whilst maintaining disciplinary relevance,
requires careful selection of contexts that are neither too niche nor too generic. Moreover, as
many contextualized items tend to become familiar to students over time (especially with
increasing global access), maintaining novelty may require periodic updates to the item bank.
This is particularly important for an inventory intended to be cross-national and enduring in its
utility. Despite these challenges, a well-structured pool of adaptable contextual problems can
balance authenticity with longevity. Such a redesign would still align the inventory with the
principles of the APOS framework and retain its mathematical rigor while still enhancing its
utility for engineering and other STEM educators.

As alternative assessment instruments, the Function Model [9] and the Precalculus Concept
Assessment [8] provide valuable frameworks that that help inform the development of a skills-
oriented inventory. The Function Model is built around four core competencies: modeling,
interpreting, translation, and reification. Grounded in a "problem-solving environment" with
contextually rich questions, it concisely captures the essential aspects of functions. Similarly, the
Precalculus Concept Assessment focuses on three core reasoning abilities: the process view of
functions, covariational reasoning, and computational reasoning, with questions designed to
probe each of these areas. While the conciseness of these models and their development around
core competencies are valuable, and their alignment with our aim to develop a skills-oriented
inventory are clear, we believe they could be expanded to include additional competencies, such
as reasoning with transformations and engaging with multiple representations. Additionally,
skills such as covariational reasoning, focusing on how students visualize changes in a function'’s
output relative to its input (as emphasized in the Precalculus Concept Assessment), could serve
as specific extensions to the existing four competencies in the Function Model. In this context,
covariational reasoning constitutes part of the interpreting competency, and explicitly assessing it
would provide a more nuanced evaluation of students’ ability to interpret in a way that is not
presently addressed by the Function Model. Further, refining these with dynamic questions
customized to multiple engineering contexts and use more modern survey techniques (e.g.,



adaptive surveys, coupled responses and qualitative elements) would enrich these models,
making them more versatile for skill-focused assessment that emphasize flexibility, reasoning,
and application in engineering contexts.

Core Mathematical Skills

Table 1 below highlights the core mathematical skills essential for developing an expert-level
understanding of functions, as identified through preliminary scoping.

Table 1. Description of essential mathematical skills and their application to functions.

Skill Description Application to functions
Perspective Drawn from the idea of e Manifests as the ability to transition selectively
Flexibility mathematical flexibility [15], this between viewing functions as actions (e.g.,
refers to the ability to shift evaluating function values at specific inputs),
specifically between perspectives processes, and complete objects on which further
or mental conceptions transformations can be applied
e  Progress along the APOS continuum indicates a
student navigating thresholds, with reification
recognized as a key troublesome aspect [5-7]
Visualization The ability to effectively construct, | e  Sketching of functions
[7.8] interpret and manipulate e Mentally mapping the effects of parameter

representations that accurately
capture mathematical relationships

changes on a function’s graphs
Instrumental in reducing abstractions

Representational
Translation [7-
10]

The ability to seamlessly shift
between different representational
modes (e.g., tables, equations, and

graphs)

Characterises the troublesome nature of functions
Integrating information from multiple
representations simplifies problem-solving by
leveraging the most effective representational
mode for a given task

Mathematical
Language

The ability to accurately
communicate mathematical ideas
through symbols, concept-specific
notation and terminology

Symbolic literacy is a core component which
demands understanding of function notation (e.g.,
those of inverse, and composite functions)
Definitional clarity particularly with function
properties such as domain and injectivity

Mathematical
Modeling [9]

The ability to formulate, use,
interpret, and evaluate a
mathematical model (the model
being a mathematized abstraction
of a real-world problem)

Understanding that contextualizing is merely
another, advanced mode of representation [8,10]
Handling of functions in contextualised problems
by interpreting them within a mathematical
framework and relating the solutions to real-world
scenarios (e.g., function maxima interpreted as the
highest point reached by a projectile)

Can be integrated easily into engineering contexts
through problems of optimization

Abstraction

The ability to generalize and
simplify complex functions by
focusing on their essential
properties and relationships rather
than on specific instances

For example, the ability to use the general form of
a quadratic to derive its roots in terms of
coefficients a, b, and c, rather than evaluating
them for specific values

This principle of computational thinking allows for
generalization and simplification




In modeling, translating real-world problems into
mathematical terms exemplifies representational
abstraction, where non-essential details are shed
during the mathematization process

Covariational
Reasoning

The ability to interpret and analyze
the changing nature of one
quantity in relation to another
within dynamic situations [7,8]

Enables students to perceive functions as dynamic
relationships, instead of just static equations
Ensures progression from action to a process
conception of functions, as underscored in [8]
Supports the embedding of contextual scenarios
(e.g., how the height of a projectile varies over
time)

Supports interpretation of rates of change,
enriching understanding of function behavior such
as growth, decay, and oscillation

Decomposition

The ability to break down a large,
complex mathematical problem
into smaller, more manageable
sub-tasks

A fundamental principle of computational thinking
Evident in problems requiring the deconstruction
of a complex function into its base and the
subsequent reconstruction through a series of
transformations

A skill particularly transferable to engineering
applications, where boundary conditions are
utilized as markers to segment problems into
distinct regions for simplified or advanced
treatments

Concurrent
Thinking

A pattern of thinking that involves
the ability to make progress on
multiple aspects at the same time

In this context, this may relate to working with
multiple representations of a function
simultaneously

Unlike representational translation, this requires
concurrent execution, such as forming a mental
sketch of a function while computing its general
shape, roots, and turning points

Concluding Remarks and Future Work

In summary, this Work-in-Progress paper emphasizes the need for a mathematical skills
inventory tailored to undergraduate engineering students to address the limitations of traditional
concept inventories by focusing on practical skills, competencies, and cognitive abilities. Using
the function concept to motivate this notion, it underscores the importance of emphasizing core
mathematical skills, such as perspective flexibility, visualization, and covariational reasoning,
while emphasising their application in engineering contexts. Drawing insights from existing
frameworks like the Function CI, Precalculus Concept Assessment, and Function Model, the
proposed skills-based inventory aims to bridge the gap between theoretical understanding and
practical application, equipping educators with insights to address skill deficits, enhance
instruction, and support engineering students in navigating mathematical threshold concepts.

Future work will shift toward the development of a skills-based inventory targeting a single,
pertinent mathematical skill (one that extends across multiple mathematical concepts such as
functions, typically covered by first-year engineering students). This focused approach will allow



for more refined assessment design and precise evaluation of students’ understanding (and
proficiency) within a specific cognitive domain. Building on the existing scoping review, the
selected skill will be mapped against instructional needs and curricular goals within first-year
undergraduate engineering mathematics courses. The development phase will engage faculty as
integral stakeholders, ensuring the inventory provides actionable insights, is user-friendly and
scalable for widespread implementation. Pilot studies will be conducted within engineering
mathematics courses at two cross-national leading research-intensive institutions, Queen Mary
University of London in the UK and Cornell University in the US. These studies will iteratively
refine the instrument to improve its effectiveness and ensure its adaptability for use across a
broader range of institutions.
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