
Paper ID #46654

Barkplug 2.0 and Beyond - a Chatbot for Assisting Students in High DFW
Courses

Dr. Jason M. Keith, Iowa State University of Science and Technology

Jason Keith is Senior Vice President and Provost at Iowa State University. Prior to this appointment, he
was Dean of the Bagley College of Engineering at Mississippi State University. Keith was recognized in
2014 as a Fellow of ASEE.

Dr. Amin Amirlatifi, Mississippi State University
Sudip Mittal, Mississippi State University
Subash Neupane, Mississippi State University
HIMANSHU TRIPATHI, Mississippi State University

©American Society for Engineering Education, 2025

Barkplug 2.0 and Beyond: a Chatbot for Assisting Students in High DFW
Courses

Abstract

Higher education continues to respond to the challenges and opportunities presented by artificial
intelligence (AI) and large language models (LLM) such as ChatGPT. In our prior work we
introduced a chatbot that used AI and LLM to recruit prospective students, assist current students
with academic advising (course selection, changing majors) and student affairs (directing
students to university resources regarding the campus community, housing and dining, student
organizations, mental health and more). Towards the promotion of student success initiatives we
report in this work our formulation of course specific teaching assistants for engineering and
computer science. Through inquiry-aided interaction, our chatbot helps students assemble
prompts that aid them in the most challenging topics within core courses, and allow them to
understand methodologies for solving homework problems and prepare for midterm exams. This
paper will specifically discuss algorithm development and outline some case studies relevant to
improving persistence, retention and graduation. Furthermore, while LLMs are generally
considered a good tool for inferences and explanations, they struggle in formulating solutions to
prompts that require calculations and involved engineering applications. This work highlights
steps that would allow LLMs to work as reliable teaching assistants, serving both science and
engineering oriented students.

Introduction and Literature Review

Artificial Intelligence (AI) continues to be one of the most talked-about topics in higher
education and is of particular emphasis in colleges of engineering and computing across the
world. In addition to being highly relevant in research themes during the era of autonomy and
big data, there are large benefits to education as well. Advantages to chatbots are numerous, but
include being available 24/7 to students, being (potentially) anonymous to answer questions that
may be considered bad or humiliating to the student who is asking, to being able to provide
quizzes and other materials to test knowledge retention, and having a capacity to handle what
may be considered to be too many questions for the professor or teaching assistant to be able to
respond to in a timely manner.

One of the initial uses of AI for supporting teaching expanded the use of the Piazza Q&A
platform by Georgia Tech [1] (named Jill Watson) and then Stanford University [2]. In this latter
work an AI tool was trained to address student inquiries in a core computer science course using
1500 questions and answers archived from Piazza. The questions were categorized as being
related to a course policy, related to homework or some other assignment, or about a conceptual
question. The results showed that the bot did very well at answering policy questions, fared
relatively well on assignment questions, but struggled with addressing conceptual queries, even
though a digitized version of the textbook was used to help train the bot on fundamentals.

In his master’s degree thesis, Saura [3] worked on developing an AI chatbot built within the R
programming language. This work cited immediate access as the main driving force for creating
this bot, and thus focused on being able to understand the question being asked (this was quite

anticipatory towards the now maturing field of prompt engineering) and develop a front-end
user-friendly application as well as develop mechanisms to find / formulate a correct answer.
This work recognized the impact that interactive AI assistants like Siri, Alexa and others had and
also pointed towards Georgia Tech and Deakin University [4] as inspiring examples. The
algorithm utilized neural networks to find pathways to the closest related answers in its
database.

Gonda and Chu [5] outlined the ability of a conversational chatbot to help train teaching
assistants during orientation sessions at The Hong Kong University of Science and Technology.
Their goal was to provide personalized experiences for the students and allow for scalable
support, improve efficiency and consistency across multiple sections of the same course. This
was well received by the faculty, who felt more confident and comfortable in ensuring strong
delivery despite teaching the same materials and answering similar questions, even when training
graduate assistants in eighteen departments.

Hamam [6] provided a literature review of chatbot’s use in higher education, with an emphasis
on improving teaching and learning. Advantages cited include the bots ability to engage in a
conversation with students, and respond to frequently asked questions with consistency in an
inexpensive and efficient manner. Sandu and Gide found from student surveys that the students
preferred interacting with the chatbot as opposed to other communication methods [7]. Haristiani
and Danuwijaya [8] evaluated the use of chatbots to facilitate the learning of foreign languages.
Similarly, Deng and Yu [9] found a significant impact on overall student learning outcomes and
knowledge retention. Thus, it appears that chatbots should be further developed, tested and
evaluated to support student learning.

