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Can LLMs Assist with Education Research? The Case of
Computer Science Standards Analysis

Abstract

Introduction: Recent Al advances, particularly the introduction of large language models (LLMs),
have expanded the capacity to automate various tasks, including the analysis of text. This
capability may be especially helpful in education research, where lack of resources often hampers
the ability to perform various kinds of analyses, particularly those requiring a high level of
expertise in a domain and/or a large set of textual data. For instance, we recently coded
approximately 10,000 state K-12 computer science standards, requiring over 200 hours of work
by subject matter experts. If LLMs are capable of completing a task such as this, the savings in
human resources would be immense.

Research Questions: This study explores two research questions: (1) How do LLMs compare to
humans in the performance of an education research task? and (2) What do errors in LLM
performance on this task suggest about current LLM capabilities and limitations?

Methodology: We used a random sample of state K-12 computer science standards. We compared
the output of three LLMs — ChatGPT, Llama, and Claude — to the work of human subject matter
experts in coding the relationship between each state standard and a set of national K-12
standards. Specifically, the LLMs and the humans determined whether each state standard was
identical to, similar to, based on, or different from the national standards and (if it was not
different) which national standard it resembled.

Results: Each of the LLMs identified a different national standard than the subject matter expert
in about half of instances. When the LLM identified the same standard, it usually categorized the
type of relationship (i.e., identical to, similar to, based on) in the same way as the human expert.
However, the LLMs sometimes misidentified ‘identical’ standards.

Discussion: Our results suggest that LLMs are not currently capable of matching human
performance on the task of classifying learning standards. The mis-identification of some state
standards as identical to national standards — when they clearly were not — is an interesting error,
given that traditional computing technologies can easily identify identical text. Similarly, some of
the mismatches between the LLM and human performance indicate clear errors on the part of the
LLMs. However, some of the mismatches are difficult to assess, given the ambiguity inherent in
this task and the potential for human error. We conclude the paper with recommendations for the
use of LLMs in education research based on these findings.



1 Introduction and Background

1.1 Introduction

The Al revolution inaugurated by the release of ChatGPT in November 2022 has impacted many
fields due to the ability of large language models (LLMs) to generate fluent text in response to
user prompts. This ability has promise to automate many tasks, enabling, among other things,
analysis of unstructured text at scale. This analysis could be particularly useful in education
research, where large data sets require high levels of human expertise to assess and resources to
perform such tasks are often lacking.

For example, our team recently manually coded numerous data points for each of nearly 10,000
state K-12 computer science learning standards. This task required over 200 hours of work by
subject matter experts. The potential to automate this task via LLM would represent an enormous
reduction in the resources needed for the task, enabling additional education research work to be
performed.

Thus, the central aim of this study is to explore the usefulness of LLLMs for the analysis of textual
data in a specific domain, namely computer science learning standards. Specifically, we answer
two research questions: (1) How do LLMs compare to humans in the performance of an
education research task? and (2) What do errors in LLLM performance on this task suggest about
current LLLM capabilities and limitations?

1.2 Large Language Models

Despite their novelty, LLMs have been used for a wide variety of tasks in domains ranging from
education [1] to medical diagnoses [2]. LLMs have shown promise in tasks such as identifying
relevant material from large corpora [3], including at the conceptual level [4] and not just for the
less complex task of identifying keywords. However, LLMs such as ChatGPT can also produce
erroneous output [5]. A common problem with LLMs is their tendency to hallucinate, a problem
that may be inherent to their architecture [6]. Borji defines eleven types of LLM errors, including
problems with reasoning, logic, humor, ethics, and bias [7]. The evidence of LLM bias, including
racial bias, is particularly troubling. For example, LLMs show prejudice related to dialect markers
associated with Black English [8] and stereotypes associated with student names [9]. This
evidence of bias suggests that caution is warranted when LLMs are used in any task where
judgement is required.

1.3 Alin Education Research

To date, there has been limited research on the potential of LLMs to contribute to the research
process [10]; this is perhaps not surprising given their novelty. Kiichemann et al. cataloged the
ways in which LLMs and other Al tools might assist education researchers, including for data
cleaning and analysis, literature reviews, assessing learning after an intervention, creating
intelligent tutoring systems, and assisting in translation (including across disciplines as well as for
natural languages) for diverse research teams [11]. But Kiichemann et al. also identified
challenges for Al use in education research, including authorship issues, transparency, bias and
other ethical issues, and over-reliance.

