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Benchmarking of LLM Based Generative AI for CSE
Undergraduate Curriculum

Abstract
In the past few years, rapid research of Natural Language Processing (NLP) has enabled Artificial
Intelligence (AI) tools to answer a wide array of questions with reasonable accuracy by an AI
tool. Furthermore, the rapid inclusion of this technology into Computer Science practice requires
investigating how it can affect our pedagogical strategies. With the rise of Large Language Model
(LLM) based Generative AI tools (Gen-AI), they have shown tremendous efficiency in solving
Computer Science-related questions found in common course curricula. Thus, this paper presents
a novel investigation into the performance of these Gen-AI tools within the context of two courses
in the Computer Science and Software Engineering (CSE) undergraduate curricula at Miami
University.

We introduce a systematic benchmarking methodology to measure LLM performance against
course material found in CSE 174 (Fundamentals of Problem Solving and Programming) and
CSE 274 (Data Abstraction and Data Structures). This includes exams, lab assignments, and
projects. Our benchmarking results reveal the strengths and limitations of these Gen-AI tools in
Computer Science educational tasks, providing crucial insights for curriculum adaptation.
Utilizing these results, we provide insight on how they might assist in the evolution of Computer
Science education. Specifically, we highlight the areas where Gen-AI tools could enhance
learning and where human skills remain explicitly required. This work continues the discussion
on how AI capabilities can be integrated into the academic setting. Such benchmarking efforts are
essential to ensure that our students receive the knowledge they require to move from the
Computer Science academic setting into the professional setting, which largely utilizes such
Gen-AI tools. Thus, this will prepare the next generation of computer scientists to be effective
AI-augmented professionals.

1 Introduction
Artificial Intelligence (AI) introduces challenges to the traditional educational landscape.
Educators need to teach students crucial concepts for their field but also need to prepare students
on how to use relevant tools for their future in the workforce. One such tool is the emergence of
Large Language Models (LLMs) like ChatGPT-4, Copilot, and Claude, which show a significant
leap in AI capabilities. Such technologies require educators to reevaluate teaching methodologies,



curriculum design, and how we prepare students for the workforce [1].

The first step to utilize the aforementioned LLMs in our classes is to apply a benchmark to the
existing curriculum with respect to LLMs. Specifically, we need to understand how LLMs
perform in the context of LLM “being a student.” This understanding can provide insight into
AI’s strengths and weaknesses in various assessments with which we currently evaluate student
learning. Similarly, we should consider the purpose of specific student assessments and why an
AI tool might not be beneficial. In contrast, the same can be said about why an AI tool might be
beneficial. By benchmarking LLM performance on assessments within our Computer Science
and Software Engineering (CSE) curriculum, we can identify where AI excels and falls short and
how it might impact future iterations of the educational landscape.

This study aims to benchmark LLM performance on assessments of two courses within the CSE
undergraduate curriculum. We methodically evaluated how one of the most prominent LLMs,
ChatGPT-4, performs on all relevant assessments within the subset of chosen core courses. Our
preliminary results provide valuable insight into the prospects of AI in Computer Science and
Software Engineering educational tasks. Our findings suggest possible areas of improvement
within our curriculum that need to both leverage AI capabilities and to teach the necessary
prerequisite concepts for our students to fully utilize AI for the workforce.

The contributions of this work are as follows:

1. An applied methodology for benchmarking LLM performance against CSE assessments.

2. Initial performance data of an advanced LLM on the assessments of two CSE core courses.

3. Provide insights into potential curriculum adjustments in light of AI advancements.

The remainder of this paper is organized as follows. Section 2 provides background on AI models,
curriculum analysis, and design. Section 3 introduces our methodology to classify our LLM
prompts. In Section 4, we present an overview of our CSE curriculum and note which courses
have been evaluated in this study. Section 5 presents our benchmarking results. We discuss the
implications of our results in Section 6 and conclude with future work in Section 7.

2 Background - AI Models, Curriculum Analysis, and Cur-
riculum Design

To understand the context of the work in this paper, we provide a brief background of the utilized
topics. First, in Section 2.1, we provide a brief overview of what an AI model is concerning
LLMs. Next, in Section 2.2, we briefly define what learning outcomes are and how they relate to
course design. Finally, in Section 2.3, we briefly discuss the overall curriculum design and
analysis of our CSE curriculum.

