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Barkplug 2.0 and Beyond: a Chatbot for Assisting Students in High DFW 
Courses 

Abstract 

Higher education continues to respond to the challenges and opportunities presented by artificial 
intelligence (AI) and large language models (LLM) such as ChatGPT. In our prior work we 
introduced a chatbot that used AI and LLM to recruit prospective students, assist current students 
with academic advising (course selection, changing majors) and student affairs (directing 
students to university resources regarding the campus community, housing and dining, student 
organizations, mental health and more). Towards the promotion of student success initiatives we 
report in this work our formulation of course specific teaching assistants for engineering and 
computer science. Through inquiry-aided interaction, our chatbot helps students assemble 
prompts that aid them in the most challenging topics within core courses, and allow them to 
understand methodologies for solving homework problems and prepare for midterm exams. This 
paper will specifically discuss algorithm development and outline some case studies relevant to 
improving persistence, retention and graduation. Furthermore, while LLMs are generally 
considered a good tool for inferences and explanations, they struggle in formulating solutions to 
prompts that require calculations and involved engineering applications. This work highlights 
steps that would allow LLMs to work as reliable teaching assistants, serving both science and 
engineering oriented students. 

Introduction and Literature Review 

Artificial Intelligence (AI) continues to be one of the most talked-about topics in higher 
education and is of particular emphasis in colleges of engineering and computing across the 
world. In addition to being highly relevant in research themes during the era of autonomy and 
big data, there are large benefits to education as well. Advantages to chatbots are numerous, but 
include being available 24/7 to students, being (potentially) anonymous to answer questions that 
may be considered bad or humiliating to the student who is asking, to being able to provide 
quizzes and other materials to test knowledge retention, and having a capacity to handle what 
may be considered to be too many questions for the professor or teaching assistant to be able to 
respond to in a timely manner.  

One of the initial uses of AI for supporting teaching expanded the use of the Piazza Q&A 
platform by Georgia Tech [1] (named Jill Watson) and then Stanford University [2]. In this latter 
work an AI tool was trained to address student inquiries in a core computer science course using 
1500 questions and answers archived from Piazza. The questions were categorized as being 
related to a course policy, related to homework or some other assignment, or about a conceptual 
question. The results showed that the bot did very well at answering policy questions, fared 
relatively well on assignment questions, but struggled with addressing conceptual queries, even 
though a digitized version of the textbook was used to help train the bot on fundamentals.  

In his master’s degree thesis, Saura [3] worked on developing an AI chatbot built within the R 
programming language. This work cited immediate access as the main driving force for creating 
this bot, and thus focused on being able to understand the question being asked (this was quite 



anticipatory towards the now maturing field of prompt engineering) and develop a front-end 
user-friendly application as well as develop mechanisms to find / formulate a correct answer. 
This work recognized the impact that interactive AI assistants like Siri, Alexa and others had and 
also pointed towards Georgia Tech and Deakin University [4] as inspiring examples. The 
algorithm utilized neural networks to find pathways to the closest related answers in its 
database.  

Gonda and Chu [5] outlined the ability of a conversational chatbot to help train teaching 
assistants during orientation sessions at The Hong Kong University of Science and Technology. 
Their goal was to provide personalized experiences for the students and allow for scalable 
support, improve efficiency and consistency across multiple sections of the same course. This 
was well received by the faculty, who felt more confident and comfortable in ensuring strong 
delivery despite teaching the same materials and answering similar questions, even when training 
graduate assistants in eighteen departments. 

Hamam [6] provided a literature review of chatbot’s use in higher education, with an emphasis 
on improving teaching and learning. Advantages cited include the bots ability to engage in a 
conversation with students, and respond to frequently asked questions with consistency in an 
inexpensive and efficient manner. Sandu and Gide found from student surveys that the students 
preferred interacting with the chatbot as opposed to other communication methods [7]. Haristiani 
and Danuwijaya [8] evaluated the use of chatbots to facilitate the learning of foreign languages. 
Similarly, Deng and Yu [9] found a significant impact on overall student learning outcomes and 
knowledge retention. Thus, it appears that chatbots should be further developed, tested and 
evaluated to support student learning.  

Specific to computer science and related learning applications, Ma et al. [10] developed a bot for 
software engineering which allowed for coverage of additional course material while providing 
additional teaching assistants (both artificial and in person) support. The human TAs were able to 
better support group projects since the bots were able to effectively manage lower-level 
questions in a consistent, rapid manner. However, Schroeder [11] points to issues with limitations 
of the bots in answering only common questions. Alsafari [12] gives an outline of the advent of 
LLMs as powerful tools for higher education including student services and as teaching 
assistants. They argue that these tools are best poised at this time to handle complex student 
queries, which is the focus of our current efforts. 