Specific to computer science and related learning applications, Ma et al. [10] developed a bot for
software engineering which allowed for coverage of additional course material while providing
additional teaching assistants (both artificial and in person) support. The human TAs were able to
better support group projects since the bots were able to effectively manage lower-level
questions in a consistent, rapid manner. However, Schroeder [11] points to issues with limitations
of the bots in answering only common questions. Alsafari [12] gives an outline of the advent of
LLMs as powerful tools for higher education including student services and as teaching
assistants. They argue that these tools are best poised at this time to handle complex student
queries, which is the focus of our current efforts.

Methodology for Design and Development of the Chatbot

At Mississippi State University, efforts have been made in support of the institutional strategic
plan to improve student success. In a prior set of papers [13] and [14], the authors developed a
chatbot for the Bagley College of Engineering to recruit prospective students into the college.
Furthermore, the chatbot algorithm was written in a way to ask a series of questions to undecided
students and (behind the scenes) build a prompt to run through our database and give advice to
the prospective student regarding one (or more) majors that they should consider. A final aspect
of the chatbot is to direct students to resources in the Division of Student Affairs. We initially
chose these facets for our algorithm because when students are enrolled in a major that feels right

for them, and that when feeling welcome via a support network, students are retained (and
graduate) at higher rates.

The next step in our work is to now focus on improving student success inside of classes that
have particularly high DFW rates. Unique to our authorship to this paper, we focused our efforts
on “PTE 3953 Petroleum Reservoir Rock Properties and Fluid Flow” and “CSE 1011
Introduction to Computer Science & Engineering." Students tend to struggle with some of the
foundational concepts associated with these courses and thus leave these majors into another
department in the college or across the university. Areas that students struggle with include basic
understanding of applying engineering fundamentals to the nature of oil and gas reservoirs,
exploration and drilling, such as applying Darcy’s law to understand fluid flow (e.g., oil, water or
gas) through porous media underground. Furthermore, basic coding skills and understanding
computer logic, loops, and conditional statements are a common issue. The rest of this paper will
outline processes used and algorithmic development to help students navigate these
challenges. In this paper, we will focus on a fundamental question in petroleum engineering and
computer science courses to provide an illustrative example. fs

To address these challenges, we developed a Teaching Assistant (TA) chatbot (BarkPlug 2.0) that
provides real-time support tailored to the needs of these students. The chatbot is designed to answer
both theoretical questions, such as applying engineering principles, and numerical or code-based
queries, such as solving problems involving coding logic or debugging scripts. The architecture as
depicted in Figure.1 is modular, consisting of distinct yet interlinked components that classify and
process queries effectively. These include a Query Router, a Retriever, a Concept Agent, a Code
Generator, an Execution Agent, and a Feedback Mechanism, all orchestrated to interact seamlessly
with LLMs for final response generation.

Figure 1: TA Chatbot Architecture (BarkPlug 2.0)

The first module is the Query Router, which acts as the entry point for the system. The objective
of this module is to classify the user's query into one of two categories: theoretical or
numerical/code based. It employs a lightweight classifier, such as a smaller fine-tuned LLM, to
predict the query type based on its structure and keywords. The LLM is instructed to classify the
query in a zero-shot setting. An example of a zero-shot prompt for query classification is illustrated
in Figure 2.

Figure 2: Zero-shot prompt for query classification

When the query is classified as theoretical, the system employs a Retrieval-Augmented Generation
(RAG) workflow to generate the response. First, it retrieves relevant information from a
knowledge base (external knowledge sources), such as course curricula, textbooks, or scientific
literature, focusing on key concepts related to the query. Next, a generative language model
synthesizes the retrieved data into a coherent and detailed explanation, ensuring the response is
accurate, contextually relevant, and tailored to the query. For example, as depicted in Table 1, for
a user question like “Concept Behind Initial Fluid Saturation in Reservoir”, the RAG system
begins by retrieving the top-k most relevant documents from a knowledge base, such as a Reservoir
Rock Properties course or related textbooks. These documents, along with the user query, are then
passed to an LLM for response generation. The LLM integrates the retrieved information to
produce a comprehensive and scientifically accurate answer.

