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Abstract 
The discussion about integrating computing into curricula of non-computer science engineering 
majors remains open. Such integration is desirable, as computing is an essential tool for 
engineering practice. In addition, computing can enhance engineering education through 
simulation and visualization, facilitating deeper understanding and learning. Integration of 
computing using high-level programming languages into courses presents challenges including 
achieving alignment with traditional disciplinary learning objectives, the potential need to shift 
from a traditional constructivist approach to a more student-driven model, and the necessity for 
faculty transition into using new tools and pedagogies which requires career-long training. This 
paper originates from a department-wide effort to integrate computing throughout the 
curriculum. The success of such an effort depends primarily on coordinated faculty involvement 
and student engagement. Focusing on the latter, in this paper, we report on our approach for 
integrating coding for data analysis and problem solving, and on surveyed student attitudes 
toward the integration of Python or R in undergraduate civil and environmental engineering 
courses. We report data from one required first-year course (serving as a reference point), one 
required second-year course and two required third-year courses within a four-year civil and 
environmental engineering undergraduate program. These courses are representative of the 
efforts to scaffold the integration of computing throughout the curriculum.  
 
In the beginning of the effort to integrate Python and R coding into courses, student resistance 
and lack of engagement seemed to be major obstacles based on the signals we received from the 
student body. Therefore, we began with straightforward, guided coding assignments in the early 
weeks of a semester, gradually integrating coding into redesigned assignments on the core 
material of the courses. Our goal was to integrate coding without altering a course’s learning 
objectives. At the same time, we surveyed student attitudes, as we implemented these changes in 
each participating course twice, once in the beginning and once at the end of a semester. In the 
beginning-of-semester surveys, many students identify coding as a major challenge. In the end-
of-semester self-assessment responses, overall and over time, we see an increasing level of 
acceptance of computing as part of the civil and environmental engineering learning culture and 
experience. The responses indicate a moderately increasing trend for student willingness to 
independently choose Python or R for future courses and projects. The survey responses suggest 
that as computing becomes normalized, negative feelings among students become less of an 
impediment. Comparisons of grades among classes in semesters before and after the computing 
integration do not generally show statistically significant differences. Given the lack of relevant 
data available, both in our department and in the literature, these survey responses provide 
valuable insights into civil engineering students' attitudes toward coding for data analysis and 
problem-solving, which could assist others considering similar curricular changes. 



 
1. Introduction 

Rapid advances in computational capacity, ability to process massive amounts of data, artificial 
intelligence, automation, and new ways of visualizing and experiencing (virtual and augmented 
reality) disrupt technological, market, and societal norms. In the educational and professional 
environments these developments create a need for university “graduates with transferable skills, 
such as creativity and adaptability, as well as skills in teamwork, communication, conflict 
resolution, and problem solving” [1].  
 
Translating this stated need into university curricula is challenging for teachers and students. It is 
common experience in recent years that updates to educational technology tools during a 
student’s first year could be outdated by the time the student graduates. Beyond the ongoing 
effort to keep up, educational inequalities emerge across courses due to differences in 
instructors’ skills, attributes, and attitudes, which range from pioneering creators to early 
adopters, to unwilling change-embracers [2]. It is evident that approaches to teaching 
engineering continue to evolve. The key question persists about how educators can overcome our 
own new knowledge deficit to best help engineering students cultivate a growth mindset for 
navigating technological disruptions, without inducing stress or anxiety about rapidly shifting 
norms. 
 
In this paper, we present initial findings on student attitudes toward the use of interpreted, high-
level object-oriented programming languages such as Python [3] and R [4] in the problem-
solving process within coursework. This study is part of a departmental initiative to incorporate 
computation and computational thinking into the curriculum by integrating computational tools 
with course fundamentals. This effort commenced just before the rapid emergence of ChatGPT 
[5] in late 2022. Since we only have anecdotal evidence about AI’s impact, we defer discussing 
this topic to a future study. The insights here are based on surveys designed to collect baseline 
information about student attitudes toward computational tools in their courses, and to explore 
whether these have changed over time in select courses, considering both lower level to higher 
level courses.  
 