Methodology for Design and Development of the Chatbot 

At Mississippi State University, efforts have been made in support of the institutional strategic 
plan to improve student success. In a prior set of papers [13] and [14], the authors developed a 
chatbot for the Bagley College of Engineering to recruit prospective students into the college. 
Furthermore, the chatbot algorithm was written in a way to ask a series of questions to undecided 
students and (behind the scenes) build a prompt to run through our database and give advice to 
the prospective student regarding one (or more) majors that they should consider. A final aspect 
of the chatbot is to direct students to resources in the Division of Student Affairs. We initially 
chose these facets for our algorithm because when students are enrolled in a major that feels right 



for them, and that when feeling welcome via a support network, students are retained (and 
graduate) at higher rates.  

The next step in our work is to now focus on improving student success inside of classes that 
have particularly high DFW rates. Unique to our authorship to this paper, we focused our efforts 
on “PTE 3953 Petroleum Reservoir Rock Properties and Fluid Flow” and “CSE 1011 
Introduction to Computer Science & Engineering." Students tend to struggle with some of the 
foundational concepts associated with these courses and thus leave these majors into another 
department in the college or across the university. Areas that students struggle with include basic 
understanding of applying engineering fundamentals to the nature of oil and gas reservoirs, 
exploration and drilling, such as applying Darcy’s law to understand fluid flow (e.g., oil, water or 
gas) through porous media underground. Furthermore, basic coding skills and understanding 
computer logic, loops, and conditional statements are a common issue. The rest of this paper will 
outline processes used and algorithmic development to help students navigate these 
challenges. In this paper, we will focus on a fundamental question in petroleum engineering and 
computer science courses to provide an illustrative example. fs 

To address these challenges, we developed a Teaching Assistant (TA) chatbot (BarkPlug 2.0) that 
provides real-time support tailored to the needs of these students. The chatbot is designed to answer 
both theoretical questions, such as applying engineering principles, and numerical or code-based 
queries, such as solving problems involving coding logic or debugging scripts. The architecture as 
depicted in Figure.1 is modular, consisting of distinct yet interlinked components that classify and 
process queries effectively. These include a Query Router, a Retriever, a Concept Agent, a Code 
Generator, an Execution Agent, and a Feedback Mechanism, all orchestrated to interact seamlessly 
with LLMs for final response generation. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: TA Chatbot Architecture (BarkPlug 2.0) 



The first module is the Query Router, which acts as the entry point for the system. The objective 
of this module is to classify the user's query into one of two categories: theoretical or 
numerical/code based. It employs a lightweight classifier, such as a smaller fine-tuned LLM, to 
predict the query type based on its structure and keywords. The LLM is instructed to classify the 
query in a zero-shot setting. An example of a zero-shot prompt for query classification is illustrated 
in Figure 2. 

 

Figure 2: Zero-shot prompt for query classification 

When the query is classified as theoretical, the system employs a Retrieval-Augmented Generation 
(RAG) workflow to generate the response. First, it retrieves relevant information from a 
knowledge base (external knowledge sources), such as course curricula, textbooks, or scientific 
literature, focusing on key concepts related to the query. Next, a generative language model 
synthesizes the retrieved data into a coherent and detailed explanation, ensuring the response is 
accurate, contextually relevant, and tailored to the query. For example, as depicted in Table 1, for 
a user question like “Concept Behind Initial Fluid Saturation in Reservoir”, the RAG system 
begins by retrieving the top-k most relevant documents from a knowledge base, such as a Reservoir 
Rock Properties course or related textbooks. These documents, along with the user query, are then 
passed to an LLM for response generation. The LLM integrates the retrieved information to 
produce a comprehensive and scientifically accurate answer. 

Table 1: Response generation to theoretical question using RAG workflow 
Query  Query Classification Response 
Concept Behind Initial Fluid 
Saturation in Reservoir 

Theoretical The concept behind Initial Fluid Saturations in a reservoir involves the idea 
that pores are initially saturated with water (Sw=1), and hydrocarbons migrate 
into traps due to having a density less than water density. The distribution of 
hydrocarbons in the reservoir is such that gravity and capillary forces are in 
equilibrium. The minimum interstitial water saturation remains in the 
hydrocarbon zone even after accumulation occurs. Wettability plays a role, 
with water-wet conditions in drainage accumulation processes and oil-wet 
conditions in imbibition accumulation processes. Residual non-wetting 
phase saturation is also a factor in this concept. 