Some work suggests that LLMs can adequately perform literature searches [12] and find papers to
support a given claim [13], but work by Lehr et al. suggests that LLMs are not proficient in
curating research studies. One study showed that LL.Ms generated research ideas that were judged
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Figure 1: Summary of the process for categorizing standards.

(by humans) to be more novel — but perhaps less feasible — than those produced by (human)
researchers [14]. Pack and Maloney explored how LLMs could be used to assist with education
research, including qualitative data analysis, while noting that there are unresolved ethical issues
— particularly regarding open questions around reliability, validity, and bias [15]. Barany et al.
showed the promise of LLMs in the development of codebooks for qualitative analysis, finding
that hybrid approaches could improve efficiency but that fully automated codebooks were
unlikely to meet researchers’ needs [16].

1.4 The Human Analysis

In preparation for its upcoming effort to revise its computer science (CS) standards for K-12
students, the Computer Science Teachers Association (CSTA) engaged in several initiatives to
provide important background information for its standards writers. One of these initiatives was
to map all of the state CS standards to the CSTA standards as well as to tag a variety of
characteristics of the state standards (e.g., topic, grade level). Subject matter experts with
extensive experience in CS education and standards development were recruited for this task and
then asked to analyze each state standard. Figure 1 summarizes the process.

First, they were asked to indicate each state standard’s similarity to a CSTA standard, using these
categories: (1) identical to, (2) similar to, (3) based on, or (4) entirely different from a CSTA
standard. (Note that the classification based on indicates only that there are some commonalities
in the content of the two standards; it does not require evidence that the CSTA standard was used
as a source for the state standard.)

Second, they were asked to choose the relevant CSTA standard for the state standards in
categories (1), (2), and (3) or to choose ‘none’ for state standards in category (4). (In a few
instances, the subject matter expert assigned more than one similar CSTA standard to a particular
state standard.)



2 Methodology

We selected a random sample of 100 standards from the body of about 10,000 state K-12
computer science standards. We used three different LLMs — ChatGPT, Claude, and Llama — to
reproduce the human analysis of the standards. We accessed each of these LLMs via Perplexity
(https://www.perplexity.ai/)in July 2024, using the models available in Perplexity at
that time.

We divided the 100 state standards into groups of 10 since larger groups tend to result in the LLM
truncating the output without completing the task. We provided each LLM with the following
prompt for the first group of 10 standards:

I have provided a file called ‘CSTAStandards.csv.” It contains two columns. The first column,
called ‘Ildentifier;’ contains an ID. The second column, called ‘Standard,” contains the text of the
CSTA computer science standards. At the end of these instructions, I am going to provide, in the
format of a Python list, 10 state standards with their state name and their identification codes.
For each state standard, I want you to determine if it is (1) identical to, (2) similar to, (3) based
on, or (4) entirely different from a CSTA standard. Please give me a Python list that includes, for
each state standard, the following elements: (a) the text of the state standard, (b) the state
identification code, (c) the state name, (d) one word — either ‘identical,’ ‘similar, ‘based,” or
‘different’ — indicating its relationship to a CSTA standard, and (e) if the standard is identical,
similar to, or based on a CSTA standard, the text of that CSTA standard or; if it is different, the
word ‘none.’

Then, after the output was received, we used this prompt for each of the remaining batches of
state standards: Please follow the same instructions above for this list, followed by the list of 10
state standards.

In the remainder of this paper, we will use the term verdict for the determination of whether a
standard is identical, similar, based, or different. Thus, for example, if the human coded two
standards identical and the LLM also coded them identical, we would say that the human and the
LLM reached the same verdict.

We will use the terms match and mismatch to describe the relationship between the human coder’s
choice of relevant CSTA standard and the LLM’s determination. Thus, if the human and the LLM
chose the same CSTA standard as being identical to a given state standard, that would be a
considered a match. If the human chose ‘none’ (i.e., because the state standard was different from
all CSTA standards) and the LLM did not (or vice versa), we consider that a mismatch. As
mentioned previously, in a few instances, the human coder coded a given state standard as
identical, similar, or based on more than one CSTA standard. Specifically, two of the state
standards were matched to two CSTA standards, and one state standard was matched to three
CSTA standards.

In the analysis below, we consider the LLLM to have a match if it chose any one of the CSTA
standards selected by the human coder.