Table 1: Response generation to theoretical question using RAG workflow
Query Query Classification Response
Concept Behind Initial Fluid
Saturation in Reservoir

Theoretical The concept behind Initial Fluid Saturations in a reservoir involves the idea
that pores are initially saturated with water (Sw=1), and hydrocarbons migrate
into traps due to having a density less than water density. The distribution of
hydrocarbons in the reservoir is such that gravity and capillary forces are in
equilibrium. The minimum interstitial water saturation remains in the
hydrocarbon zone even after accumulation occurs. Wettability plays a role,
with water-wet conditions in drainage accumulation processes and oil-wet
conditions in imbibition accumulation processes. Residual non-wetting
phase saturation is also a factor in this concept.

 prompt = f"""

 Instruction: You are an AI assistant trained to classify user queries into two categories: Theoretical or Numerical-Procedural. Follow these
guidelines:

 1. Theoretical: The query involves abstract concepts, principles, or qualitative reasoning. It seeks explanations, definitions, or discussions
without requiring calculations, numerical results, or step-by-step procedures.

 2. Numerical-Procedural: The query involves numbers, calculations, data analysis, code, or step-by-step instructions. It seeks specific
numerical answers, solutions to equations, code implementations, or procedural guidance.

 Task: Read the user query below and classify it as either Theoretical or Numerical-Procedural. Provide only the classification as your
output.

 User Query: {query}

 Output:

 """

To determine the fluid saturations, we first need to calculate the bulk volume occupied by oil and water and then calculate the fluid
saturations. Here is the step-by-step algorithm to solve the problem:

1. Calculate the total bulk volume of fluids recovered:
Total recovered volume = Volume of oil + Volume of water Total recovered volume = 5.12 cm3 + 2.5 cm3
Total recovered volume = 7.62 cm3

2. Calculate the effective pore volume:
Effective pore volume = Bulk volume of the core sample x porosity Effective pore volume = 38.4 cm3 x 0.281 Effective pore volume =
10.78 cm3

3. Calculate the fluid saturations:
Oil saturation = (Volume of oil / Effective pore volume) x 100% Oil saturation = (5.12 cm3 / 10.78 cm3) x 100% Oil saturation = 0.475 x
100%
Oil saturation = 47.5%
Water saturation = (Volume of water / Effective pore volume) x 100%
Water saturation = (2.5 cm3 / 10.78 cm3) x 100%
Water saturation = 0.232 x 100%
Water saturation = 23.2%

4. Verify the calculations:
Oil saturation + Water saturation = 47.5% + 23.2% = 70.7%

As oil and water are the only two fluids present, the total fluid saturation should add up to 100%.

Therefore, the fluid saturations are: -

Oil saturation: 47.5%

Water saturation: 23.2%

Remaining pore space occupied by gas (Gas saturation): 29.3% (100% - 47.5% - 23.2%)

For numerical or code-based problems, the system takes a more structured approach to ensure
correctness and precision. Once the query is classified as a numerical or a code-related problem,
it is routed to the Concept Agent (CA). The CA performs reasoning and generates a step-by-step
procedure to solve the problem. For numerical queries, it may also include the final answer. The
step-by-step reasoning can involve mathematical models, such as Darcy's law or fluid flow
equations. For programming tasks, it may include algorithms for basic Python constructs, such as
loops, conditionals, and common algorithms. The output of this module is a concept template. An
example of concept template for a user query is illustrated in Figures 3 and 4.

Figure 3: Numerical question posed by user

Figure 4. Concept template for numerical question illustrated in Figure 3

The input to the code generator is the concept template. It takes the concept template and generates
a python code with basic python construct that can be executed without including complex
dependencies. For example, in numerical problems, it applies relevant formulas provided in a
concept template step by step. In coding tasks, it uses the series of logical constructs to create

user_query = " During a fluid saturations determination study, oil and water volumes were extracted from a core sample with bulk volume
of 38.4 cm3, and porosity of 0.281. After applying necessary corrections, 5.12 cm3 of oil and 2.5 cm3 of water were recovered. Determine
the fluid saturations."

python code. The output in either case is a Python code, which can solve the numerical or a coding
problem. An example of generated code using for the same query and concept template from
Figure. 3 and 4 are illustrated in Figure 5.