 

  prompt = f""" 

    Instruction: You are an AI assistant trained to classify user queries into two categories: Theoretical or Numerical-Procedural. Follow these 
guidelines: 

    1. Theoretical: The query involves abstract concepts, principles, or qualitative reasoning. It seeks explanations, definitions, or discussions 
without requiring calculations, numerical results, or step-by-step procedures. 

    2. Numerical-Procedural: The query involves numbers, calculations, data analysis, code, or step-by-step instructions. It seeks specific 
numerical answers, solutions to equations, code implementations, or procedural guidance. 

    Task: Read the user query below and classify it as either Theoretical or Numerical-Procedural. Provide only the classification as your 
output. 

    User Query: {query} 

    Output: 

    """ 

 



To determine the fluid saturations, we first need to calculate the bulk volume occupied by oil and water and then calculate the fluid 
saturations. Here is the step-by-step algorithm to solve the problem: 

1. Calculate the total bulk volume of fluids recovered:  
Total recovered volume = Volume of oil + Volume of water Total recovered volume = 5.12 cm3 + 2.5 cm3  
Total recovered volume = 7.62 cm3  

2. Calculate the effective pore volume:  
Effective pore volume = Bulk volume of the core sample x porosity Effective pore volume = 38.4 cm3 x 0.281 Effective pore volume = 
10.78 cm3  

3. Calculate the fluid saturations:  
Oil saturation = (Volume of oil / Effective pore volume) x 100% Oil saturation = (5.12 cm3 / 10.78 cm3) x 100% Oil saturation = 0.475 x 
100%  
Oil saturation = 47.5%  
Water saturation = (Volume of water / Effective pore volume) x 100%  
Water saturation = (2.5 cm3 / 10.78 cm3) x 100%  
Water saturation = 0.232 x 100%  
Water saturation = 23.2%  

4. Verify the calculations:  
Oil saturation + Water saturation = 47.5% + 23.2% = 70.7%  
 
As oil and water are the only two fluids present, the total fluid saturation should add up to 100%.  

Therefore, the fluid saturations are: -  

Oil saturation: 47.5%  

Water saturation: 23.2%  

Remaining pore space occupied by gas (Gas saturation): 29.3% (100% - 47.5% - 23.2%) 

 

For numerical or code-based problems, the system takes a more structured approach to ensure 
correctness and precision. Once the query is classified as a numerical or a code-related problem, 
it is routed to the Concept Agent (CA). The CA performs reasoning and generates a step-by-step 
procedure to solve the problem. For numerical queries, it may also include the final answer. The 
step-by-step reasoning can involve mathematical models, such as Darcy's law or fluid flow 
equations. For programming tasks, it may include algorithms for basic Python constructs, such as 
loops, conditionals, and common algorithms. The output of this module is a concept template. An 
example of concept template for a user query is illustrated in Figures 3 and 4.  

 

 

 

Figure 3: Numerical question posed by user 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Concept template for numerical question illustrated in Figure 3 

The input to the code generator is the concept template. It takes the concept template and generates 
a python code with basic python construct that can be executed without including complex 
dependencies. For example, in numerical problems, it applies relevant formulas provided in a 
concept template step by step.  In coding tasks, it uses the series of logical constructs to create 

user_query = " During a fluid saturations determination study, oil and water volumes were extracted from a core sample with bulk volume 
of 38.4 cm3, and porosity of 0.281. After applying necessary corrections, 5.12 cm3 of oil and 2.5 cm3 of water were recovered. Determine 
the fluid saturations." 

 



python code. The output in either case is a Python code, which can solve the numerical or a coding 
problem. An example of generated code using for the same query and concept template from 
Figure. 3 and 4 are illustrated in Figure 5.  

 

Figure 5: Generated code using concept template with step-by-step explanation 

The input of the Execution Agent (EA) is the code generated by preceding agent. This agent then 
calculates the numerical outputs. The generated output code is then executed within a sandbox 
environment to verify its correctness. An example of code execution is illustrated in Figure 6. 

 

 

 

Figure 6: An example of execution agent in sand-box environment 

If the output is incorrect (e.g., a runtime error in code or an invalid calculation), feedback is 
provided to the concept agent, which iteratively refines the concept template. An example of 
feedback with correct answer is depicted in Figure 7. 

