
Paper ID #46401

Surveying civil engineering student attitudes toward the use of computational
tools

Dr. Sotiria Koloutsou-Vakakis, University of Illinois at Urbana - Champaign

Dr. Sotiria Koloutsou-Vakakis holds a Diploma in Surveying Engineering (National Technical University
of Athens, Greece), a M.A. in Geography (University of California, Los Angeles), and M.S. and Ph.D.
degrees in Environmental Engineering (University of Illinois Urbana-Champaign). She is a Senior Lecturer
and Research Scientist in the Department of Civil and Environmental Engineering, at the University of
Illinois Urbana-Champaign. Her main interests are in air quality, environmental policy, and supporting
student learning and professional preparation.

Dr. Megan L. Matthews, University of Illinois Urbana - Champaign

Dr. Megan L. Matthews is an Assistant Professor in the Department of Civil and Environmental Engineering
at the University of Illinois Urbana-Champaign. Her work involves developing multiscale computational
models to explore plant engineering strategies for sustainably improving the security and equity of global
food, water, and environmental systems. Megan earned her bachelor’s, master’s, and doctorate in electrical
engineering from North Carolina State University.

Prof. Jacob Henschen, University of Illinois Urbana-Champaign

Professor Henschen completed his B.S., M.S., and PhD. at the University of Illinois Urbana-Champaign
in 2007, 2009, and 2018 respectively. He was an Assistant Professor at Valparaiso University until he
moved to the University of Illinois Urbana-Champaign as a Teaching Assistant Professor in June 2020.
He serves as the co-chair for the Teaching Methods and Education Materials Committee at ACI and the
co-chair of the Committee on Faculty Development at ASCE.

Prof. John S Popovics P.E., University of Illinois at Urbana - Champaign

John Popovics is a Professor in the Civil and Environmental Engineering Department at the University of
Illinois at Urbana-Champaign. He earned his B.S. and M.S. in Civil Engineering from Drexel University
and his Ph.D. in Engineering Science and Mechanic

Dr. Ashlynn S. Stillwell, University of Illinois Urbana-Champaign

Dr. Ashlynn S. Stillwell is an Associate Professor and the Elaine F. and William J. Hall Excellence Faculty
Scholar in Civil and Environmental Engineering at the University of Illinois Urbana-Champaign. Her
research focuses on creating sustainable water and energy systems in a policy-relevant context. She earned
a B.S. in Chemical Engineering from the University of Missouri (2006), and an M.S. in Environmental and
Water Resources Engineering (2010), M.P.Aff in Public Affairs (2010), and Ph.D. in Civil Engineering
(2013) from The University of Texas at Austin.

Cheryl Ann Cohen

©American Society for Engineering Education, 2025

Surveying civil engineering student attitudes toward the use
of computational tools

Sotiria Koloutsou-Vakakis, Megan L. Matthews, Cheryl Cohen, Jacob Henschen, John S.

Popovics, Ashlynn S. Stillwell

Department of Civil and Environmental Engineering, University of Illinois Urbana-
Champaign, 205 N. Mathews, Urbana, IL 61801, sotiriak@illinois.edu

Abstract
The discussion about integrating computing into curricula of non-computer science engineering
majors remains open. Such integration is desirable, as computing is an essential tool for
engineering practice. In addition, computing can enhance engineering education through
simulation and visualization, facilitating deeper understanding and learning. Integration of
computing using high-level programming languages into courses presents challenges including
achieving alignment with traditional disciplinary learning objectives, the potential need to shift
from a traditional constructivist approach to a more student-driven model, and the necessity for
faculty transition into using new tools and pedagogies which requires career-long training. This
paper originates from a department-wide effort to integrate computing throughout the
curriculum. The success of such an effort depends primarily on coordinated faculty involvement
and student engagement. Focusing on the latter, in this paper, we report on our approach for
integrating coding for data analysis and problem solving, and on surveyed student attitudes
toward the integration of Python or R in undergraduate civil and environmental engineering
courses. We report data from one required first-year course (serving as a reference point), one
required second-year course and two required third-year courses within a four-year civil and
environmental engineering undergraduate program. These courses are representative of the
efforts to scaffold the integration of computing throughout the curriculum.