2.1 An Overview of AI and LLMs
An LLM is an AI model trained on large datasets of text and designed to perform natural
language processing tasks involving understanding and generating human language [2]. In the



context of Computer Science tasks, they can generate code in various programming languages
[3]. As for this work, we use Agrawal, Gans, and Goldfarb’s [1] model of AI as “prediction
machines.” LLMs are prediction machines that use the intersection between computational
resources (computers, smartphones, etc.) and the given data and datasets to train them
continuously. Thus, LLMs are extraordinarily effective at responding to various queries.

2.2 Learning Objectives and Designing Courses
A Learning Objective (LO), otherwise known as a Learning Outcome, is an educational goal for a
student such that they can perform the objective after learning it. From Bloom’s Taxonomy [4], an
LO belongs in the hierarchy of cognitive processes that range from “lower-order thinking skills”,
such as recalling and classifying information, to “higher-order thinking skills”, such as creating or
planning. As for course design, “Understanding by Design” [5] provides a methodology for
designing courses where the designer starts from LOs, documents how to assess students on
individual LOs, then creates class activities and assignments to prepare them for said assessment.
Thus, it shows the student is competent in any given LO.

2.3 Curriculum Design and Analysis
Curriculum can be defined as a way of ordering content and purposes for teaching and learning in
schools [6]. We expand on this definition and apply it specifically to the CSE curriculum at the
undergraduate level, where the goal of the curriculum is to develop individuals who can
professionally perform Computer Science or Software Engineering tasks. It is worth noting that
the CSE department at Miami University contains multiple undergraduate degrees. Namely,
Computer Science (Bachelor of Arts and Bachelor of Science), Software Engineering, and Cyber
Security. Fortunately, all our majors share the same beginning core courses and diverge into their
specialties around the end of their second year. Computer Science focuses on the theoretical
foundations of computing, Software Engineering focuses on the design, development, and testing
of software, and Cyber Security focuses on local and remote systems, networks, and data
protection from cyber threats. Even though each major diverges in the LOs we teach, they all
require the same foundation of problem-solving and programming, object-oriented programming,
and data structures.

As for the design of these curricula, we start with aims [7] or objectives [8] that are determined by
accrediting agencies, such as the Accreditation Board for Engineering and Technology (ABET),
as well as the needs of companies and practitioners of the respective fields. Following, we
determine a period of study and progression of courses the student takes in the curriculum.
Examining a case study for curriculum design provides great insight into the process, as shown in
Patil and Ghatage’s [9].

Designing an effective curriculum has many challenges, some of which are not immediately
obvious. First, Molontay et. al. [10] utilized directed graphs to analyze curriculum prerequisite
chains. Similarly, Padhye et. al. [11] used data analytic techniques to determine curriculum
design patterns to analyze the complexity of a curriculum. To assist in curriculum design,
Heileman et. al. [12] used curricular analytic techniques to examine how certain curriculum
reforms improve graduation rates. Even with these curriculum reform improvements, aspects of



the curriculum were never intentionally created. These aspects are called Hidden Curriculum,
from which the reader can learn more in works such as Villanueva et. al. [13].

3 LLM Benchmarking Methodology
This work utilizes Jamieson’s LLM Prompt Taxonomy [14]. Based on existing research, this
taxonomy follows a three-level classification system for LLM prompts. The taxonomy is as
follows:

1. LLM Agent Architecture [15]
• Prompt/Response (PR): Simple input-output model
• Multi-Prompt/Automated Response (AR): Generated response gives additional

prompts
• Human in the LLM Loop (HiLL): Human guides task based on LLM responses
• Retrieval Augmented Generation (RAG) systems [16, 17] with memory and retrieval

capabilities
2. LLM Reasoning of Thought

• Nothing of Thought (NoT): Baseline without reflection
• Self-improved of Thought (SoT): Reflects and improves on the given prompt [18, 19]
• Chain of Thought (CoT): Linear generations with reasoning [20]
• Tree of Thought (ToT): Branching generation paths for alternatives [21]
• Graph of Thought (GoT): Network of generated ideas with dependencies [22]
• Program of Thought (PoT): Separates inference from computation [23]

3. LLM Shot Type [24]
• zero-shot: Prediction without specific examples [25]
• few-shot: Prediction with examples [26]
• multi-shot: Multiple separate actions; can combine with other shot types [27, 28]

Thus, Jamieson’s LLM Prompt Taxonomy is represented as {architecture; reasoning; shot-type}.
Utilizing this taxonomy, a prompt can be classified based on the LLM’s complexity and
capabilities. One generally needs to increase one or more of the three taxonomy pieces to achieve
a more advanced prompt. That is, provide a more complex architecture, higher-level reasoning of
thought, and/or a few-shot or multi-shot prompt approach. We use this taxonomy to record and
analyze the prompts used in our course assessments.