 

 

Figure 7: An example of feedback with correct answer is provided as an input 

Based on the feedback, the code is re-generated. An example of corrected code that accurately 
calculates oil, water, and gas saturation in percent is depicted as code snippet in Figure 8.  

oil_saturation_percent, water_saturation_percent, gas_saturation_percent = calculate_fluid_saturation(bulk_volume_cm3, porosity, 
oil_volume_cm3, water_volume_cm3) 

 

feedback = “the correct answers are {'Oil saturation': 47.4, 'Water saturation': 23.2, ''Remaining pore space (Gas saturation)': 29.4}” 



 

Figure 8: Corrected code snippet after feedback 

Once the code or numerical solution is validated through feedback mechanism then the generated 
code is combined with the query and the concept template and passed to the LLM. The LLM 
generates a final response, ensuring that the explanation is clear, accurate, and tailored to the user 
query. An example of an explanation for manual calculation of fluid saturations for oil and water 
is depicted in Figure 9.  

One of the significant problems that students, and out of the box LLMs (such as ChatGPT, 
Gemini and CoPilot), face is dealing with engineering problems with mixed unit systems. 
Petroleum engineering, being a discipline where professionals have to work with units from 
multiple systems (Field, SI, Lab, etc.) in a single problem, is a prime example of this. In an 
attempt to evaluate the efficacy of different LLMs and quantify this issue, we performed an 
experiment where a petroleum engineering problem with mixed unit systems was fed into three 
different LLMs (ChatGPT, Gemini and CoPilot) and the result was compared with the ground 
truth (i.e., calculation by hand) as well as the output from our own model. We further informed 
LLMs that they have to pay attention to the units in the problem and observed significant 
improvements to their response (Table 2). However, despite several attempts in getting these 
engines to provide an error free response, we failed to achieve that with out of the box LLMs. 
The only instance in which we were able to get the correct answer, was after providing the 
correct answer to the engine, where it returned it back.  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9: An example of step-by-step explanation of manual calculation of the fluid saturations for 
oil and water in a core sample. 

To better illustrate and quantify this shortcoming in out of the box LLMs, Table 2 presents an 
instance of the iterative prompt refinement process applied to Gemini for solving the numerical 
flow rate calculation problem using Darcy’s equation with mixed unit systems. Initially, Gemini 
provided an incorrect response of 4.9 barrels per day (bbl/day), resulting in a significant error of 
five orders of magnitude, indicating a fundamental misunderstanding of the unit system. Once 
we refined the prompt to instruct the LLM to use appropriate field units, Gemini improved its 
response in the second trial to 0.004900 bbl/day, reducing the error to ~11%. Further prompt 
refinements guided the LLM to apply Darcy’s equation with the correct unit conversion factor, 
leading to an additional improvement in the third trial, where the error was reduced to ~10%. In 
the final iteration, after successive prompt adjustments and explicitly telling the model what the 
ground truth value was, Gemini reported back the correct response of 0.00552 in the required 
units of barrels per day. 

Our TA chatbot, however, was trained to overcome this shortcoming and to pay close attention to 
the units, by converting everything to a consistent unit system before performing any 
calculations and converting the results back to the desired unit system once calculations are 
completed, thus providing the correct answer, which was equal to the ground truth, in the first 
trial for the same prompt that was provided to other models. 

 

 

To manually calculate the fluid saturations for oil and water in a core sample based on the provided step-by-step algorithm, you can follow 
these steps: 

 

1. Calculate the bulk volume of the core sample: Bulk Volume = 38.4 cm^3 

2. Calculate the porosity of the core sample: Porosity = 0.281 

3. Calculate the effective pore volume: Effective Pore Volume = Bulk Volume * Porosity = 38.4 * 0.281 = 10.79 cm^3 

4. Determine the volume of water recovered: Volume of Water = 2.5 cm^3 

5. Determine the volume of oil recovered: Volume of Oil = 5.12 cm^3 

6. Calculate the water saturation: Water Saturation = Volume of Water / Effective Pore Volume = 2.5 / 10.79 = 0.2317 or 23.17% 

7. Calculate the oil saturation: Oil Saturation = Volume of Oil / Effective Pore Volume = 5.12 / 10.79 = 0.4745 or 47.45% 

8. Calculate the gas saturation (if applicable): Gas Saturation = 1 - (Water Saturation + Oil Saturation) = 1 - (0.2317 + 0.4745) = 0.2938 or 
29.38% 

 

By following these steps, you can manually calculate the fluid saturations for oil and water in a core sample based on the provided 
algorithm. 