In the beginning of the effort to integrate Python and R coding into courses, student resistance
and lack of engagement seemed to be major obstacles based on the signals we received from the
student body. Therefore, we began with straightforward, guided coding assignments in the early
weeks of a semester, gradually integrating coding into redesigned assignments on the core
material of the courses. Our goal was to integrate coding without altering a course’s learning
objectives. At the same time, we surveyed student attitudes, as we implemented these changes in
each participating course twice, once in the beginning and once at the end of a semester. In the
beginning-of-semester surveys, many students identify coding as a major challenge. In the end-
of-semester self-assessment responses, overall and over time, we see an increasing level of
acceptance of computing as part of the civil and environmental engineering learning culture and
experience. The responses indicate a moderately increasing trend for student willingness to
independently choose Python or R for future courses and projects. The survey responses suggest
that as computing becomes normalized, negative feelings among students become less of an
impediment. Comparisons of grades among classes in semesters before and after the computing
integration do not generally show statistically significant differences. Given the lack of relevant
data available, both in our department and in the literature, these survey responses provide
valuable insights into civil engineering students' attitudes toward coding for data analysis and
problem-solving, which could assist others considering similar curricular changes.

1. Introduction

Rapid advances in computational capacity, ability to process massive amounts of data, artificial
intelligence, automation, and new ways of visualizing and experiencing (virtual and augmented
reality) disrupt technological, market, and societal norms. In the educational and professional
environments these developments create a need for university “graduates with transferable skills,
such as creativity and adaptability, as well as skills in teamwork, communication, conflict
resolution, and problem solving” [1].

Translating this stated need into university curricula is challenging for teachers and students. It is
common experience in recent years that updates to educational technology tools during a
student’s first year could be outdated by the time the student graduates. Beyond the ongoing
effort to keep up, educational inequalities emerge across courses due to differences in
instructors’ skills, attributes, and attitudes, which range from pioneering creators to early
adopters, to unwilling change-embracers [2]. It is evident that approaches to teaching
engineering continue to evolve. The key question persists about how educators can overcome our
own new knowledge deficit to best help engineering students cultivate a growth mindset for
navigating technological disruptions, without inducing stress or anxiety about rapidly shifting
norms.

In this paper, we present initial findings on student attitudes toward the use of interpreted, high-
level object-oriented programming languages such as Python [3] and R [4] in the problem-
solving process within coursework. This study is part of a departmental initiative to incorporate
computation and computational thinking into the curriculum by integrating computational tools
with course fundamentals. This effort commenced just before the rapid emergence of ChatGPT
[5] in late 2022. Since we only have anecdotal evidence about AI’s impact, we defer discussing
this topic to a future study. The insights here are based on surveys designed to collect baseline
information about student attitudes toward computational tools in their courses, and to explore
whether these have changed over time in select courses, considering both lower level to higher
level courses.

2. Background

The general framework for our effort to integrate computation and computational thinking is
grounded in our department throughout the curriculum. The departmental curriculum committee
serves as the primary community of practice (CoP) for ongoing department-wide curriculum
innovation. The effort focuses on three key areas: computational thinking, communication, and
teaching Civil and Environmental Engineering (CEE) in a societal context. To ensure scalability
and sustainability, course-specific CoPs were established, with one instructor designated as the
course director. The course director coordinates efforts to develop common learning objectives
and pedagogies for a course, regardless of the instructor. Course materials are created through
collaborative efforts within these course-specific CoPs and are continuously refined across
semesters to adapt to evolving knowledge and technologies. In some courses, we have adopted a
student-centered teaching model [6]. This initiative aligns with the Universal Design for
Learning (UDL) guidelines, to foster purposeful and motivated learners through engagement,
sustained effort, persistence, and self-regulation [7]. Moving toward a constructivist approach,
where knowledge is actively constructed by the learner [8], alters traditional student-teacher

interactions and may influence student affect and perceptions of learning outcomes [9, 10]. It
also adds complexity to managing both in-class and out-of-class educational time. At this stage,
the CoPs play a crucial role in addressing instructors’ need for a support system [11]. Creating
course-specific CoPs aims to sustain the involvement of all participants in the educational
process.