Figure 5: Generated code using concept template with step-by-step explanation

The input of the Execution Agent (EA) is the code generated by preceding agent. This agent then
calculates the numerical outputs. The generated output code is then executed within a sandbox
environment to verify its correctness. An example of code execution is illustrated in Figure 6.

Figure 6: An example of execution agent in sand-box environment

If the output is incorrect (e.g., a runtime error in code or an invalid calculation), feedback is
provided to the concept agent, which iteratively refines the concept template. An example of
feedback with correct answer is depicted in Figure 7.

Figure 7: An example of feedback with correct answer is provided as an input

Based on the feedback, the code is re-generated. An example of corrected code that accurately
calculates oil, water, and gas saturation in percent is depicted as code snippet in Figure 8.

oil_saturation_percent, water_saturation_percent, gas_saturation_percent = calculate_fluid_saturation(bulk_volume_cm3, porosity,
oil_volume_cm3, water_volume_cm3)

feedback = “the correct answers are {'Oil saturation': 47.4, 'Water saturation': 23.2, ''Remaining pore space (Gas saturation)': 29.4}”

Figure 8: Corrected code snippet after feedback

Once the code or numerical solution is validated through feedback mechanism then the generated
code is combined with the query and the concept template and passed to the LLM. The LLM
generates a final response, ensuring that the explanation is clear, accurate, and tailored to the user
query. An example of an explanation for manual calculation of fluid saturations for oil and water
is depicted in Figure 9.

One of the significant problems that students, and out of the box LLMs (such as ChatGPT,
Gemini and CoPilot), face is dealing with engineering problems with mixed unit systems.
Petroleum engineering, being a discipline where professionals have to work with units from
multiple systems (Field, SI, Lab, etc.) in a single problem, is a prime example of this. In an
attempt to evaluate the efficacy of different LLMs and quantify this issue, we performed an
experiment where a petroleum engineering problem with mixed unit systems was fed into three
different LLMs (ChatGPT, Gemini and CoPilot) and the result was compared with the ground
truth (i.e., calculation by hand) as well as the output from our own model. We further informed
LLMs that they have to pay attention to the units in the problem and observed significant
improvements to their response (Table 2). However, despite several attempts in getting these
engines to provide an error free response, we failed to achieve that with out of the box LLMs.
The only instance in which we were able to get the correct answer, was after providing the
correct answer to the engine, where it returned it back.

Fig. 9: An example of step-by-step explanation of manual calculation of the fluid saturations for
oil and water in a core sample.

To better illustrate and quantify this shortcoming in out of the box LLMs, Table 2 presents an
instance of the iterative prompt refinement process applied to Gemini for solving the numerical
flow rate calculation problem using Darcy’s equation with mixed unit systems. Initially, Gemini
provided an incorrect response of 4.9 barrels per day (bbl/day), resulting in a significant error of
five orders of magnitude, indicating a fundamental misunderstanding of the unit system. Once
we refined the prompt to instruct the LLM to use appropriate field units, Gemini improved its
response in the second trial to 0.004900 bbl/day, reducing the error to ~11%. Further prompt
refinements guided the LLM to apply Darcy’s equation with the correct unit conversion factor,
leading to an additional improvement in the third trial, where the error was reduced to ~10%. In
the final iteration, after successive prompt adjustments and explicitly telling the model what the
ground truth value was, Gemini reported back the correct response of 0.00552 in the required
units of barrels per day.

Our TA chatbot, however, was trained to overcome this shortcoming and to pay close attention to
the units, by converting everything to a consistent unit system before performing any
calculations and converting the results back to the desired unit system once calculations are
completed, thus providing the correct answer, which was equal to the ground truth, in the first
trial for the same prompt that was provided to other models.

To manually calculate the fluid saturations for oil and water in a core sample based on the provided step-by-step algorithm, you can follow
these steps:

1. Calculate the bulk volume of the core sample: Bulk Volume = 38.4 cm^3

2. Calculate the porosity of the core sample: Porosity = 0.281

3. Calculate the effective pore volume: Effective Pore Volume = Bulk Volume * Porosity = 38.4 * 0.281 = 10.79 cm^3

4. Determine the volume of water recovered: Volume of Water = 2.5 cm^3

5. Determine the volume of oil recovered: Volume of Oil = 5.12 cm^3

6. Calculate the water saturation: Water Saturation = Volume of Water / Effective Pore Volume = 2.5 / 10.79 = 0.2317 or 23.17%

7. Calculate the oil saturation: Oil Saturation = Volume of Oil / Effective Pore Volume = 5.12 / 10.79 = 0.4745 or 47.45%

8. Calculate the gas saturation (if applicable): Gas Saturation = 1 - (Water Saturation + Oil Saturation) = 1 - (0.2317 + 0.4745) = 0.2938 or
29.38%

By following these steps, you can manually calculate the fluid saturations for oil and water in a core sample based on the provided
algorithm.