3 Results
Note that, for the first attempt, ChatGPT provided (incorrect and incomplete) Python code to
determine the categorization of the standards instead of performing the categorization itself. We
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Figure 2: Llama performance. Key: H — human, AI — Llama, I — identical, D — different, S —
similar, B — based on.

reprompted it to generate usable results.

Figures 2, 3, and 4 summarize the performance of each LLM. Mismatches with the human coder
occurred in about half of the instances: Llama (n = 46), Claude (n = 52), and ChatGPT

(n = 41). However, when the LLLM had a match with the human coder, it usually had the same
verdict as the human coder because it categorized the level of similarity in the same way as the
human expert. However, and perhaps surprisingly, there were some instances where the human’s
verdict was identical but the LLM’s verdict was not identical.

4 Discussion

As Figures 2, 3, and 4 show, all three LLMs had mismatch rates around 50%. For most research
situations, an accuracy rate approaching that of a coin flip is not acceptable, and thus we conclude
that LL.Ms are not (yet) capable of replacing human subject matter experts for similar tasks. We
also recognize a host of other concerns related to LLMs, including their environmental impact
[17], unauthorized use of copyrighted materials [18], potential to lead to significant economic
dislocation [19], and ability to amplify misinformation [20].

However, in the instances where there was a match, the LLM verdict was usually quite similar to
the human verdict. Interestingly, one of the main exceptions to the trend of humans and LLMs
reaching the same verdict is that the LLM would sometimes deem a state standard identical when
it was not. This is a somewhat surprising finding given that identification of identical standards
should be a relatively simple task for an LLM. In fact, this task does not actually require artificial
intelligence — it is a task for which standard programming strategies of string matching would
suffice and have been able to provide accurate results. But all three LLMs over-identified
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Figure 3: Claude performance. Key: H — human, AI — Claude, I — identical, D — different, S
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Figure 4: ChatGPT performance. Key: H — human, Al — ChatGPT, I — identical, D — different,
S — similar, B — based on.



Entity Verdict CSTA Standard

Human similar ~ Decompose problems and subproblems into parts to facili-
tate the design, implementation, and review of programs.

Claude identical Decompose problems and subproblems into parts to facili-
tate the design, implementation, and review of programs.

Llama identical Decompose problems and subproblems into parts to facili-
tate the design, implementation, and review of programs.

ChatGPT similar ~ Decompose (break down) problems into smaller, manage-
able subproblems to facilitate the program development
process.

Table 1: Classification for South Carolina HS1.AP.3.1: “Decompose tasks into smaller, reusable
parts to facilitate the design, implementation, and review of programs.”

ChatGPT Claude Llama

Human error 2 2 2
Nearly identical 7 7 6
Not nearly identical 0 2 0

Table 2: Summary of mismatches where the LLM’s verdict was identical.

standards as identical, relative to the human coders. For example, one of the state standards in the
sample is South Carolina HS1.AP.3.1: “Decompose tasks into smaller, reusable parts to facilitate
the design, implementation, and review of programs.” The human coder categorized this standard
as similar to CSTA 2-AP-13: “Decompose problems and subproblems into parts to facilitate the
design, implementation, and review of programs.” Both Claude and Llama identified the same
CSTA standard, but they both indicated that it was identical to that standard, when it obviously is
not (see Table 1.)

It may be the case that the LLLMs were using a ‘fuzzy’ approach to determine what constitutes an
identical standard as opposed to a strict approach that tested for a verbatim match, although this
would still be an inaccurate verdict given the options for verdicts that they were given. Or, it may
be that this incorrect verdict is an example of the well-known tendency of LLMs to ‘hallucinate’
[21, 22].

We manually examined the instances where an LLLM’s verdict was identical but the human’s was
something else. Results are summarized in Table 2.

In two instances, the human erroneously rendered a verdict of something other than identical for
standards that were identical. In other instances (ChaptGPT: n = 7, Claude: n = 8, Llama:

n = 7), the LLM gave a verdict of identical to standards that were nearly (but not quite) identical.
An example of one instance of this phenomenon can be found in Table 3.

In one instance, a standard that was not nearly identical was deemed identical by Claude. Claude
deemed Kansas 5.IC.SLE.O1 (“Observe intellectual property rights and give appropriate credit
when using resources.”) as identical to CSTA IB-IC-21 (“Use public domain or creative commons
media, and refrain from copying or using material created by others without permission.”).



Entity Verdict CSTA Standard

Human similar  Give attribution when using the ideas and creations of others
while developing programs.