Next, we summarize the scholarly framework within which this project develops. We could not
find consensus in the literature on the meaning and use of terms ‘computation’ and
‘computational thinking’. In this context, we use computation to refer to tools such as
spreadsheets and high-level interpreted programming languages, which our students are taught to
use for problem-solving. Computational thinking is a broader concept encompassing a variety of
skills. A frequently cited definition is Wing’s description of computational thinking as “the
thought processes involved in formulating problems and their solutions so that the solutions are
represented in a form that can be effectively carried out by an information-processing agent” [12,
13]. Expanding on Wing’s definition computational thinking has been described as a problem-
solving process that includes (but is not limited to): (1) Formulating problems in a way that it is
possible to use a computer and other tools; (2) Organizing and analyzing data logically; (3)
Representing data through abstractions; (4) Automating solutions; (5) Identifying, analyzing and
implementing possible solutions in order to obtain the most effective combination; and (6)
Generalizing and applying this process to a wide variety of problems [14]. A 2021 National
Academies of Science, Engineering, and Medicine report [15], emphasizes that computing is
more than just coding or computer science, extending to “a larger set of foundational knowledge
and competencies”. The development of computational thinking skills is framed as inclusive of
skills essential for students’ professional preparation including communication, collaboration,
creativity, critical thinking, and computing [16].

Although there is broad agreement that computational thinking is much more than coding, in our
experience a fear of coding can be a roadblock for many students in non-computer science (CS)
majors. As acknowledged in [15], even though authentic learning experiences in computing
designed to closely mirror professional practices may engage some learners, “historical
inequities in computing, biases, and stereotypes may also make these kinds of experiences
unattractive to learners from communities that have typically been excluded from computing”. It
is therefore recommended to (1) Carefully design authentic experiences to ensure they are
contextually appropriate, targeted at specific outcomes, and considerate of learners’ prior
interests and experiences in their homes and communities; and (2) Establish clear and explicit
programmatic goals, with continuous refinement to maintain alignment with those goals. In
addition, a deficit of studies is identified for assessing learner growth in computational
knowledge [15, 17]. Magana et al., provide further insights [18], reporting that college students
exposed to teaching that implements modeling and simulation, often encounter obstacles related
to students' inability to map the relationships among the physical phenomena, the mathematical
representations, and the computational representations. Based on research from the learning
sciences, they recommend that learners need to engage in cognitive and metacognitive processes
including reflection and evaluation of the importance of each step in the modeling or simulation
process [18]. Surveying student attitudes, as in our work, motivates additional reflection.

3. Approach

We have reported on earlier efforts to integrate computational thinking in our two 2nd-year
required civil engineering courses [19, 20]. The current efforts focus on the 3rd-year courses
required for CEE areas that students major in.

Even though a course CoP determines how and when during a semester integration of R or
Python commences, the general approach is that (1) the effort occurs stepwise over a number of
semesters; (2) a learning platform is chosen that facilitates grading of code (e.g., Prairie Learn
(https://www.prairielearn.com), Google Colab (https://colab.research.google.com), Gradescope
(https://www.gradescope.com)); (3) coding is integrated with the subject matter of the course and
assignments are redesigned to integrate the use of R or Python (depending on the kind of
problems solved in a course).

We administer two student surveys, one at the beginning (early’) and the second at the end of a
semester. The surveys serve three purposes: (1) to learn about student attitudes toward
computation; (2) to help us refocus on our educational goals and adjust our methods based on
expressed student needs, and (3) to help us improve the survey questions for clarity and aligning
them better with our objectives. In this paper, we report on student responses from the initial set
of surveys, focusing on their attitudes toward the required use of computational tools. Negative
emotions, such as fear or anxiety, can adversely affect student engagement and learning, making
this a key area of interest. In the following section, we present data from one course each in the
1st and 2nd years of study and two courses from the 3rd year, highlighting insights from the
student responses. The surveys are anonymous, approved as exempt by the Institutional Review
Board. Based on the exempt protocol, students were required to sign and informed consent form
before they took a survey.

4. Insights from student surveys about student attitudes toward coding

First transition to integrating coding for computational tasks
As mentioned earlier, the effort to introduce Python and R in the curriculum started with two
required 2nd year courses. At that time, students entering these courses had previously taken a 1st
year required CEE course where use of spreadsheets (Microsoft Excel or Google Sheets) is
taught, and a computer science course (hereafter CS 101) where the basics of programming and
Python are taught for non-CS engineering students. In our anecdotal experience, students
expressed fear, dislike, and resistance to the idea of coding as something difficult and
unnecessary for the CEE profession. We start this section with a review and comparison of
indicative responses to two anonymous midsemester surveys taken in the last semester Excel was
used as a required computational tool and the first semester when R was introduced in one of the
2nd year courses for probability and statistics calculations, data analysis and visualization. This
course is introductory on risk and uncertainty, referred to as the RU course.