To utilize this taxonomy in the work for this paper, we used a chatbot, namely ChatGPT-4, and
prompted it to complete the assessments of a course. Each course will be evaluated
independently. The methodology for using this taxonomy is as follows:

1. Using Jamieson’s LLM Prompt Taxonomy, we prompt ChatGPT-4 via the web interface1

with the zero-shot shot type to complete the given assessment. We chose this shot type as
ChatGPT-4 can understand PDFs in full. Thus, the prompt “Solve the attached assignment.”
is used, and we attached the lab instructions and other relevant files. Each prompt will have
the taxonomy recorded.

1https://chatgpt.com/



2. Execute the prompts and record the generated results.
3. Using the generated results, the course instructor will grade the assessment as if a

student-produced it. A letter grade or numerical value should be assigned to the assessment.
We acknowledge that this approach has bias as the instructor knows that ChatGPT-4
generated the result for the assessment.

4. After all assessments have been prompted and graded, they are aggregated, and a final
grade for the course is assigned to ChatGPT-4. Thus, this allows us to make claims such as
“How well is an LLM at completing a course?” or with more specifics such as “How well
does an LLM write code to traverse a binary tree recursively?”.

5. All assessments given to ChatGPT-4 will have an “Assumed LLM Score” given to it by the
instructor. This assumed score is what the instructor believes the LLM’s grade will be on a
given assessment before it is generated. These assumptions, while speculative, can provide
an idea of what could be achieved if more advanced aspects of the taxonomy are used.

Lastly, we note that not all assessments, such as class participation, can be given to an LLM.
Thus, to provide a final grade, we give full credit as we would any student who fully participates
in the course.

4 Miami University’s CSE Curriculum
Miami University’s CSE Curriculum, as previously discussed, contains three undergraduate
majors: Computer Science (Bachelor of Arts and Bachelor of Science), Software Engineering,
and Cyber Security. All three disciplines share the same year and a half of core courses. Thus, for
the sake of brevity, we will discuss only the Computer Science track. As seen in Figure 1, the
three introductory courses taken linearly are CSE 174 - Fundamentals of Problem Solving and
Programming, CSE 271 - Object-Oriented Programming, and CSE 274 - Data Abstraction and
Data Structures. We applied Jamieson’s LLM Prompt Taxonomy to CSE 174 and CSE 274 as all
CSE students take these courses and are fundamental for every discipline in the department.
Moving past CSE 274, the curriculum diverges depending on the chosen degree. The figure also
excludes prerequisites from mathematics as well as electives. Note that our curricula were
designed well before AI and LLMs were prominent. Thus, the following questions are
posed:

1. How do LLMs interact with our courses?

2. How and where must our curriculum change for these readily available LLMs?

We aim to provide the beginnings of an answer to both of these questions. You could expand on
the second question by discussing the ordering of courses, the topics being taught within the
courses, etc. However, these questions are outside the scope of this work and will be examined in
future work.

4.1 CSE 174 - Fundamentals of Problem Solving and Programming
CSE 174, Fundamentals of Problem Solving and Programming, focuses on the fundamental
programming principles that nearly all programming languages utilize and how these principles



Figure 1: CSE curriculum flowchart of core courses.

can be applied to solve practical problems. The curriculum uses Python to cover variable creation,
file input and output, control structures, loops, functions, recursion, lists, and basic searching and
sorting algorithms.

The primary goal of this course is to teach and reinforce programming and problem-solving
principles to students with no previous programming knowledge. The LOs emphasize a
progression through multiple levels of Bloom’s taxonomy [4]. First, at the Understanding level,
students must explain how specific principles work in order to apply them effectively. Next, at the
Applying level, students implement the code of these principles to solve introductory problems.
Then, at the Analyzing level, students must examine their output to determine if it matches the
expected output of the test cases as well as analyze why either it did or did not. Finally, at the
Creating level, students must combine multiple principles, such as nested for loops within a
function, to address real-world problems. Thus, this course’s assessments nourish critical
thinking, problem-solving, and coding principles.