ChatGPT identical Give attribution when using the ideas and creations of others
while developing programs.

Claude identical ~Give attribution when using the ideas and creations of others
while developing programs.

Llama identical ~Give attribution when using the ideas and creations of others
while developing programs.

Table 3: Classification for Nevada 2.AP.PD.2: “Give attribution (credit) when using the ideas and
creations of others while developing programs.”

Human Categorization LLM Categorization = ChatGPT Claude Llama

different identical to, similar to, 9 26 18
or based on

identical to, similar to, or different 11 1 1

based on

Table 4: Summary of mismatches.

These mismatches regarding the verdict of identical are particularly important in the context of
this project, which was concerned with whether and how state standards differ from the CSTA
standards. Thus, categorizing as identical a standard that is not — even if the change is minor —
presents a problem in the context of the project.

Also interesting is that, for all cases of matches, if the human verdict was different, the LLM
verdict was also different (and vice versa) — these instances are represented by the pink bars in
Figures 2, 3, and 4. In other words, for this portion of the task, the LLM accuracy rate was
100%.

Note that there are instances of mismatches involving the human determining that the state
standard was different but the LLM pairing it with a CSTA standard (or vice versa); these
instances are summarized in Table 4.

A noteworthy feature of Table 4 is how different the pattern is for the LLMs: ChatGPT’s
mismatches are roughly evenly distributed (n = 9 for human verdict of different and n = 11 for
LLM verdict of different), but Claude’s and Llama’s are skewed toward the human verdict of
different (Claude: n = 26 for human verdict of different and n = 1 for LLM verdict of different;
Llama: n = 18 for human verdict of different and n = 1 for LLM verdict of different). Given the
opacity of the process leading to LLM output, it is not possible to determine why this pattern
exists.

In some cases, the differences in the human and the LLLM output point to the inherent ambiguity
in the task. For example, see Table 5. This table shows the human and LLM classification for
Wisconsin standard AP4.a.12.h: “Identify programming language features that can be used to
define or specify an abstraction.” The human and ChatGPT categorized it as different and, indeed,



Entity Verdict CSTA Standard

Human different none

ChatGPT different none

Claude based Compare multiple programming languages and discuss how
their features make them suitable for solving different types
of problems.

Llama similar ~ Explain how abstractions hide the underlying implementa-
tion details of computing systems embedded in everyday
objects.

Table 5: Classification for Wisconsin standard AP4.a.12.h: “Identify programming language fea-
tures that can be used to define or specify an abstraction.”

Entity Verdict = CSTA Standard

Human different  none

ChatGPT different none

Llama different none

Claude similar to Compare tradeoffs associated with computing technologies
that affect people’s everyday activities and career options.

Table 6: Classification for Arkansas standard CSRB.Y1.10.7: “Research and identify diverse ca-
reers and career opportunities (e.g., accessibility, availability, demand) that are influenced by com-
puter science and the technical and soft skills needed for each.”

there does not appear to be a close match to this standard in any of the CSTA standards. However,
Claude categorized it as based on CSTA 3B-AP-4: “Compare multiple programming languages
and discuss how their features make them suitable for solving different types of problems,”
perhaps based on the similar language about the “features” of “programming language(s).” On the
other hand, Llama identified it as similar to CSTA 3A-CS-01: “Explain how abstractions hide the
underlying implementation details of computing systems embedded in everyday objects,” perhaps
based on the reference to abstraction. Whether the Wisconsin standard should ultimately be
classified based on the shared reference to language features or to abstraction or to neither is not a
question with a clear answer, and it points to the inherent ambiguity in this classification task.
However, this very ambiguity makes it difficult to assess the performance of LLMs on such tasks.
It is also why subject matter experts with significant experience with writing and using K-12
computer science standards were selected for this project of determining the focus of the
standards.

But in some cases, the LLM output appears to be clearly incorrect. For example, Arkansas
CSRB.Y1.10.7 reads, “Research and identify diverse careers and career opportunities (e.g.,
accessibility, availability, demand) that are influenced by computer science and the technical and
soft skills needed for each.” (See Table 6.) The human, ChatGPT, and Llama classified this as
different. Claude, however, classified it as similar to CSTA 2-IC-20: “Compare tradeoffs
associated with computing technologies that affect people’s everyday activities and career
options.” It may be that Claude used the reference to careers in both of these standards, but the



context (an emphasis on the student’s own future career versus an emphasis on technology
tradeoffs) is quite different.