2. Background 

The general framework for our effort to integrate computation and computational thinking is 
grounded in our department throughout the curriculum. The departmental curriculum committee 
serves as the primary community of practice (CoP) for ongoing department-wide curriculum 
innovation. The effort focuses on three key areas: computational thinking, communication, and 
teaching Civil and Environmental Engineering (CEE) in a societal context. To ensure scalability 
and sustainability, course-specific CoPs were established, with one instructor designated as the 
course director. The course director coordinates efforts to develop common learning objectives 
and pedagogies for a course, regardless of the instructor. Course materials are created through 
collaborative efforts within these course-specific CoPs and are continuously refined across 
semesters to adapt to evolving knowledge and technologies. In some courses, we have adopted a 
student-centered teaching model [6]. This initiative aligns with the Universal Design for 
Learning (UDL) guidelines, to foster purposeful and motivated learners through engagement, 
sustained effort, persistence, and self-regulation [7]. Moving toward a constructivist approach, 
where knowledge is actively constructed by the learner [8], alters traditional student-teacher 



interactions and may influence student affect and perceptions of learning outcomes [9, 10]. It 
also adds complexity to managing both in-class and out-of-class educational time. At this stage, 
the CoPs play a crucial role in addressing instructors’ need for a support system [11]. Creating 
course-specific CoPs aims to sustain the involvement of all participants in the educational 
process. 
 
Next, we summarize the scholarly framework within which this project develops. We could not 
find consensus in the literature on the meaning and use of terms ‘computation’ and 
‘computational thinking’. In this context, we use computation to refer to tools such as 
spreadsheets and high-level interpreted programming languages, which our students are taught to 
use for problem-solving. Computational thinking is a broader concept encompassing a variety of 
skills. A frequently cited definition is Wing’s description of computational thinking as “the 
thought processes involved in formulating problems and their solutions so that the solutions are 
represented in a form that can be effectively carried out by an information-processing agent” [12, 
13]. Expanding on Wing’s definition computational thinking has been described as a problem-
solving process that includes (but is not limited to): (1) Formulating problems in a way that it is 
possible to use a computer and other tools; (2) Organizing and analyzing data logically; (3) 
Representing data through abstractions; (4) Automating solutions; (5) Identifying, analyzing and 
implementing possible solutions in order to obtain the most effective combination; and (6) 
Generalizing and applying this process to a wide variety of problems [14]. A 2021 National 
Academies of Science, Engineering, and Medicine report [15], emphasizes that computing is 
more than just coding or computer science, extending to “a larger set of foundational knowledge 
and competencies”. The development of computational thinking skills is framed as inclusive of 
skills essential for students’ professional preparation including communication, collaboration, 
creativity, critical thinking, and computing [16].  
 
Although there is broad agreement that computational thinking is much more than coding, in our 
experience a fear of coding can be a roadblock for many students in non-computer science (CS) 
majors. As acknowledged in [15], even though authentic learning experiences in computing 
designed to closely mirror professional practices may engage some learners, “historical 
inequities in computing, biases, and stereotypes may also make these kinds of experiences 
unattractive to learners from communities that have typically been excluded from computing”. It 
is therefore recommended to (1) Carefully design authentic experiences to ensure they are 
contextually appropriate, targeted at specific outcomes, and considerate of learners’ prior 
interests and experiences in their homes and communities; and (2) Establish clear and explicit 
programmatic goals, with continuous refinement to maintain alignment with those goals. In 
addition, a deficit of studies is identified for assessing learner growth in computational 
knowledge [15, 17]. Magana et al., provide further insights [18], reporting that college students 
exposed to teaching that implements modeling and simulation, often encounter obstacles related 
to students' inability to map the relationships among the physical phenomena, the mathematical 
representations, and the computational representations. Based on research from the learning 
sciences, they recommend that learners need to engage in cognitive and metacognitive processes 
including reflection and evaluation of the importance of each step in the modeling or simulation 
process [18]. Surveying student attitudes, as in our work, motivates additional reflection. 
 
  



3. Approach 

We have reported on earlier efforts to integrate computational thinking in our two 2nd-year 
required civil engineering courses [19, 20]. The current efforts focus on the 3rd-year courses 
required for CEE areas that students major in.  
 
Even though a course CoP determines how and when during a semester integration of R or 
Python commences, the general approach is that (1) the effort occurs stepwise over a number of 
semesters; (2) a learning platform is chosen that facilitates grading of code (e.g., Prairie Learn 
(https://www.prairielearn.com), Google Colab (https://colab.research.google.com), Gradescope 
(https://www.gradescope.com)); (3) coding is integrated with the subject matter of the course and 
assignments are redesigned to integrate the use of R or Python (depending on the kind of 
problems solved in a course).  