Assessments in this course are all hands-on and are designed to coincide with the topic being
presented immediately. Furthermore, each Lab and Project has a premise, such as “Creating an
Online Business Customer Management Program,” to provide real-world context for a particular
programming principle. The students are tasked with implementing the principle, such as nested
loops, in a different and slightly more involved way than presented in class. Thus, additional time
is required to walk through the essential problem-solving steps to produce the correct output. To
showcase this, below is a sample lab assignment, shortened for brevity, that would be given to
students in the course.

Sample Lab 10 Assignment

You decided to volunteer at a local homeless shelter and food pantry. The shelter
offers greatly discounted foods and supplies to individuals in need. The shelter also
knows you are a programmer and asked if you could help them create a program to



assist with their order data.

Using the example input text files list1.txt and list2.txt, create a lab 10.py file, ask the
user for a file name, read the text file line-by-line, calculate the total profit and
average order profit, and display the output as shown in the example output. To do
this, create and implement the following functions:

def get_order_profits(data: list) -> list:

def display(data: list) -> None:

def get_average_profit(data: list) -> float:

def get_total_profit(data: list) -> float:

Grading Rubric: Total 100 points. The program prompts the user for a filename,
reads the file, and handles a FileNotFoundError with a try-except block, 20 points.
The program calculates the profit per order, 20 points. The program displays the
output, 10 points. The program calculates the average and total profit of all orders, 10
points. The program closes the file, 10 points. The program uses proper variable
names, follows style guidelines, and has an appropriate amount of comments, 30
points.

The lab instruction is associated with an input text file of data, as given below.

12342 Pen 10 .25
12343 Book 10 1.35
12353 Mouse 1 12.0
12359 Keyboard 1 43.99
12313 Chips 2 2.89
12314 Icecream 5 1.30

Below is a sample of the code that ChatGPT-4 generated for the get order profits()
function.

def get_order_profits(order_list: list) -> list:
"""
Extracts the amount and price of each order, calculates the profit, and

returns a list of profits.↪→

:param order_list: List of all order data.
:return: List of individual order profits.
"""
profits = []
for i in range(2, len(order_list), 4):

amount = int(order_list[i])
price = float(order_list[i + 1])
profits.append(amount * price)

return profits



4.2 CSE 274 - Data Abstraction and Data Structures
CSE 274, Data Abstraction and Data Structures, focuses on the design, implementation, and
analysis of Abstract Data Types (ADTs) using object-oriented programming principles. The
curriculum covers a range of fundamental data structures, such as lists, stacks, queues, tables,
trees, and graphs, along with their sequential and linked storage representations. Additionally, the
course emphasizes recursion, sorting and searching algorithms, and the analysis of algorithm
complexity, equipping students with theoretical and practical understanding.

The primary goal of this course is to enable students to select and implement appropriate data
structures and algorithms to solve computational problems effectively. The LOs emphasize a
progression through multiple levels of Bloom’s taxonomy [4]. First, at the Understanding level,
students articulate the purpose, behavior, and applications of key data structures and ADTs. Next,
at the Applying level, they implement these structures and algorithms using object-oriented
programming principles in Java. The course advances to the Analyzing level as students evaluate
the performance and suitability of various data structures for specific problems, considering
algorithm complexity. Finally, at the Creating level, students design and implement innovative
solutions by combining data structures and algorithms to address real-world challenges. This
comprehensive approach cultivates critical thinking, problem-solving, and coding
proficiency.

Assessments in this course are hands-on and designed to build practical coding skills. Students
work on implementing data structures iteratively and recursively, using array-based and
linked-node-based approaches. They also develop traversal algorithms and leverage Java’s
standard collection libraries, ensuring a well-rounded experience in data structure implementation
and application. To showcase this, below is a sample lab assignment, shortened for brevity, that
would be given to students in the course.

Sample Lab 6 Assignment

In this lab, you will define a stack and then use it to complete multiple tasks
(methods) defined in the StackApplications.java class. You can then use
StackApplicationTest to test all your methods using JUnit tests.

Write a class named Stack, which implements the StackInterface using a singly
linked list. You cannot have any other methods in the Stack class. Also, you can have
only one instance variable referencing the first node named “topNode”.

Implement the incomplete methods in the StackApplications class so that your code
passes all JUnit tests.

Grading Rubric: Total 100 points. Stack class is worth 30 points (each method 6
points). Each method in StackApplications is worth approximately 10 points. There
are seven methods, total 70 points.