Focusing on the computation-relevant questions and responses, Table 1 contains summaries of
anonymous responses for comparison of perceptions and student feedback, before (N=96) and
after (N=87) R was introduced in the RU course. We present a qualitative summary of these
comments which includes the most frequent comments we used in our continuing efforts to

improve student sentiments and learning outcomes after coding integration. During the earlier
semester, exams were on paper precluding the use of Excel for exams. Because of this
assessment approach, some students considered homework assignments requiring use of Excel as
an unnecessary waste of time. It was obvious that unless a computational tool was also part of
the exam assessment process, some students would not consider it as an essential part of their
learning in a course. Therefore, in our subsequent introduction of coding using R, we adopted an
online platform that allowed code grading, and we redeveloped course assignments to integrate
coding in the problem-solving process. Furthermore, from our experience, we were aware that
coding would bring some student resistance, thus good preparation was essential. To transition to
use of R coding, we revised course materials aiming at (1) balancing challenge and support, (2)
improving CEE relevance by modifying assignments to have CEE context, and (3) streamlining
course procedures for class time and study time. Specifically, we:

- Created handouts to clarify course expectations and workflows.
- Transitioned to a learning management system, that allows code submission for grading.
- Rebuild the class-time worksheets assignments and homework to include problems with

CEE context.
- Created guided computational assignments in R.
- Added more practice problems.
- Introduced a class project requiring use of R for data analysis and visualization.
- Adopted a flipped class approach.
- Organized the class in groups working together during class and for the class project.

Table 1. Comparison of student feedback related to computation and computational tools
between the two semesters before and during transition to R (RU course).

Student responses - Focus on responses referring computational tools
(before R: MS Excel taught – exams on

paper)
(R introduced: exams in an off-the-web environment,

coding exam questions possible)
Excel
 Excel-based assignments were mentioned as less

helpful by some students.
 Students requesting elimination of assignments

requiring use of Excel, perceiving them as a
waste of time, since they could not use Excel for
exams.

Application
 Students desired more applied problems that

directly connect computational skills to CEE.

Teamwork on Computational Problems
 Several students found working on worksheets or

computational problems in groups beneficial.

R
 Difficulties with coding, using R and interacting with

R, translating everyday wording to probability
notation and to code.

 Probability-related computation identified as
challenging and disorienting.

 R identified as useful for interval calculations and
statistical computations.

Application
 Requests for more computational examples or guides

to help understand concepts.
 Many responses emphasized the relevance of

computational skills (e.g., statistics and coding) to
engineering tasks.

.
Teamwork on Computational Problems:
 Students appreciated working in groups to resolve

computational issues.

Characteristic student quotes (unedited)
"Less excel, don't feel it's helping understanding the
material just time consuming."
"I wish we had shorter excel assignments, they
always take a long time."
"The homework questions have been tricky because
there are no hints/examples to look at if I don't
know how to do it."
"I would like more time to work on the worksheet
and less time on lecture slides and Excel tasks."
"The computations are great, really helped my
understanding of the material."
"More focus on computation would be nice."
"I understand the concept, but calculations still take
too long for me to feel confident."
"Working with teammates in class, Extending in-
class teamwork."
"Review sessions are really good for understanding
the concepts."
"The worksheets really support my learning."
"Group work in class helped me a lot."

Characteristic student quotes (unedited)
"I do not like R."
"R is hard. Maybe some in-class examples of R?"
"R is pretty useful when calculating intervals, but I still
find it challenging."
"The thing that would make my R experience the best is if
there were more hands-on examples in class."
 "Example problems in class help me understand the
material more clearly."
 "The difficulty of understanding how to use the concepts
in real-world scenarios."
"Understanding the details of probability was tough."
"There are many small concepts that build up and can be
overwhelming."
"Review sessions are very helpful, and working on
problems with peers helps me learn better."
 "Group work has helped me overcome challenges,
especially when brainstorming and discussing solutions
together.".