 
We administer two student surveys, one at the beginning (early’) and the second at the end of a 
semester. The surveys serve three purposes: (1) to learn about student attitudes toward 
computation; (2) to help us refocus on our educational goals and adjust our methods based on 
expressed student needs, and (3) to help us improve the survey questions for clarity and aligning 
them better with our objectives. In this paper, we report on student responses from the initial set 
of surveys, focusing on their attitudes toward the required use of computational tools. Negative 
emotions, such as fear or anxiety, can adversely affect student engagement and learning, making 
this a key area of interest. In the following section, we present data from one course each in the 
1st and 2nd years of study and two courses from the 3rd year, highlighting insights from the 
student responses. The surveys are anonymous, approved as exempt by the Institutional Review 
Board. Based on the exempt protocol, students were required to sign and informed consent form 
before they took a survey.  
 
4. Insights from student surveys about student attitudes toward coding 

First transition to integrating coding for computational tasks 
As mentioned earlier, the effort to introduce Python and R in the curriculum started with two 
required 2nd year courses. At that time, students entering these courses had previously taken a 1st 
year required CEE course where use of spreadsheets (Microsoft Excel or Google Sheets) is 
taught, and a computer science course (hereafter CS 101) where the basics of programming and 
Python are taught for non-CS engineering students. In our anecdotal experience, students 
expressed fear, dislike, and resistance to the idea of coding as something difficult and 
unnecessary for the CEE profession. We start this section with a review and comparison of 
indicative responses to two anonymous midsemester surveys taken in the last semester Excel was 
used as a required computational tool and the first semester when R was introduced in one of the 
2nd year courses for probability and statistics calculations, data analysis and visualization. This 
course is introductory on risk and uncertainty, referred to as the RU course. 
 
Focusing on the computation-relevant questions and responses, Table 1 contains summaries of 
anonymous responses for comparison of perceptions and student feedback, before (N=96) and 
after (N=87) R was introduced in the RU course. We present a qualitative summary of these 
comments which includes the most frequent comments we used in our continuing efforts to 



improve student sentiments and learning outcomes after coding integration. During the earlier 
semester, exams were on paper precluding the use of Excel for exams. Because of this 
assessment approach, some students considered homework assignments requiring use of Excel as 
an unnecessary waste of time. It was obvious that unless a computational tool was also part of 
the exam assessment process, some students would not consider it as an essential part of their 
learning in a course. Therefore, in our subsequent introduction of coding using R, we adopted an 
online platform that allowed code grading, and we redeveloped course assignments to integrate 
coding in the problem-solving process. Furthermore, from our experience, we were aware that 
coding would bring some student resistance, thus good preparation was essential. To transition to 
use of R coding, we revised course materials aiming at (1) balancing challenge and support, (2) 
improving CEE relevance by modifying assignments to have CEE context, and (3) streamlining 
course procedures for class time and study time. Specifically, we: 

- Created handouts to clarify course expectations and workflows. 
- Transitioned to a learning management system, that allows code submission for grading. 
- Rebuild the class-time worksheets assignments and homework to include problems with 

CEE context. 
- Created guided computational assignments in R. 
- Added more practice problems. 
- Introduced a class project requiring use of R for data analysis and visualization.  
- Adopted a flipped class approach. 
- Organized the class in groups working together during class and for the class project. 

 
Table 1. Comparison of student feedback related to computation and computational tools 
between the two semesters before and during transition to R (RU course). 
 

Student responses - Focus on responses referring computational tools 
(before R: MS Excel taught – exams on 

paper) 
(R introduced:  exams in an off-the-web environment, 

coding exam questions possible) 
Excel  
 Excel-based assignments were mentioned as less 

helpful by some students. 
 Students requesting elimination of assignments 

requiring use of Excel, perceiving them as a 
waste of time, since they could not use Excel for 
exams. 
 

 
Application 
 Students desired more applied problems that 

directly connect computational skills to CEE. 
 
 
 
 
Teamwork on Computational Problems 
 Several students found working on worksheets or 

computational problems in groups beneficial. 
 
 

R 
 Difficulties with coding, using R and interacting with 

R, translating everyday wording to probability 
notation and to code. 

 Probability-related computation identified as 
challenging and disorienting. 

 R identified as useful for interval calculations and 
statistical computations. 