The lab instruction is associated with a Java file skeleton, as given below.

public class StackApplications {
/**
* Computes the sum of all the numbers in the stack.



*/
public static int sum(Stack<Integer> data) {

return 0;
}

/**
* Computes the sum of all the numbers in the stack. However, if two or more

* numbers in a row are equal, only add one of them. So, for example, if the

* stack contained 4, 1, 2, 2, 7, 2, 8, 8, 8, 4, then the numbers that would

* be added would be 4 + 1 + 2 + 7 + 2 + 8 + 4 = 28. Here 4 is the top of
the stack.↪→

*/
public static int sumSkipDuplicates(Stack<Integer> data) {

return 0;
}

/**
* Puts all of the digits of an integer into a stack, with the first

* digit of the integer at the bottom of the stack and the last digit

* of the integer at the top of the stack.

*/
public static Stack<Integer> integerToStack(int n) {

return null;
}

/**
* Reverses a given stack, so that the top of the stack becomes the bottom

* and the bottom becomes the top.

*/
public static void reverseStack(Stack<Integer> s) {
}

}

Below is a sample of the code that ChatGPT-4 generated for reversing a Stack.

/**
* Reverses a given stack, so that the top of the stack becomes the bottom

and↪→

* the bottom becomes the top.

*/
public static void reverseStack(Stack<Integer> s) {

Stack<Integer> tempStack1 = new Stack<>();
Stack<Integer> tempStack2 = new Stack<>();

while (!s.isEmpty()) {
tempStack1.push(s.pop());

}

while (!tempStack1.isEmpty()) {
tempStack2.push(tempStack1.pop());

}

while (!tempStack2.isEmpty()) {
s.push(tempStack2.pop());



}

5 Benchmarking Results for our Selected Courses
After implementing the methodology described in Section 3, we independently showcase the
results for the two courses. Section 5.1 details the results of CSE 174’s curriculum, and Section
5.2 details the results of CSE 274’s curriculum. Note that the two courses employ a variety of
assessments to evaluate students’ understanding and skills. Table 1 showcases these for CSE 174,
and Table 2 showcases these for CSE 274. For both tables, Columns 1 and 2 show each category’s
course assessment and the corresponding number of assessments, respectively. Column 3 shows
the percentage weight used in the final grade calculation for each category. Column 4 shows
ChatGPT-4’s evaluated and aggregated score. Finally, column 5 shows the prompt’s level in
Jamieson’s LLM Prompt Taxonomy discussed previously.

For both courses, we assumed a score of 100% for each assessment as the LOs of these courses
are at the front of the overall curriculum, are well-studied, and do not require any external
equipment for any assessment. Finally, in both tables, the In-class Participation and Career
Assignments (for CSE 174 only) assessments are given a score of 100% as these components
require real-time engagement not directly replicable by LLMs. Students are given full credit if
they submit them, regardless of their correctness.

5.1 Benchmarking CSE 174
Table 1 provides the breakdown of grades for different CSE 174 assessments. ChatGPT-4
performed quite well in the Final Exam and both Midterm Exam 1 and Midterm Exam 2,
scoring 86%, 91%, and 88%, respectively. Then, for Labs, ChatGPT-4 achieved a score of
84.90%. Next, in Quizzes, ChatGPT-4 scored 85.71%. Finally, for Projects, ChatGPT-4 scored
91%. The tool demonstrated consistently above-average performance across various course
assessments, achieving an overall score of 88.56%, equivalent to a letter grade of B+.

Table 1: Performance of ChatGPT-4 in CSE 174.
Course

Assessment
Assessment

Count
Grade
Weight

ChatGPT-4
Score

Jamieson’s LLM
Prompt Taxonomy

Final Exam 1 20% 86% PR; CoT; zero-shot
Midterm Exam 1 1 15% 91% PR: CoT; zero-shot
Midterm Exam 2 1 15% 88% PR; CoT; zero-shot
Labs 10 15% 84.90% PR: CoT; zero-shot
Quizzes 13 10% 85.71% PR: CoT; zero-shot
Projects 4 20% 91% PR: CoT; zero-shot
In-class Participation N/A 2.5% (assumed) 100% N/A
Career Assignments N/A 2.5% (assumed) 100% N/A
Final Score 88.56% (Letter Grade B+)



5.2 Benchmarking CSE 274
Table 2 provides the breakdown of grades for different CSE 274 assessments. ChatGPT-4
excelled in both the Final Exam and Midterm Exam, scoring 90% in each. Then, for Labs,
ChatGPT-4 achieved a score of 97.2%. Next, in Quizzes, ChatGPT-4 scored 92.14%. Finally, the
highest performance was observed in Homework Projects scoring 98.40%. The tool consistently
demonstrated high performance across various course components, achieving an overall score of
93%, equivalent to a letter grade of A−.

