~
2025 ASEE Annual Conference & Exposition #&

;iiiit Palais des congrés de Montréal, Montréal, QC - June 22-25, 2025 ‘5‘ASEE

Paper ID #46097

Fearless Coders: Empowering Students in Programming Mastery

Dr. Surupa Shaw, Texas A&M University

Dr. Surupa Shaw earned her Ph.D. in Mechanical Engineering from the University of New Hampshire
in 2015 and her B.Tech [Hons.] in Ocean Engineering & Naval Architecture from the Indian Institute
of Technology, Kharagpur, India. She is an Assistant Professor in the Department of Multidisciplinary
Engineering at Texas A&M University, Higher Education Center at McAllen (HECM). At HECM, Dr.
Shaw teaches undergraduate courses in Fluid Mechanics, Statics, Dynamics, Thermodynamics, Heat
Transfer, Programming Languages, Dynamic Control, Robotics, and Numerical Methods & Simulations.
She has developed several undergraduate courses in the MTDE program for the first time and made
significant curriculum changes to other courses in the department. Her research focuses on Computational
Fluid Dynamics, numerical analysis, and applied mathematics. Dr. Shaw serves on the editorial board for
two journals, successfully won an NSF I-Corp Grant in 2016 as the entrepreneurial lead for commercializing
a high-efficiency, cost-effective research product, and actively reviews for several top-tier journals. She
holds various leadership positions within the American Society of Mechanical Engineers and has authored
25 peer-reviewed journal and conference articles.

©American Society for Engineering Education, 2025

Fearless Coders: Empowering Students in Programming Mastery

ABSTRACT

This paper explores effective strategies for empowering students to overcome fear and
intimidation when learning programming languages. It delves into the psychological barriers that
students often face and identifies practical approaches to build confidence and competence in
programming. By addressing common challenges and providing supportive environments,
educators can empower students to thrive in learning programming languages. The paper
highlights the importance of fostering a growth mindset, offering hands-on practice
opportunities, and creating a supportive learning community. With the help of these efforts,
students can develop the resilience and skills needed to succeed in mastering programming
languages. This paper presents a survey evaluating freshman to junior students' satisfaction with
programming courses, focusing on course structure, mentorship, resources, and skill
development. Through a comprehensive examination of psychological insights, teaching
methodologies, and practical examples, this paper seeks to provide educators with valuable
insights and actionable strategies for creating a supportive learning environment conducive to
student success.

Keywords: Fear, Programming skills, Programming languages, empower students

INTRODUCTION

In the rapidly advancing digital era, proficiency in programming languages has emerged as a
fundamental skill requisite for success in diverse academic and professional domains. However,
the journey to mastering programming languages is often fraught with challenges, particularly
for students encountering feelings of fear and intimidation. This paper endeavors to delve into
the complexities of addressing and overcoming these obstacles, thereby empowering students in
their pursuit of programming proficiency. The significance of programming proficiency
transcends disciplinary boundaries, encompassing fields ranging from computer science and
engineering to data analysis and beyond. Rushkoff [1] contends that lacking an understanding of
digital technology puts us at risk of being controlled by it. He asserts that programming skills are
crucial for mastering and controlling technology, thereby preserving our autonomy. As such, the
ability to navigate programming languages with confidence and competence has become
moderately indispensable in today's technology-driven society. Yet, despite its importance, many
students are deterred by the perceived complexity and difficulty associated with learning
programming languages, leading to feelings of apprehension and self-doubt. Kelleher & Pausch
[2] have delineated two sociological barriers to programming: the absence of a social context for
programming and the dearth of engaging contexts for learning programming.

The aim of this paper is to explore effective strategies and pedagogical approaches that empower
students to overcome their fears and embrace the challenges of learning programming languages.
Understanding the roots of students' anxiety is critical, as it enables educators to design targeted
interventions to overcome these barriers. For example, Vann et al. [3] examined how strategy
training can help students build confidence by teaching them effective problem-solving
techniques and helping them recognize the value of these strategies, which mitigates feelings of
fear. Blumenfeld et al. [4] emphasized the role of student motivation in promoting cognitive
engagement, proposing that students are more likely to confront programming challenges
fearlessly when they understand the intrinsic, instrumental, and attainment values of the subject.
This motivation is essential in transforming perceived challenges into learning opportunities.
Further, Corneliussen et al. [5] identified the positive impact of volunteer-led coding initiatives
in providing supportive and low-stakes environments for young learners. These programs help
reduce the intimidation associated with programming and encourage persistence. Taken together,
these studies suggest that a combination of strategy training, motivational enhancement, and
community-based support systems can be key pedagogical approaches to help students manage
their fears and build lasting programming skills.