 
Application 
 Requests for more computational examples or guides 

to help understand concepts. 
 Many responses emphasized the relevance of 

computational skills (e.g., statistics and coding) to 
engineering tasks. 

. 
Teamwork on Computational Problems: 
 Students appreciated working in groups to resolve 

computational issues. 
 



Characteristic student quotes (unedited)  
"Less excel, don't feel it's helping understanding the 
material just time consuming." 
"I wish we had shorter excel assignments, they 
always take a long time." 
"The homework questions have been tricky because 
there are no hints/examples to look at if I don't 
know how to do it." 
"I would like more time to work on the worksheet 
and less time on lecture slides and Excel tasks." 
"The computations are great, really helped my 
understanding of the material." 
"More focus on computation would be nice." 
"I understand the concept, but calculations still take 
too long for me to feel confident." 
"Working with teammates in class, Extending in-
class teamwork." 
"Review sessions are really good for understanding 
the concepts." 
"The worksheets really support my learning." 
"Group work in class helped me a lot." 

Characteristic student quotes (unedited) 
"I do not like R." 
"R is hard. Maybe some in-class examples of R?" 
"R is pretty useful when calculating intervals, but I still 
find it challenging." 
"The thing that would make my R experience the best is if 
there were more hands-on examples in class." 
 "Example problems in class help me understand the 
material more clearly." 
 "The difficulty of understanding how to use the concepts 
in real-world scenarios."  
"Understanding the details of probability was tough."  
"There are many small concepts that build up and can be 
overwhelming." 
"Review sessions are very helpful, and working on 
problems with peers helps me learn better."  
 "Group work has helped me overcome challenges, 
especially when brainstorming and discussing solutions 
together.". 

 
We performed a comment-level sentiment analysis of open-text student responses, using three 
lexicons AFINN [21], BING [22] and NRC [23]. Each lexicon has its own word collection and 
design rationale giving it certain strengths and limitations [24]. For example, AFINN provides 
intensity-based sentiment scoring, whereas BING provides binary polarity analysis (positive-
negative), and NRC provides emotional granularity (e.g., anticipation, disgust, anger, joy). 
Figure 1 shows a visual comparison of the sentiment analysis scores for the questions shown at 
the top of each graph. Due to space limitations, we show simplified sentiment score graphs 
where a positive score indicates positive sentiment (e.g., joy, confidence, anticipation), while a 
negative score indicates a negative sentiment (e.g., anger, fear, anxiety). Despite the differences 
among lexicons, overall, it appears to be a less negative / more positive sentiment in the semester 
R was introduced compared to the previous semester, with indication of a change in students’ 
perceptions of the course relevance to CEE, likely related to the intentional addition of problems 
with CEE context that occurred in parallel with the introduction of R. However, Figure 2 shows 
that answers to the question ‘Are you feeling at ease and stimulated by the learning community 
in this class?’ student NO/YES answers were 20/80% in the earlier semester versus 30/70% in 
the semester R was introduced. It is not possible to tell if this outcome was the effect of 
introducing coding or the effect of differences in the student communities in the two semesters, 
but this was informative feedback as we continued with material development and effort to make 
the course more interactive and engaging.  
 
  



Positive and negative sentiment score for two 
semesters 

Total sentiment score comparison in the 
semester R was introduced 

(AFINN lexicon) 

  
(NRC lexicon) 

  
(BING lexicon) 

  

 
Figure 1. Sentiment analysis of student responses to midsemester surveys relevant to computation 
and computational tools. Data collected between the two semesters before and during transition to 
R. Positive and negative total score values indicate positive and negative student sentiments, 
respectively (RU course). 
  



 
 
Figure 2. Student responses (YES/NO) to the question ‘Are you feeling at ease and stimulated 
by the learning community in this class?’ asked in midsemester surveys during the two semesters 
before and during transition to R (RU course). 

 
Continuing coding integration in subsequent semesters 
As we continued to develop and integrate coding with core course materials, there is an 
indication of a changing culture. For example, in Figure 3, for a semester sequence, the left panel 
shows that the vast majority of students had no previous experience with the coding language (R 
in this case), at the beginning of the course. While this remained true across subsequent 
semesters, at the end of the semesters (right panel) the expressed level of confidence increases as 
use of the coding language becomes the norm for the class. As there was no drastic change in the 
materials or teaching methods in these semesters (by comparison to the first transition semester), 
we expect the right panel depicts a change in the acceptance of coding as part of the CEE 
learning experience. 

