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Introduction 
 
With the rapid development of machine learning and artificial intelligence, the amount of data 
that needs to be processed is ever increasing, and the models are becoming more and more 
complex. Traditional single-core CPUs and single-machine memory systems are inadequate for 
these escalating demands, resulting in prolonged data processing and model training times. The 
exponential growth of data and computing requirements in machine learning and artificial 
intelligence highlights the importance of high-performance parallel computing (HPC). Many 
modern AI systems require efficient algorithms that can take advantage of multi-core processors, 
multiple GPUs, and distributed systems [1-3]. 
 
The convergence of data science with high-performance computing (HPC) and parallelism 
development is increasingly recognized as essential in both industry and academia. Therefore, 
both industry and academia are increasingly seeking professionals who are proficient in HPC 
principles and parallel development to address the challenges posed by massive data processing, 
machine learning, and AI [3-5]. 
 
However, existing curriculum in academia often fails to provide a comprehensive understanding 
of HPC within context of machine learning and AI. Against this background, the author 
developed a course, "CSYE7105-High Performance Parallel Machine Learning and Artificial 
Intelligence", targeted for graduate students in 2020. This course fills this gap by offering 
graduate students a comprehensive learning experience that combines the fundamentals of 
parallel computing with practical applications in machine learning and AI.  
 
CSYE7105 guides students through the principles of high-performance computing and engages 
students in the practice of the emerging parallel-based machine learning paradigm, learning high-
performance parallel architectures and parallel programming models, and researching the 
parallelism of machine learning and deep learning. Students achieve high speed and high 
performance on heterogeneous cluster architectures, and apply them in multiple fields such as 
image classification, speech recognition, and natural language processing, etc. The course 
curriculum balances theoretical concepts with hands-on labs and research projects, fostering both 
analytical and research skills. 
 
Course Design and Structure 
 
Course Objectives: 
The primary objective of this course is to equip students with a comprehensive understanding of 
high-performance computing (HPC) principles and the emerging paradigm of parallel-based 
machine learning and AI. By the end of the course, students will: 



1. Understand the foundational principles of high-performance computing architectures and 
parallel programming models. 

2. Gain proficiency in implementing parallelized machine learning and deep learning 
techniques to achieve high speed and performance on heterogeneous cluster architectures. 

3. Apply HPC and parallel machine learning techniques to practical fields such as time-
series forecasting, image classification, speech recognition, natural language processing 
(NLP) and large language models (LLM), etc. 

4. Develop the skills needed to scale the application of HPC and parallel machine learning 
to larger HPC supercomputing platforms. 

 
Course Structure: 
The course is divided into four key parts to ensure comprehensive coverage of theoretical 
principles and practical applications. Each part builds on the previous one to provide a 
progressive learning experience. 
 
Part 1: High-Performance Computing (HPC) Architectures and Parallel Programming 
Models 
 
High-performance computing (HPC) architectures are designed to solve complex computational 
problems by leveraging the parallel processing capabilities of multiple computing resources. 
These architectures typically consist of clusters of interconnected nodes, each with its own 
processor(s), memory, and storage, working collaboratively to execute tasks simultaneously. 
HPC systems rely on efficient interconnect networks for high-speed communication between 
nodes and often utilize specialized hardware, such as GPUs or accelerators, to enhance 
performance for specific workloads. Software frameworks like MPI (Message Passing Interface) 
and OpenMP enable the parallelization of tasks across these resources [6-8]. HPC is used in 
areas such as scientific simulations, big data analytics, and machine learning, where large-scale 
computations and data processing are essential. 
 
This course introduces students to HPC architectures and parallel programming using OpenMP 
and MPI. It covers the fundamentals of parallel computing, including types of parallelism (data, 
task, and pipeline) and explores high-performance architectures like multi-core processors, 
GPUs, and heterogeneous systems. Students will learn shared memory parallelism with 
OpenMP, distributed memory parallelism with MPI, and analyze performance metrics such as 
speedup and scalability through practical examples. 
 
Hands-on practice includes writing and optimizing OpenMP programs for shared memory 
systems and implementing MPI programs for distributed memory systems. By completing these 
exercises and analyzing performance, students will gain foundational skills in parallel 
programming, preparing them to apply these principles to advanced applications like machine 
learning. 
 
Part 2: HPC Supercomputing Clusters and Their Operations 
 
Northeastern University has its own HPC supercomputing cluster. It is a powerful computational 
resource designed to handle complex and large-scale computing tasks. Built with commonly 



used hardware structures found in top500 supercomputers [9], it operates on CentOS Linux, a 
stable and secure operating system widely used in enterprise and research environments. The 
cluster is managed by SLURM (Simple Linux Utility for Resource Management) [10], a robust 
job scheduler used in many top500 supercomputers. SLURM efficiently allocates resources such 
as CPU and GPU nodes, ensuring that tasks are executed in a well-organized and optimized 
manner. 
 