Table 2: An example of errors encountered by an out of the box LLM responses for flow rate 
calculation using Darcy's equation in a mixed units system setting 

Question Trail Ground Truth Response Error % Feedback 
(Remedy) 

If you have 3 ft long core with 1 
md permeability and you apply 
14.7 psi pressure difference 
to the two ends, and the flowing 
fluid is water (μ = 1 cP) and the 
core has a cross sectional 
area 1 ft2, what would be the flow 
rate (bbl/day)? 

1 0.00552 4.9 
 

88668.12 
 

- 

2 0.00552 0.004900 11.23 Asked to use field 
units 

3 0.00552 0.004965 
 

10.05 Asked to use Darcy 
equation for field 
units which has the 
conversion factor of 
1.127 * 10(-3) 

4 0.00552 0.00552 0.00 Gave it the correct 
answer of 0.00552! 

 

Table 3 represents the response generation for programming related question, Figure 10 provides 
the actual code output to compute for nth number of Fibonacci sequence. Figure 11. illustrates 
pseudocode generation for the problem. 

 Table 3: Response generation to programming related questions 
Query  Query Classification Response 
Write code for nth number of 
Fibonacci sequence 
code 
 

Code Sure! Here is a step-by-step algorithm to find the nth number of the Fibonacci 
sequence: 
 
1. Define a function that takes an input `n` which represents the position of 
the Fibonacci number in the sequence. 
2. Initialize two variables, `a` and `b`, to 0 and 1 respectively. These will 
represent the first two numbers in the sequence. 
3. If `n` is 0, return 0. If `n` is 1, return 1. These are the base cases for the 
Fibonacci sequence. 
4. Loop `n-1` times (since we have already considered the first two numbers 
in the sequence). 
   a. Compute the next Fibonacci number by adding `a` and `b`. 
   b. Update `a` and `b` to be the last two Fibonacci numbers calculated. 
5. After the loop finishes, return the value of `b`, which is the nth Fibonacci 
number. 
 

 

We will also briefly outline the implementation details, where we utilized two datasets for this 
research: the course curricula of “Petroleum Reservoir Rock Properties and Fluid Flow” and 
“Introduction to Computer Science and Engineering,” with the latter focused on python 
programming. All development was implemented using the LangChain framework, enabling 
seamless integration of data preprocessing, embedding, retrieval, and response generation.Course 
materials, provided as PDF files, were preprocessed using LangChain’s DirectoryLoader and 
PyPDFLoader. Documents were split into manageable chunks using the Recursive Character 
Text Splitter with a chunk size of 1000 characters and an overlap of 200 characters to preserve 
contextual integrity. These chunks were embedded using OpenAI’s text-embedding-ada-002 
model, and the resulting vectors were stored in Chroma DB, a high-performance vector database. 

 



 

Figure 10: Response generation to compute nth Fibonacci number 

 

 

Figure 11: Sample pseudo-output for a given Fibonacci problem 

For retrieval, we employed LangChain’s vector store abstraction with similarity search 
configured to retrieve contextually relevant documents. OpenAI’s GPT-4 API, integrated via 
LangChain, was used to generate accurate, context-aware responses. This pipeline ensured 
efficient and robust support for user queries, providing precise and detailed explanations tailored 
to the educational datasets. 

Conclusion and Future Work 

Our chatbot demonstrates the potential to transform educational support by leveraging LLMs and 
modular AI-driven architectures. This approach is unique in its integration of domain-specific 
problem-solving capabilities, such as engineering calculations and conceptual clarifications, into 



a single system. Unlike conventional teaching assistants, our chatbot extends its utility to both 
theoretical and numerical problem-solving, offering personalized, context-aware guidance for 
students in high-DFW courses. 

Through its deployment in “Reservoir Rock Properties and Fluid Flow” and “Introduction to 
Computer Science & Engineering” courses, the chatbot has addressed challenges such as coding 
fundamentals, logic comprehension, and applied engineering principles. These implementations 
have yielded promising results in enhancing student engagement and performance.  

Our future works will go in two complementary directions. We will test and work to refine the 
bot based upon the impact that it has on students, and how it can best improve student success in 
engineering and computer science courses.   

In the future, we aim to expand our chatbot’s capabilities to additional high DFW courses, such 
as engineering mechanics/statics (with problems such as bridge / truss analysis), as well as other 
computer science courses, (including data structures and algorithm optimization techniques, as 
well as cybersecurity and digital forensics). Further iterations of the chatbot will focus on 
improving its ability to facilitate collaborative learning, assist with project-based assessments, 
and provide actionable feedback to students and instructors. 
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