We performed a comment-level sentiment analysis of open-text student responses, using three
lexicons AFINN [21], BING [22] and NRC [23]. Each lexicon has its own word collection and
design rationale giving it certain strengths and limitations [24]. For example, AFINN provides
intensity-based sentiment scoring, whereas BING provides binary polarity analysis (positive-
negative), and NRC provides emotional granularity (e.g., anticipation, disgust, anger, joy).
Figure 1 shows a visual comparison of the sentiment analysis scores for the questions shown at
the top of each graph. Due to space limitations, we show simplified sentiment score graphs
where a positive score indicates positive sentiment (e.g., joy, confidence, anticipation), while a
negative score indicates a negative sentiment (e.g., anger, fear, anxiety). Despite the differences
among lexicons, overall, it appears to be a less negative / more positive sentiment in the semester
R was introduced compared to the previous semester, with indication of a change in students’
perceptions of the course relevance to CEE, likely related to the intentional addition of problems
with CEE context that occurred in parallel with the introduction of R. However, Figure 2 shows
that answers to the question ‘Are you feeling at ease and stimulated by the learning community
in this class?’ student NO/YES answers were 20/80% in the earlier semester versus 30/70% in
the semester R was introduced. It is not possible to tell if this outcome was the effect of
introducing coding or the effect of differences in the student communities in the two semesters,
but this was informative feedback as we continued with material development and effort to make
the course more interactive and engaging.

Positive and negative sentiment score for two
semesters

Total sentiment score comparison in the
semester R was introduced

(AFINN lexicon)

(NRC lexicon)

(BING lexicon)

Figure 1. Sentiment analysis of student responses to midsemester surveys relevant to computation
and computational tools. Data collected between the two semesters before and during transition to
R. Positive and negative total score values indicate positive and negative student sentiments,
respectively (RU course).

Figure 2. Student responses (YES/NO) to the question ‘Are you feeling at ease and stimulated
by the learning community in this class?’ asked in midsemester surveys during the two semesters
before and during transition to R (RU course).

Continuing coding integration in subsequent semesters
As we continued to develop and integrate coding with core course materials, there is an
indication of a changing culture. For example, in Figure 3, for a semester sequence, the left panel
shows that the vast majority of students had no previous experience with the coding language (R
in this case), at the beginning of the course. While this remained true across subsequent
semesters, at the end of the semesters (right panel) the expressed level of confidence increases as
use of the coding language becomes the norm for the class. As there was no drastic change in the
materials or teaching methods in these semesters (by comparison to the first transition semester),
we expect the right panel depicts a change in the acceptance of coding as part of the CEE
learning experience.

Figure 3. Responses to the questions ‘Do you have previous experience with R?’ (left panel,
early semester surveys) and ‘Do you feel confident starting scripting in R?’ (right panel, end-of-
semester surveys).

Expanding use of coding in the 3rd year courses
Next, we present results from student responses across 4 courses. We use the 1st year course as a
reference. This is a project based (PB) course introducing incoming students to the different
areas of CEE. The 2nd year course is the RU course mentioned earlier, which is offered twice a
year. The other two courses are the earliest adopters of coding for problem solving at the 3rd year

level. The topic of the first 3rd year course is on the behavior of materials (referred to as MB
course, henceforth). The second 3rd year course (referred to as the GE course) is on the global
environment and energy. Two case studies also in review for this conference provide further
details on the two 3rd yr courses that have been included for discussion here [25], [26]. Table 2
and Figure 4 summarize the number of responses per course and semester and the coding
background for prerequisite courses, respectively. Figure 5 displays coding experience of
responding students before they took one of the courses included in this presentation.

Figures 6a to 6e display students’ responses to questions asked to help us understand the change
in CEE student attitudes toward coding and computational tools. Over time, qualitatively we see
that responses shift to a recognition of the value of coding skills and computational tools, which
is a significant change from the past, when most CEE students were expressing distress about
having to learn and use coding.

Table 2. Survey response rates by course included in this paper in recent semesters (F: Fall, S:
Spring). ‘Early’ and ‘End’ indicate early and end-of semester surveys, respectively.