 

  
 
Figure 3. Responses to the questions ‘Do you have previous experience with R?’ (left panel, 
early semester surveys) and ‘Do you feel confident starting scripting in R?’ (right panel, end-of-
semester surveys). 

 
Expanding use of coding in the 3rd year courses 
Next, we present results from student responses across 4 courses. We use the 1st year course as a 
reference. This is a project based (PB) course introducing incoming students to the different 
areas of CEE. The 2nd year course is the RU course mentioned earlier, which is offered twice a 
year. The other two courses are the earliest adopters of coding for problem solving at the 3rd year 



level. The topic of the first 3rd year course is on the behavior of materials (referred to as MB 
course, henceforth). The second 3rd year course (referred to as the GE course) is on the global 
environment and energy. Two case studies also in review for this conference provide further 
details on the two 3rd yr courses that have been included for discussion here [25], [26]. Table 2 
and Figure 4 summarize the number of responses per course and semester and the coding 
background for prerequisite courses, respectively. Figure 5 displays coding experience of 
responding students before they took one of the courses included in this presentation.  
 
Figures 6a to 6e display students’ responses to questions asked to help us understand the change 
in CEE student attitudes toward coding and computational tools. Over time, qualitatively we see 
that responses shift to a recognition of the value of coding skills and computational tools, which 
is a significant change from the past, when most CEE students were expressing distress about 
having to learn and use coding. 
 
Table 2. Survey response rates by course included in this paper in recent semesters (F: Fall, S: 
Spring). ‘Early’ and ‘End’ indicate early and end-of semester surveys, respectively.  

 
Course 

1st yr 
PB 
F23 

Early 

1st yr 
RU 
F23 
End 

2nd yr 
RU 
S23 

Early 

2nd yr 
RU 
S23 
End 

2nd yr 
RU 
F23 

Early 

2nd yr 
RU 
F23 
End 

 3rd yr 
MB 
S24 

Early 

3rd yr 
MB 
S24 
End 

3rd yr 
GE 
F23 

Early 

3rd yr 
GE 
F23 
End 

Comp. tool used Excel R  Python R 
Nenrolled 207 105 84  89 61 
Nrespond. 186 151 79 51 66 44  80 31 38 31 
(%) response 90 73 75 49 79 52  90 35 62 51 

 
 
 

 
 
 
Figure 4. Student percentages who had taken a prerequisite course where Python (CS 101-
orange) or R (RU-green) are introduced. RU is applicable to 3rd-year courses only. The 
prerequisite courses are shown in the vertical axis. (Recent semesters, F: Fall, S: Spring). Almost 
all students in the 3rd year courses MB and GE had taken at least one of the coding prerequisites.  



  

 

Figure 5. Computational tools students have used before taking one of the listed courses. In the 
depicted semesters students in 3rd year courses have already taken one or more courses where R 
or Python are required (Recent semesters, F: Fall, S: Spring). 
 
 

 
a) ‘What in the best time to start learning coding?’  

 

  

 
  



b) ‘Computational tools are important for CEE’. 
 

  
 
 
 
 
c) ‘Computational tools are important to help you understand better CEE course materials 
through simulation and visualization’ 

  
 
  



d) ‘Computational experiences you had in previous CEE courses were beneficial to you’. 

  
 

e) ‘Current amount of computation/coding in CEE courses is…’ 

  
 

Figure 6. Student responses to questions about coding in recent semesters (F: Fall, S: Spring). 
Left: early semester responses. Right: end-of-semester responses.  
 
 
Despite an indicated increased acceptance of coding integration in their CEE studies, the word 
clouds in Figure 7 display that coding is a dominant word in answers to the question: ‘What 
challenges do you anticipate in this course?’, for courses where coding is required for most of the 
assignments. Even though wordclouds provide rough qualitative information, it is still interesting 
to see that ‘coding’ is the dominant word (expressed as challenge) in courses where coding is 
required.  
 
  



PB course - coding not required RU course - coding required in all 
assignments  

 
 

MB course – when coding not 
required 

MB course – when coding 
introduced in some assignments 

  

GE course - coding required in all 
assignments 

 

 

 

 
Figure 7. Word clouds summarizing responses to the question ‘What challenges do you 
anticipate in this course?” Question is asked early in the semester. (Recent semesters for each 
course between Spring 2023 to Spring 2024. Wordclouds produced by the wordcloud package in 
R, skipping ‘stop-words’ such as ‘and’, ‘the’, ‘to’,’is’, ‘are’). 