Table 2: An example of errors encountered by an out of the box LLM responses for flow rate
calculation using Darcy's equation in a mixed units system setting

Question Trail Ground Truth Response Error % Feedback
(Remedy)

If you have 3 ft long core with 1
md permeability and you apply
14.7 psi pressure difference
to the two ends, and the flowing
fluid is water (μ = 1 cP) and the
core has a cross sectional
area 1 ft2, what would be the flow
rate (bbl/day)?

1 0.00552 4.9

88668.12

-

2 0.00552 0.004900 11.23 Asked to use field
units

3 0.00552 0.004965

10.05 Asked to use Darcy
equation for field
units which has the
conversion factor of
1.127 * 10(-3)

4 0.00552 0.00552 0.00 Gave it the correct
answer of 0.00552!

Table 3 represents the response generation for programming related question, Figure 10 provides
the actual code output to compute for nth number of Fibonacci sequence. Figure 11. illustrates
pseudocode generation for the problem.

 Table 3: Response generation to programming related questions
Query Query Classification Response
Write code for nth number of
Fibonacci sequence
code

Code Sure! Here is a step-by-step algorithm to find the nth number of the Fibonacci
sequence:

1. Define a function that takes an input `n` which represents the position of
the Fibonacci number in the sequence.
2. Initialize two variables, `a` and `b`, to 0 and 1 respectively. These will
represent the first two numbers in the sequence.
3. If `n` is 0, return 0. If `n` is 1, return 1. These are the base cases for the
Fibonacci sequence.
4. Loop `n-1` times (since we have already considered the first two numbers
in the sequence).
 a. Compute the next Fibonacci number by adding `a` and `b`.
 b. Update `a` and `b` to be the last two Fibonacci numbers calculated.
5. After the loop finishes, return the value of `b`, which is the nth Fibonacci
number.

We will also briefly outline the implementation details, where we utilized two datasets for this
research: the course curricula of “Petroleum Reservoir Rock Properties and Fluid Flow” and
“Introduction to Computer Science and Engineering,” with the latter focused on python
programming. All development was implemented using the LangChain framework, enabling
seamless integration of data preprocessing, embedding, retrieval, and response generation.Course
materials, provided as PDF files, were preprocessed using LangChain’s DirectoryLoader and
PyPDFLoader. Documents were split into manageable chunks using the Recursive Character
Text Splitter with a chunk size of 1000 characters and an overlap of 200 characters to preserve
contextual integrity. These chunks were embedded using OpenAI’s text-embedding-ada-002
model, and the resulting vectors were stored in Chroma DB, a high-performance vector database.

Figure 10: Response generation to compute nth Fibonacci number

Figure 11: Sample pseudo-output for a given Fibonacci problem

For retrieval, we employed LangChain’s vector store abstraction with similarity search
configured to retrieve contextually relevant documents. OpenAI’s GPT-4 API, integrated via
LangChain, was used to generate accurate, context-aware responses. This pipeline ensured
efficient and robust support for user queries, providing precise and detailed explanations tailored
to the educational datasets.

Conclusion and Future Work

Our chatbot demonstrates the potential to transform educational support by leveraging LLMs and
modular AI-driven architectures. This approach is unique in its integration of domain-specific
problem-solving capabilities, such as engineering calculations and conceptual clarifications, into

a single system. Unlike conventional teaching assistants, our chatbot extends its utility to both
theoretical and numerical problem-solving, offering personalized, context-aware guidance for
students in high-DFW courses.

Through its deployment in “Reservoir Rock Properties and Fluid Flow” and “Introduction to
Computer Science & Engineering” courses, the chatbot has addressed challenges such as coding
fundamentals, logic comprehension, and applied engineering principles. These implementations
have yielded promising results in enhancing student engagement and performance.