Table 2: Performance of ChatGPT-4 in CSE 274.
Course

Assessment
Assessment

Count
Grade
Weight

ChatGPT-4
Score

Jamieson’s LLM
Prompt Taxonomy

Final Exam 1 25% 90% PR; CoT; zero-shot
Midterm Exam 1 25% 90% PR: CoT; zero-shot
Labs 11 15% 97.20% PR: CoT; zero-shot
Quizzes 11 15% 92.14% PR: CoT; zero-shot
Homework Projects 6 15% 98.40% PR: CoT; zero-shot
In-class Participation N/A 5% (assumed) 100% N/A
Final Score 93% (Letter Grade A-)

6 Discussion
Examining our benchmarking results allows us to analyze the performance of ChatGPT-4 in our
assessments and, therefore, is a core part of our CSE curriculum. Also, we aim to answer
Question 1 posed in Section 4. First, for CSE 174, ChatGPT-4 obtained a final grade of 88.56%,
which is a B+. The LLM did not score perfectly in any category in Table 1, which surprised us.
After analyzing the generated results, a couple patterns emerged.

First, we noticed hallucinations if there were any images (jpg, png, etc.) within the pdf file
showing the expected example output. That is, a hallucination is a generated response that is
plausible but is either incorrect, not connected to the initial prompt, or both [29]. As CSE 174 is
the first programming course many students take, we expect very explicit program outputs. The
instructors act as the ‘customers’ while the students act as ‘workers’ for the company we hired.
We hired them for the assessments, and we asked for specific output. When they deviate from that,
they lose points as the instructor, i.e., the customer, is not getting what was asked for. This is in an
attempt to connect the assessments to real-world use cases. Note, the amount of deducted points
is only a few if some words do not match up in the output, for example. We note this as most
assignments had the expected output in an image saved in the PDF. Thus, ChatGPT-4 hallucinated
prompts for the output and lost points as reflected in the Labs and Projects categories.

Secondly, ChatGPT-4 occasionally generated incorrect mathematical equation results when
quantitative tasks were posed, but not consistently, as shown in the Quizzes category. Overall, we
found that ChatGPT-4 performed exceptionally well in generating code for assessments, and for
understanding and answering more theoretical questions, both in CSE 174 and CSE 274. That
means it possesses good analytical skills.



Moving to CSE 274, ChatGPT-4 performed slightly better than CSE 174 and achieved a final
grade of 93%, which is an A-. Though again, as shown in Table 2, it did not score perfectly as
hypothesized. It did, though, excel in both the Midterm Exam and Final Exam, for which it
scored 90%, showcasing its strong ability to analyze, apply, and create solutions under theoretical
and problem-solving contexts. Furthermore, as CSE 274 assessments are more involved than CSE
174 assessments and require a higher order of programming knowledge, ChatGPT-4 showed
proficiency in implementing and debugging more complex code. This is reflected in the Labs and
Homework Projects categories, highlighting ChatGPT-4’s capability to execute complex
programming tasks, implement algorithms, and demonstrate problem-solving at a granular
level.

There are also some interesting use cases for ChatGPT-4 in CSE education, allowing us to
construct an answer for Question 2 posed in Section 4. LLMs can play a pivotal role in assisting
students with various assessments. For example, in CSE 274, students can use ChatGPT-4 to
clarify concepts, generate code snippets for implementing data structures, or debug and optimize
their solutions. These tools can also help students write JUnit tests or understand the trade-offs in
algorithm complexity, fostering a deeper understanding of course concepts. Furthermore, the
instructor can harness AI tools to augment learning outcomes by designing assignments that
require critical analysis and customization of AI-generated outputs, ensuring students engage
deeply with the material. In the case of CSE 174, tools like ChatGPT-4 can provide additional
study material and short problems to practice key concepts like if-statements, loops, etc., with a
correctly engineered prompt.