Students enrolled in this course are provided with sponsored accounts that grant them access to 
the cluster’s computational resources. This includes both multi-CPU nodes for parallel data 
loading/processing and multi-GPU nodes for computationally intensive parallel tasks, such as 
machine learning and scientific simulations. By leveraging the HPC cluster, students can perform 
advanced computations, analyze large datasets, and gain hands-on experience with cutting-edge 
technology used in industry and research. 
 
This part introduces students to HPC clusters, focusing on their architecture, operational 
workflows, and practical usage. Students will learn about compute nodes, interconnects, storage, 
and widely used HPC systems. Key topics include job scheduling and resource allocation using 
SLURM, cluster management, and essential skills such as logging into HPC systems, setting up 
environments, transferring data, and executing parallel programs. 
 
Through hands-on practice, students submit and manage jobs, monitor performance, and 
optimize parallel applications on HPC clusters. By the end of the part, students will have 
developed a strong understanding of HPC operations and gained practical experience, equipping 
them for real-world HPC applications. 
 
Part 3: Parallel Data Processing and Machine Learning on Multi-CPU Architectures 
 
Parallel data processing and machine learning on multi-CPU architectures leverage the ability to 
divide tasks across multiple CPUs to improve efficiency and performance. In parallel data 
processing, large datasets are split into smaller chunks, which are processed simultaneously by 
multiple CPUs. This reduces computation time and is particularly useful for data-intensive tasks 
such as filtering, aggregation, and transformation. Frameworks like Multiprocessing, Spark and 
Dask enable efficient parallelism by managing task scheduling, memory, and inter-CPU 
communication. 
 
In machine learning, multi-CPU architectures facilitate faster training of models by parallelizing 
operations such as matrix computations and gradient updates. Libraries like TensorFlow and 
PyTorch can distribute workloads across CPUs, allowing for scalable learning on large datasets. 
Multi-CPU architectures are particularly effective for tasks that involve iterative processes, such 
as training neural networks or performing ensemble methods like Random Forests. However, 
performance depends on minimizing bottlenecks in data transfer and synchronization between 
CPUs, making efficient algorithm design and memory management critical. 
 
This part focuses on parallelizing data processing and machine learning workflows to optimize 
performance on multi-CPU architectures. Students will learn techniques for partitioning data, 
managing dependencies, and implementing parallel versions of machine learning algorithms. 



Topics include leveraging libraries such as multiprocessing, Scikit-learn and Dask, load 
balancing, minimizing communication overhead, and performance tuning. Research contents 
include parallelizing models across multiple CPUs using multiple parallel methods and backends 
for real-world case studies such as reinforcement learning trains agents (e.g., game-playing AI) 
and time series forecasting (e.g. stock price forecasting or public transit scheduling). 
 
Through hands-on practice, students will parallelize data processing tasks using Python libraries 
and train machine learning models with parallel backends. By the end, students will gain 
practical skills in optimizing workflows, enabling efficient and scalable use of multi-CPU 
systems. 
 
Part 4: Parallel Deep Learning on Multi-GPU Architectures 
 
Parallel deep learning on multi-GPU architectures enables the efficient training and inference of 
complex neural networks by distributing computations across multiple graphical processing units 
(GPUs). GPUs excel at handling parallelizable tasks, such as matrix operations and tensor 
computations, making them ideal for deep learning workloads [11-12]. In this setup, data or 
model parameters are split among GPUs to reduce training time and increase scalability. Two 
common parallelism strategies are data parallelism, where the same model processes different 
data batches on each GPU, and model parallelism, where different parts of the model are 
assigned to different GPUs. 
 
This part focuses on implementing and optimizing deep learning models for multi-GPU 
architectures to achieve significant acceleration using PyTorch. Students will explore GPU 
architectures, communication between multiple GPUs and research the performance advantages 
of multiple GPUs over single GPU in deep learning. Research contents include parallelizing 
models across multiple GPUs using data parallelism and model parallelism, along with case 
studies in image classification, speech recognition, and large language models, etc. 
 
Through research, students will implement distributed data parallelism (split data onto multiple 
GPUs) and model parallelism (split neural network layers onto multiple GPUs), as well as study 
mixed precision methods for high-performance deep learning, and other parallel methods to 
achieve the feasibility and acceleration of large data sets and large models. Ultimately, students 
will gain expertise in high-performance parallel deep learning equipping them for advanced 
research and industry applications. 
 
Teaching Methodology 
 
The course employs a mix of teaching methods to help students understand leading knowledge, 
skills and insight. 

1. Lectures and Tutorials: These sessions cover foundational concepts in HPC parallel 
computing and practical ML/AI applications. Visual aids and examples are frequently 
used to enhance comprehension. 

2. Hands-On Labs: Students engage in lab exercises where they write, debug, and optimize 
parallel code on real HPC systems. 



3. Industry Workshops and Lectures: Every semester, students are guided to attend 
relevant online conferences or workshops. Experts from industry share insights into 
current trends and challenges in high-performance computing and AI.  

4. Research Projects: Group projects research and develop parallel methodologies on a 
specific task (such as image classification, speech recognition, natural language 
processing, etc.), and finally implement these parallel methods with programming on the 
HPC cluster. Group projects also foster teamwork and allows students to solve complex 
problems together.  