Our future works will go in two complementary directions. We will test and work to refine the
bot based upon the impact that it has on students, and how it can best improve student success in
engineering and computer science courses.

In the future, we aim to expand our chatbot’s capabilities to additional high DFW courses, such
as engineering mechanics/statics (with problems such as bridge / truss analysis), as well as other
computer science courses, (including data structures and algorithm optimization techniques, as
well as cybersecurity and digital forensics). Further iterations of the chatbot will focus on
improving its ability to facilitate collaborative learning, assist with project-based assessments,
and provide actionable feedback to students and instructors.

References

[1] Maderer, J. “Artificial Intelligence Course Creates AI Teaching
Assistant,”https://news.gatech.edu/news/2016/05/09/artificial-intelligence-course-creates-ai-
teaching-assistant, May 2016, accessed January 2025.

[2] Chopra, S., Gianforte, R., and Sholar, J. “Meet Percy: The CS 221 Teaching Assistant
Chatbot,” ACM Transactions on Graphics, Vol. 1 (1), December 2016.

[3] Lluna, A. P. “Creation and Development of an AI Teaching Assistant,” Master’s Thesis,
Universitat Politecnica de Catalunya, 2017/2018.

[4] Hubert. “6 Ways Artificial Intelligence and Chatbots Are Changing Education,” Chatbots
Magazine, May 2017.

[5] Gonda, D. E. and Chu, B. “Chatbot as a learning resource? Creating conversational bots as a
supplement for teaching assistant training course,” 2019 IEEE International Conference in
Engineering, Technology and Education.

[6] Hamam, D. “The New Teacher Assistant: A Review of Chatbots Use in Higher Education,”
in: Stephanidis, C., Antona, M., Ntoa, S. (eds) HCI International 2021 - Posters. HCII 2021.
Communications in Computer and Information Science, vol 1421. Springer, Cham.
https://doi.org/10.1007/978-3-030-78645-8_8.

[7] Sandu, N.,Gide, E.:Adoption ofAI-chatbots to enhance student learning experience in higher
education in India. In: 2019 18th International Conference on Information Technology Based
Higher Education and Training (ITHET), pp. 1–5. IEEE, September 2019.

[8] Haristiani, N.U.R.I.A., Danuwijaya, A.A.: Gengobot: A chatbot-based grammar application
on mobile instant messaging as language learning medium. J. Eng. Sci. Technol. 14(6), 3158–
3173 (2019).

[9] Deng, X., & Yu, Z. (2023). A meta-analysis and systematic review of the effect of chatbot
technology use in sustainable education. Sustainability, 15(4), 2940.

[10] S. -P. Ma, Y. -C. Liang, S. -K. Wang, Y. -W. Huang and W. -L. You, "TABot: A Teaching
Assistant Chatbot for Software Engineering Courses," 2023 30th Asia-Pacific Software
Engineering Conference (APSEC), Seoul, Korea, Republic of, 2023, pp. 627-631, doi:
10.1109/APSEC60848.2023.00084

[11] N. L. Schroeder and O. O. Adesope, "A case for the use of pedagogical agents in online
learning environments," Journal of Teaching and Learning with Technology, no. 2, pp. 43-47,
2013.

[12] Bashaer Alsafari, Eric Atwell, Aisha Walker, Martin Callaghan, Towards effective teaching
assistants: From intent-based chatbots to LLM-powered teaching assistants, Natural Language
Processing Journal, Volume 8, 2024,

https://news.gatech.edu/news/2016/05/09/artificial-intelligence-course-creates-ai-teaching-assistant
https://news.gatech.edu/news/2016/05/09/artificial-intelligence-course-creates-ai-teaching-assistant
https://doi.org/10.1007/978-3-030-78645-8_8

[13] Keith, J. M., & Amirlatifi, A., & Rahimi, S., & Neupane, S., & Mittal, S. (2024, June), Bark
Plug: The ChatGPT of the Bagley College of Engineering at Mississippi State University Paper
presented at 2024 ASEE Annual Conference & Exposition, Portland, Oregon. 10.18260/1-2—
46635.

[14] Neupane, S., & Hossain, E., & Keith, J. & Tripathi, H., & Ghiasi, F. & Goliarz, N. A., &
Amirlatifi, A., & Mittal, S., & Rahimi, S. From Questions to Insightful Answers: Building an
Informed Chatbot for University Resources Paper presented at 2024 Frontiers of Education,
Washington D.C.