Conversely, the course level in the curriculum might also dictate the level of involvement students
can or should have with using LLMs. For introductory programming courses such as CSE 174,
students have no conception of a for loop, a try-except block, a function, etc. To fully utilize the
capabilities of LLMs as a pair programmer or programming assistant, they first need to
understand the fundamental concepts it generates. Without that, it is difficult to integrate what is
generated into a larger program without creating bugs, thus failing test cases. The programs for
our CSE 174 course are small enough that LLMs can generate the entire solution. However, the
programs get significantly larger in later courses in the third and fourth years. Therefore, students
will have to understand what the code that LLMs are generating is doing so that it can be
smoothly integrated into these large programs. So, to answer the second question, the curriculum
needs to sufficiently educate students on learning from the information generated from LLMs and
not rely solely on what is produced. It is already standard practice in the industry for
programmers to utilize LLMs to increase productivity. So, we as educators must integrate LLMs
into our classes gradually throughout the curriculum so that students learn the material and how to
effectively utilize LLMs.

Using ChatGPT as a tutor or troubleshooter for assessments can significantly enhance student
learning by providing on-demand explanations, debugging assistance, and guidance in
understanding fundamental programming concepts, complex data structures, and algorithms. For
example, students can use ChatGPT to clarify doubts about pieces of code, generate sample code,
or troubleshoot errors in their assignments. This self-paced, interactive learning approach enables
students to explore alternative solutions and deepen their understanding. However, instructors
should guide students on the ethical and effective use of such tools, emphasizing that ChatGPT



should supplement learning rather than replace critical thinking and original problem-solving. To
ensure academic integrity, instructors can design assessments that require personalized and
innovative application of concepts, making it harder to rely solely on AI-generated solutions. To
reduce opportunities for misconduct, the course should emphasize in-class quizzes and exams
rather than take-home assignments. In-class assessments are harder to manipulate and provide a
better measure of individual understanding. Adding more weight to these in-class evaluations
than take-home assignments will encourage students to focus on mastering the content.

As for using the generated responses of our assessments from ChatGPT-4, or similar LLMs, to
better teach a topic is not yet clear. That is, the LLM’s reasoning of thought for these introductory
courses is effectively one-to-one, i.e., not as described in Section 3. The assessments are too
linear at the beginning of our curriculum to warrant a more complex reasoning of thought.
Perhaps later in the curriculum with more complex assessments, the generated assessment
responses can give additional insight on how to present a topic. However, the instructor can adopt
a balanced approach, teaching the main concepts in lectures and demonstrating their application
through live programming examples. This approach helps students build a strong theoretical
foundation and observe practical problem-solving techniques firsthand. AI tools can then be
positioned as practice aids, allowing students to refine their understanding by debugging code,
exploring alternative solutions, or clarifying doubts. By using these tools for practice, students
can strengthen their grasp of data structures and programming techniques without bypassing the
learning process.

7 Conclusions
In conclusion, we utilized Jamieson’s LLM Prompt Taxonomy to benchmark two courses in
Miami University’s CSE curriculum. Specifically, we benchmarked CSE 174 - Fundamentals of
Problem Solving and Programming and CSE 274 - Data Abstraction and Data Structures, two
core courses at the beginning of our curriculum. Tables 1 and 2 summarize how well an LLM,
specifically ChatGPT-4, performs in CSE 174 and CSE 274, respectively. From these results and
by analyzing the generated outputs from ChatGPT-4, we aimed to answer two questions: “How
do LLMs interact with our courses?” and “How and where must our curriculum change for these
readily available LLMs?”

Our findings suggest that while LLMs perform exceptionally well over various assessments in
both courses, they are not as perfect as expected. To answer the first question, LLMs can be
viewed as above-average students, able to analyze the problem and generate solutions under
theoretical and problem-solving contexts. However, it hallucinates when dealing with images
embedded in PDF files and is inconsistent with mathematical operations. Thus, it achieved a final
grade of B+ and A- in CSE 174 and CSE 274, respectively. As for answering the second question,
we acknowledge the need to incorporate LLMs gradually throughout the curriculum. Specifically
balancing their usage such that students effectively learn the presented concepts and how to
interact with an LLM. For CSE students to utilize the generated code from an LLM, they must
understand what that code does to integrate it into a larger program without causing
problems.



Future work will have us benchmark later classes, such as CSE 374 - Algorithms 1 in the
curriculum, as CSE 174 and CSE 274 are at the front of our curriculum. Then, we can compare
the benchmarking results to make more concrete suggestions for CSE curriculum
improvement.
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