We also note that ChatGPT did not deem any standards as based on. Given the opaque nature of
LLM output, it is not possible to determine why this is the case.

4.1 Limitations

Despite efforts to ensure uniformity, there was some element of subjectivity in the human coding
task, such that one person might have deemed a state standard to be similar to a CSTA standard
but another person might have determined that it was based on that standard. Or, two humans
might have selected different CSTA standards, as a result of focusing on different portions of a
state standard in order to identify matching content in the CSTA standard. This makes the task of
assessing the LLM output sometimes difficult. Other prompting strategies — such as refining the
prompt after an analysis of its output — may impact the results.

4.2 Recommendations

Whether to use an Al tool such as an LLM or whether to use humans to accomplish any given task
is a complicated calculus. For this project, the resources required to enlist subject matter experts
for the hand-coding of about 10,000 state computer science standards was immense, and the
process took several months. It is therefore understandable that an automated alternative would
have some appeal. At the same time, each of the three LLMs had a mismatch with the human
choice of CSTA standard in about half of instances, suggesting that the outcome of human versus
LLM coding is quite different. And yet it is unlikely that those mismatches always reflect LLM
error: it is also possible that sometimes the human coder made a suboptimal choice, especially
with such a lengthy and complex task. (The humans needed to decide among 120 CSTA standards
when choosing the standard most closely related to each state standard.) In other words, for a
complex and occasionally subjective task such as this, we cannot say with confidence that the
mismatches always reflect LLM errors. At the same time, there is evidence that the LLM choice
was at least sometimes a clear error (e.g., see Table 6). And the pattern of deeming identical
standards that obviously were not is clearly an error — one unlikely to be made by a human.

Thus, we recommend what has been termed a human-in-the-loop model [23] for the use of LLMs
in education research tasks. That is, the current limitations of LLMs are such that they cannot be
trusted to accurately complete tasks in education research, as our findings above indicate.
However, it may be possible to use an LLM to perform some research tasks, if and only if a
human then vets the LLM output. We therefore offer the following recommendations for using
LLMs in research:

* Do not assume accurate LLM output. Our findings confirm previous studies [24—26]
showing that LLM output is not consistently accurate. LLLMs will often provide warnings,
either in their output or as part of their user interface, regarding the veracity of their
content; these warning should be heeded.

» Check for errors of the type a human would be unlikely to make. As described above, the
LLMs sometimes deemed identical a standard that obviously was not. This is not the type
of error a human would be likely to make and therefore perhaps not the kind of error that
one would be likely to check for. But LLMs often make errors unlike those of humans [9],



necessitating extra vigilance in vetting the output.

* Do not assume all models will have similar performance. As shown in Table 4, the models
not only differed from the humans but also from each other. Due to the opaque nature of
LLM output, it is not possible to determine exactly why this is the case, and asking the
LLM to explain its output may yield an inaccurate (e.g., post hoc) explanation [27, 28].

* Carefully consider design requirements of the research. For the original project, knowing
whether a state standard was identical to a CSTA standard was important, as one of the
goals was to determine the differences between state and CSTA standards at a granular
level. Thus, in this context, the minor mistakes made by LLMs in this classification suggest
an important disadvantage of its use. In other contexts, however, this pattern of errors might
be less important, especially when weighed against the resources required for human
coding. Thus, researchers will need to carefully consider the impact that LLM mistakes will
have and whether these mistakes outweigh the benefits of their use.

* Remember that humans make mistakes. We identified at least a few errors in the coding
performed by the subject matter experts — something that is to be expected whenever
humans perform a lengthy and complicated task. Thus, LLM errors need to be weighed in
context of expected human performance, not against an ideal.

S Conclusion

This study explored whether LLMs could accurately code learning standards, specifically state
and national K-12 computer science learning standards. Given that the very architecture of LLMs
is based on the identification of patterns in text, it seemed plausible that LLMs would perform
well when asked to identify patterns across texts. However, our study showed that all three of the
LLMs tested — ChatGPT, Claude, and Llama — did not identify the same learning standard as the
human coder in about half of instances. However, in the cases where the LL.Ms did identify the
same standard, they were usually able to classify it as identical to, similar to, or based on that
standard in the same way that the human did. One interesting exception to this pattern is that the
LLMs sometimes identified as identical standards that were not. We conclude based on these
findings that LLLMs are not capable of reproducing human-like behavior on this task, although we
do offer a set of recommendations for situations where LLMs are used.
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