Course

1st yr
PB
F23

Early

1st yr
RU
F23
End

2nd yr
RU
S23

Early

2nd yr
RU
S23
End

2nd yr
RU
F23

Early

2nd yr
RU
F23
End

 3rd yr
MB
S24

Early

3rd yr
MB
S24
End

3rd yr
GE
F23

Early

3rd yr
GE
F23
End

Comp. tool used Excel R Python R
Nenrolled 207 105 84 89 61
Nrespond. 186 151 79 51 66 44 80 31 38 31
(%) response 90 73 75 49 79 52 90 35 62 51

Figure 4. Student percentages who had taken a prerequisite course where Python (CS 101-
orange) or R (RU-green) are introduced. RU is applicable to 3rd-year courses only. The
prerequisite courses are shown in the vertical axis. (Recent semesters, F: Fall, S: Spring). Almost
all students in the 3rd year courses MB and GE had taken at least one of the coding prerequisites.

Figure 5. Computational tools students have used before taking one of the listed courses. In the
depicted semesters students in 3rd year courses have already taken one or more courses where R
or Python are required (Recent semesters, F: Fall, S: Spring).

a) ‘What in the best time to start learning coding?’

b) ‘Computational tools are important for CEE’.

c) ‘Computational tools are important to help you understand better CEE course materials
through simulation and visualization’

d) ‘Computational experiences you had in previous CEE courses were beneficial to you’.

e) ‘Current amount of computation/coding in CEE courses is…’

Figure 6. Student responses to questions about coding in recent semesters (F: Fall, S: Spring).
Left: early semester responses. Right: end-of-semester responses.

Despite an indicated increased acceptance of coding integration in their CEE studies, the word
clouds in Figure 7 display that coding is a dominant word in answers to the question: ‘What
challenges do you anticipate in this course?’, for courses where coding is required for most of the
assignments. Even though wordclouds provide rough qualitative information, it is still interesting
to see that ‘coding’ is the dominant word (expressed as challenge) in courses where coding is
required.

PB course - coding not required RU course - coding required in all
assignments

MB course – when coding not
required

MB course – when coding
introduced in some assignments

GE course - coding required in all
assignments

Figure 7. Word clouds summarizing responses to the question ‘What challenges do you
anticipate in this course?” Question is asked early in the semester. (Recent semesters for each
course between Spring 2023 to Spring 2024. Wordclouds produced by the wordcloud package in
R, skipping ‘stop-words’ such as ‘and’, ‘the’, ‘to’,’is’, ‘are’).

In the end of the semester surveys students expressed confidence in using a coding language for
specific tasks (Figure 8). Although there is variation across semesters, the overall responses
weigh toward higher confidence at the end of a semester, as indicated by the extent of the color-
coded sections of the graphs.

Figure 8. Student responses to the question ‘How confident do you feel …’. Responses
correspond to the 2nd year RU course where R is required.

Further, in Figure 9, we display % responses to questions asked about the level of comfort
students have for using different computational tools at the end of a semester. We observe
differentiation between different courses, part of which relates to prerequisite requirements of
different courses. In the 2nd year RU course, the first course students take where R is introduced
and required (Fig. 9a) Python would have been a choice for most students, which is consistent
with CS 101 being a prerequisite for the RU course. By the end of the semester, 50% of the
students would use R for data analysis and visualization. For the 3rd yr MB course where Python
is required for some assignments (Fig. 9b), Excel is shown as the preferred tool while Python
seems to gain acceptance by the end of the semester. For the 3rd yr GE course where R is
required (Fig. 9c), there is initially a high preference for Excel, with Excel, Python and R
showing equal preference shares by the end of the course.

a) Responses correspond to the 2nd year RU course where R is required.

b) Responses correspond to the 3rd year MB course where Python is required in some
assignments.

c) Responses correspond to the 3rd year GE course where R is required.

Figure 9. Responses to the questions 1) (left panel) ‘If R/Python was not required in this course,
how would you have approached solving similar problems?’ 2) (right panel) ‘Now, that you have
taken this course how would you approach solving similar problems in future classes/jobs?’

Figure 10 summarizes student opinions for different aspects of the 3rd yr courses. The sub-
questions are modified to better match instructor priorities in their courses. Both these courses
emphasize written communication in addition to coding integration. Figures 10 a), b) support
increased student confidence in using Python and R in the CEE discipline.

a) Responses correspond to the 3rd year MB course (Spring 2024) where Python is required in

some assignments.

b)
b) Responses correspond to the 3rd year GE course (Fall 2023) where R is required.