 
In the end of the semester surveys students expressed confidence in using a coding language for 
specific tasks (Figure 8). Although there is variation across semesters, the overall responses 
weigh toward higher confidence at the end of a semester, as indicated by the extent of the color-
coded sections of the graphs. 
 



 

 
 

Figure 8. Student responses to the question ‘How confident do you feel …’. Responses 
correspond to the 2nd year RU course where R is required.  
 
 
Further, in Figure 9, we display % responses to questions asked about the level of comfort 
students have for using different computational tools at the end of a semester. We observe 
differentiation between different courses, part of which relates to prerequisite requirements of 
different courses. In the 2nd year RU course, the first course students take where R is introduced 
and required (Fig. 9a) Python would have been a choice for most students, which is consistent 
with CS 101 being a prerequisite for the RU course. By the end of the semester, 50% of the 
students would use R for data analysis and visualization. For the 3rd yr MB course where Python 
is required for some assignments (Fig. 9b), Excel is shown as the preferred tool while Python 
seems to gain acceptance by the end of the semester. For the 3rd yr GE course where R is 
required (Fig. 9c), there is initially a high preference for Excel, with Excel, Python and R 
showing equal preference shares by the end of the course. 
 
  



a) Responses correspond to the 2nd year RU course where R is required.  

  
 

b) Responses correspond to the 3rd year MB course where Python is required in some 
assignments.  

  
 

c) Responses correspond to the 3rd year GE course where R is required. 

  

Figure 9. Responses to the questions 1) (left panel) ‘If R/Python was not required in this course, 
how would you have approached solving similar problems?’ 2) (right panel) ‘Now, that you have 
taken this course how would you approach solving similar problems in future classes/jobs?’ 



 
Figure 10 summarizes student opinions for different aspects of the 3rd yr courses. The sub-
questions are modified to better match instructor priorities in their courses. Both these courses 
emphasize written communication in addition to coding integration. Figures 10 a), b) support 
increased student confidence in using Python and R in the CEE discipline.   
  
a) Responses correspond to the 3rd year MB course (Spring 2024) where Python is required in 

some assignments. 
 

b) 
b) Responses correspond to the 3rd year GE course (Fall 2023) where R is required. 

 

 
 
Figure 10. Responses to the question ‘What best describes your opinion of …  after taking this 
class?’ for several sub-questions. 



5. Conclusion 

Integration of interpreted high-level object-oriented programming languages in non-CS courses 
has historically faced CEE student reluctance and negative feelings of fear and concern. In this 
paper, we presented a snapshot of student responses following the early steps of a curriculum-
wide effort to integrate Python and R in the problem-solving process within CEE courses. In 
agreement with [2], calling for encouraging the development of technological adaptability and 
agility, our approach fosters computational literacy in multiple platforms as a necessity for which 
students need to adopt flexible mindset in the current technological environment. Our evidence 
from the student surveys suggests a change in the student culture as the use of R and Python is 
becoming the norm in CEE courses. At this stage, responses present a mixed picture shifting 
between acceptance and resistance (such as the high preference for Excel or a few students 
expressing preference for calculators) but the trend we see is in the direction of acceptance of 
coding in the discipline. There are increased numbers of students catching up, as survey 
responses hint and as we see from the graded assessments (not in the scope of this presentation). 
In the most recent two semesters the department has offered weekly tutoring sessions on R and 
Python in addition to the teaching materials used in each course. Response analysis of future 
surveys will help us document the changes in student attitudes, perceptions and learning 
outcomes over time. It will also allow us a better quantification and understanding of student 
attitudes and outcomes as they move from lower to upper-level courses.  
 
The integration of coding into undergraduate civil engineering education requires continuing 
effort. The rapid development of AI is changing how we use and interact with more traditional 
familiar computational tools. The impact of AI on how we teach coding is an open issue to be 
included in our future research and in-class efforts. In such a department-wide effort, faculty 
engagement is of paramount importance. To this end, we have described our approach for 
promoting sustainability of the efforts through the organization of the faculty into course specific 
CoPs as subgroups of the faculty-wide CoP. As the effort continues, fostering of the CoP culture 
of cooperation is of paramount importance.  
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