Introduction: Recent AI advances, particularly the introduction of large language models (LLMs), have expanded the capacity to automate various tasks, including the analysis of text. This capability may be especially helpful in education research, where lack of resources often hampers the ability to perform various kinds of analyses, particularly those requiring a high level of expertise in a domain and/or a large set of textual data. For instance, we recently coded approximately 10,000 state K-12 computer science standards, requiring over 200 hours of work by subject matter experts. If LLMs are capable of completing a task such as this, the savings in human resources would be immense.
Research Questions: This study explores two research questions: (1) How do LLMs compare to humans in the performance of an education research task? and (2) What do errors in LLM performance on this task suggest about current LLM capabilities and limitations?
Methodology: We used a random sample of state K-12 computer science standards. We compared the output of three LLMs – ChatGPT, Llama, and Claude – to the work of human subject matter experts in coding the relationship between each state standard and a set of national K-12 standards. Specifically, the LLMs and the humans determined whether each state standard was identical to, similar to, based on, or different from the national standards and (if it was not different) which national standard it resembled.
Results: Each of the LLMs identified a different national standard than the subject matter expert in about half of instances. When the LLM identified the same standard, it usually categorized the type of relationship (i.e., identical to, similar to, based on) in the same way as the human expert. However, the LLMs sometimes misidentified ‘identical’ standards.
Discussion: Our results suggest that LLMs are not currently capable of matching human performance on the task of classifying learning standards. The mis-identification of some state standards as identical to national standards – when they clearly were not – is an interesting error, given that traditional computing technologies can easily identify identical text. Similarly, some of the mismatches between the LLM and human performance indicate clear errors on the part of the LLMs. However, some of the mismatches are difficult to assess, given the ambiguity inherent in this task and the potential for human error. We conclude the paper with recommendations for the use of LLMs in education research based on these findings.
The full paper will be available to logged in and registered conference attendees once the conference starts on June 22, 2025, and to all visitors after the conference ends on June 25, 2025