Figure 10. Responses to the question ‘What best describes your opinion of … after taking this
class?’ for several sub-questions.

5. Conclusion

Integration of interpreted high-level object-oriented programming languages in non-CS courses
has historically faced CEE student reluctance and negative feelings of fear and concern. In this
paper, we presented a snapshot of student responses following the early steps of a curriculum-
wide effort to integrate Python and R in the problem-solving process within CEE courses. In
agreement with [2], calling for encouraging the development of technological adaptability and
agility, our approach fosters computational literacy in multiple platforms as a necessity for which
students need to adopt flexible mindset in the current technological environment. Our evidence
from the student surveys suggests a change in the student culture as the use of R and Python is
becoming the norm in CEE courses. At this stage, responses present a mixed picture shifting
between acceptance and resistance (such as the high preference for Excel or a few students
expressing preference for calculators) but the trend we see is in the direction of acceptance of
coding in the discipline. There are increased numbers of students catching up, as survey
responses hint and as we see from the graded assessments (not in the scope of this presentation).
In the most recent two semesters the department has offered weekly tutoring sessions on R and
Python in addition to the teaching materials used in each course. Response analysis of future
surveys will help us document the changes in student attitudes, perceptions and learning
outcomes over time. It will also allow us a better quantification and understanding of student
attitudes and outcomes as they move from lower to upper-level courses.

The integration of coding into undergraduate civil engineering education requires continuing
effort. The rapid development of AI is changing how we use and interact with more traditional
familiar computational tools. The impact of AI on how we teach coding is an open issue to be
included in our future research and in-class efforts. In such a department-wide effort, faculty
engagement is of paramount importance. To this end, we have described our approach for
promoting sustainability of the efforts through the organization of the faculty into course specific
CoPs as subgroups of the faculty-wide CoP. As the effort continues, fostering of the CoP culture
of cooperation is of paramount importance.

Acknowledgments

This work is supported by a 3-year (2022-2025) grant from the Strategic Instructional Initiatives
Program (SIIP) of The Grainger College of Engineering and matching funds by the Department
of Civil and Environmental Engineering, at the University of Illinois Urbana-Champaign. We
thank the Grainger College of Engineering Academy for Excellence in Engineering Education
(AE3) Education Innovation Fellows who mentored us in different phases of this project:
Professors A. Schleife, A.A.M. Alawini, and C. Radhakrishnan.

References

[1] NASEM, National Academies of Sciences, Engineering, and Medicine, “Imagining the
Future of Undergraduate STEM Education: Proceedings of a Virtual Symposium”. Washington,
DC, USA: The National Academies Press. 2022. https://doi.org/10.17226/26314.

[2] K. H. McCord et al., "Computing in AEC Education: Hindsight, Insight, and Foresight,"
Journal of Computing in Civil Engineering, vol. 38, no. 3, 2024, doi: 10.1061/jccee5.Cpeng-
5646.

[3] G. Van Rossum and F. L. Drake, Python 3 Reference Manual. Scotts Valley, CA, USA:
CreateSpace, 2009.

[4] R Core Team, R: A Language and Environment for Statistical Computing. Vienna, Austria: R
Foundation for Statistical Computing, 2021. [Online]. Available: https://www.R-project.org/.

[5] OpenAI, "ChatGPT conversation on citing ChatGPT in IEEE format," ChatGPT, Sep. 1,
2024. [Online]. Available: https://chat.openai.com/

[6] A. Karabulut-Ilgu, N. Jaramillo Cherrez, and C. T. Jahren, "A systematic review of research
on the flipped learning method in engineering education," British Journal of Educational
Technology, vol. 49, no. 3, p. 13, 2018.

[7] CAST (2021). The UDL Guidelines. https://udlguidelines.cast.org/. Last accessed 5/27/2024.

[8] G. B. Wright, "Student-Centered Learning in Higher Education," International Journal of
Teaching and Learning in Higher Education, vol. 23, no. 3, pp. 92–97, 2011. [Online]. Available:
http://www.isetl.org/ijtlhe/.

[9] J. Palazón-Herrera and A. Soria-Vílchez, "Students’ perception and academic performance in
a flipped classroom model within Early Childhood Education Degree," Heliyon, vol. 7, no. 4, p.
e06702, 2021.