 
The combination of theory and practice ensures that students develop both conceptual 
understanding and technical expertise. 
 
Assessment and Outcomes 
 
Assessment methods include: 

1. Quizzes and Assignments: Evaluating understanding of parallel concepts, algorithms 
and programming models. 

2. Lab Exercises: Hands-on operations and implementation of commands and parallel code 
on HPC systems. 

3. Research Projects: The primary research project, lasting for half of the semester, 
accounts for 35% of the grade total. Students complete this project in several steps: first, 
they choose an area of interest, such as recommendation systems or speech processing, 
and obtain a data set. Then they write a research proposal which is evaluated and revised 
by the professor. Students then research and develop the parallel mechanisms required for 
the project to apply the machine learning and deep learning models and methods used for 
the project. As a final step, the students analyze the performance metrics obtained. This 
project comprehensively evaluates students' ability to integrate course concepts into real-
world applications. 

 
By the end of the course, students will: 

• Demonstrate proficiency in parallel computing techniques. 
• Apply HPC methods to solve machine learning and AI problems. 
• Develop scalable solutions for real-world applications. 

 
Student Feedback and Impact 
 
Feedback collected over the past five years highlights the course’s impact on students’ academic 
and professional trajectories.  
 
The course was initially set up with a course cap of 30 seats, and typically enrolled 15 to 30. 
From the spring semester 2024, due to the popularity and demand of this course, the course cap 
was increased to 50 seats. As you can see in Figure 1, the course enrollment grew considerably, 
including a waitlist of 15 seats. 
 



 
Figure 1: Student enrollment in the past five years 
 
Northeastern University uses TRACE (Teacher Rating And Course Evaluation) at the end of 
each semester to allow students to conduct an anonymous survey on course content and 
instructors [14]. The rating range is from 0 to 5. The most important indicator of TRACE is the 
Teaching Effectiveness (TRACE Evaluation Question “What is your overall rating of this 
instructor's teaching effectiveness?”). From the TRACE feedback over the past five years, it is 
shown that the students have a very high evaluation of my teaching, which can be confirmed by 
the following TRACE data analysis: 
 

Semesters TRACE 
Teaching Effectiveness 

2020-Spring 4.6 
2020-Summer 5.0 
2020-Fall 3.8 
2021-Spring 4.9 
2021-Fall 5.0 
2022-Spring 4.9 
2022-Fall 4.5 
2023-Fall 4.8 
2024-Spring 4.8 
2024-Fall 4.6 

 
Furthermore, graduates have reported success in applying the skills learned to: 
 

• Research career paths in academia: for graduate students, this can make them stand out 
when applying for PhD programs.  



For example, one past student shared her experience during a PhD application interview:  
I then had the opportunity to demonstrate my knowledge of parallel machine learning 
during the interview for my PhD program, leading to a profound conversation 
facilitated entirely by the knowledge I had gained from your instruction. As a result, I 
was offered a full funded scholarship for my Ph.D. studies at the University of Tennessee. 
 
And, 
In my current studies for a Ph.D. in Computer Science, specializing in Usable Security, 
my Algorithms class proved to be a significant challenge. To successfully complete the 
final project, I had to integrate algorithmic principles with parallel machine learning, 
which I accomplished with confidence as a result of my training with Dr. Liu. The 
mentorship she provided was evident in the way I articulated complex details about 
parallelism, earning me recognition from my professors and an 'A' grade in a highly 
demanding course. The mentorship she provided extended beyond academic 
instruction. She instilled in her students a sense of curiosity and a rigorous approach to 
research that has proven invaluable. 
 
• Industry positions where parallel computing and AI expertise are in demand.  

 
Several students have also shared their experiences of leveraging HPC parallel methods to 
solve domain-specific problems, such as biomedical data analysis and financial modeling. 
For example, one student sent the thanks note as below: 
I wanted to share that I have recently joined Fidelity Investments full-time as a Senior 
Manager in Data Science. My team will be focusing on developing and deploying 
Audio LLMs to (semi)automate customer support processes. 
I had the privilege of completing the Parallel Machine Learning course under your 
guidance, which was extremely beneficial in helping me productionize and scale 
Whisper (ASR models) during my time as a part-time Data Scientist. This also played 
a key role in securing this full-time opportunity. I am truly grateful for your support 
and mentorship. 

 
 
Conclusion 
 
The past five years of teaching this course coupled with student interactive feedback have proven 
that the latest industry knowledge and technologies learned are used to explore and implement 
parallelism-based projects of machine learning and deep learning in multiple domains on high-
performance clusters, making them stand out in both industrial job hunting and academic 
doctoral program applications. This unique course has attracted a large number of students 
because of its novel technologies, challenges, and high demand. 
 
As a teaching professor in a highly dynamic field, I have been consistently updating and 
polishing the course content and technology every semester. This ensures that students are 
prepared not only for current industry needs but also for the ever-changing data-driven decision-
making environment. Future iterations of the course will incorporate emerging technologies such 



as quantum computing and explore collaborations with industry partners to further enhance 
learning outcomes. 
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