[10] L. Deslauriers, L. S. McCarty, K. Miller, K. Callaghan, and G. Kestin, "Measuring actual
learning versus feeling of learning in response to being actively engaged in the classroom," Proc.
Natl. Acad. Sci. USA, vol. 116, no. 39, pp. 19251–19257, Sep. 24, 2019.

[11] I. Pablo-Lerchundi, C. Núñez-Del-Río, A. Jiménez-Rivero, S. Sastre-Merino, A. Míguez-
Souto, and J.L. Martín-Núñez, "Factors affecting students' perception of flipped learning over
time in a teacher training program," Heliyon, vol. 9, no. 11, p. e21318, Oct. 29, 2023.

[12] J. Wing, "Computational thinking," Commun. Assoc. Computing Machinery, vol. 49, no. 3,
pp. 33–35, 2006.

[13] J. Wing, "Computational Thinking: What and Why?" 2010. [Online]. Available:
www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf.

[14] D. Barr, J. Harrison, and L. Conery, "Computational thinking: A digital age skill for
everyone," Learning & Leading with Technology, vol. 38, no. 6, pp. 20-23, 2011.

[15] National Academies of Sciences, Engineering, and Medicine, “Cultivating Interest and
Competencies in Computing: Authentic Experiences and Design Factors”. Washington, DC,
USA: The National Academies Press, 2021. [Online]. Available: https://doi.org/10.17226/25912.

[16] C. Varela, C. Rebollar, O. García, E. Bravo, and J. Bilbao, "Skills in computational thinking
of engineering students of the first school year," Heliyon, vol. 5, pp. e02820, 2019. [Online].
Available: https://doi.org/10.1016/j.heliyon.2019.e02820

[17] J. A. Lyon and A. J. Magana, "Computational thinking in higher education: A review of the
literature," Computer Applications in Engineering Education, vol. 28, no. 5, pp. 1174-1189,
2020.

[18] A. J. Magana, H. W. Fennell, C. Vieira, and M. L. Falk, "Characterizing the interplay of
cognitive and metacognitive knowledge in computational modeling and simulation practices,"
Journal of Engineering Education, vol. 108, no. 2, pp. 276-303, 2019.

[19] S. Koloutsou-Vakakis, E. Kontou, C. W. Tessum, L. Zhao, and H. Meidani, "Educational
technology platforms and shift in pedagogical approach to support computing integration into
two sophomore Civil and Environmental Engineering courses," 2021 ASEE Virtual Annual
Conference Content Access, Virtual Conference, 2021. [Online]. Available:
https://peer.asee.org/37005.

[20] S. Koloutsou-Vakakis, E. Kontou, C. W. Tessum, L. Zhao, and H. Meidani. “Cloud
technologies for scalable engagement and learning in flipped classrooms”. Civil Engineering
Division -The New Normal: Enduring Technology Improvements in the Classroom (W7211),
2022 ASEE Annual Conference, Minneapolis, MN. https://peer.asee.org/40811.

[21] F. Ä. Nielsen, “A new evaluation of a word list for sentiment analysis in microblogs,”
Proceedings of the ESWC2011 Workshop on 'Making Sense of Microposts': Big things come in
small packages, 93-98, 2011.

[22] M. Hu and B. Liu, “Mining and summarizing customer reviews,” Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD-2004), 2004.

[23] S. Mohammad and P. Turney, “Crowdsourcing a Word-Emotion Association Lexicon,”
Computational Intelligence, 29(3): 436-465, 2013.

[24] M. Misuraca, A. Forciniti, G, Scepi, M. Spano, “Sentiment Analysis for Education with R:
packages, methods and practical applications”, 2020. https://doi.org/10.48550/arXiv.2005.12840

[25] J. S. Popovics, Y. Niu, S. Koloutsou-Vakakis, K. Pattaje. CASE STUDY: Integration of
Python programming in a civil engineering laboratory course. Civil Engineering Division., 2025
ASEE Annual Conference & Exposition, Montreal, Canada [Accepted].

[26] M. L. Matthews, S. Koloutsou-Vakakis, A. S. Stillwell. CASE STUDY: Project-based
integration of societal context with engineering communication and computational thinking in an
upper-level civil and environmental engineering course. Civil Engineering Division., 2025 ASEE
Annual Conference & Exposition, Montreal, Canada [Accepted].