The traditional approach to teaching programming—explaining syntax rules, demonstrating
usage through examples, and providing practice through problem-solving—has been widely used
but has shown limitations in helping students achieve proficiency, particularly when learning
programming as a second language. Research suggests that many students struggle with this
instructional model due to its focus on passive learning rather than active engagement (e.g.,
Guzdial, 2004 [6] ; Robins et al., 2009 [7]). Hancock’s [8] work on real-time programming
provides valuable insights into how interactive and dynamic coding environments can enhance
learning. Since then, various studies have explored the impact of real-time feedback and live
coding environments on programming education (e.g., Sorva, 2013 [9]; Lahtinen et al., 2005
[10]), demonstrating their potential to improve comprehension and engagement. This paper
builds on these findings to examine how modern interactive tools can further support learners in
acquiring programming skills effectively.

By emphasizing the coordination of discrete and continuous processes, his design innovations—
such as the “live text” environment and a language that balances declarative and procedural
aspects—highlight an alternative approach to teaching programming that could better engage
learners and bridge the gap between theoretical concepts and practical applications. This shift in
focus suggests that real-time programming environments, which allow for immediate interaction
with the code during execution, could potentially enhance learner understanding and proficiency
in programming. Through a comprehensive examination of psychological insights, teaching
methodologies, and practical examples, this paper seeks to provide educators with valuable
insights and actionable strategies for creating a supportive learning environment conducive to
student success. Portnoff [11] noted that learning one's primary or native language, whether
spoken or signed, occurs implicitly through repetitive exposure to language data and meaningful
interaction with other speakers. However, adapting communicative instructional approaches for
programming languages is challenging because they exist solely in written form, lacking
communities of speakers to interact with. The limitation in traditional teaching methods

underscores the need for a broader understanding of computing, as outlined by Denning et al.
[12], who defined computing as the systematic study of algorithmic processes that describe and
transform information. Their exploration of the core aspects of computing—ranging from theory
and analysis to design, implementation, and application—highlights the complexity of the field
and the need for instructional approaches that go beyond rote syntax to address the deeper, more
dynamic processes involved in algorithmic thinking. This perspective encourages a shift towards
teaching programming not just as a set of rules to memorize, but as a rich, multifaceted discipline
that requires critical thinking and problem-solving skills. By fostering a growth mindset,
encouraging experimentation and exploration, and providing targeted support, educators can
empower students to overcome their fears and develop the skills and confidence needed to thrive
in learning programming languages. This paper showcased a survey assessing freshman to junior
students' satisfaction with programming courses, highlighting feedback on course structure,
mentorship, resources, and skill development. Ultimately, this paper aims to contribute to the
ongoing discourse on programming education by offering practical guidance and evidence-based
recommendations for empowering students to conquer fear and intimidation, thus enabling them
to realize their full potential in the realm of programming.

CHALLENGES IN PROGRAMMING EDUCATION

Programming education faces multifaceted challenges in today's dynamic technological
landscape. Rapid advancements in programming languages and tools often outpace curriculum
updates, leaving educators and students grappling with outdated content. The inherent
complexity of programming concepts, coupled with limited access to high-quality resources,
presents significant barriers to learning. Additionally, ensuring inclusivity and diversity in
programming education remains a pressing concern. Bridging the gap between academic
instruction and industry demands further compounds these challenges. Table 1 provides a
glimpse into the multifaceted obstacles confronting programming education, highlighting the
need for innovative solutions to address these pressing issues.

TABLE 1: Impact of innovative platforms & initiatives on programming education

Obstacles confronting
programming education

Possible solutions

Example

Rapid Technological
Advancements

Regularly updating curriculum to
include latest technologies

Codecademy regularly updates its courses to
incorporate the latest programming languages and
technologies.

Complexity of Programming
Concepts

Introducing interactive coding
challenges and simulations

Harvard's CS50 course utilizes interactive coding
exercises and real-world projects to simplify complex
concepts for students.

Limited Access to High-
Quality Resources

Developing free online coding courses
and tutorials

Khan Academy offers free online coding tutorials,
providing accessible resources to learners worldwide.

Inclusivity and Diversity

Implementing mentorship programs
for underrepresented groups

Girls Who Code organization offers mentorship
programs and coding clubs to encourage participation
of young women in programming.

Bridging the Gap Between
Academia and Industry

Establishing internship programs with
tech companies

University of Waterloo's co-op program enables
students to gain industry experience through
internships at leading tech companies.

Time Constraints Within
Courses

Implementing flexible scheduling
options for students

Udacity's flexible online courses allow students to
learn at their own pace, accommaodating busy
schedules.

High Dropout Rates

Providing personalized academic

Coursera provides personalized support through

support and counseling online forums and mentorship programs to improve

student retention.

Ensuring Engagement and Incorporating project-based learning CodeCombat gamifies learning by turning coding

Motivation and real-world applications lessons into interactive games, keeping students
motivated and engaged.

Effective Assessment Using automated grading systems and LeetCode platform offers coding challenges and mock

Methods peer evaluations interviews, providing real-time feedback to help
students gauge their proficiency.

Aligning Curriculum with Collaborating with industry Stanford's CS193p course collaborates with industry

Industry Needs professionals for curriculum design professionals to ensure curriculum relevance and
alignment with industry demands.

The Table 1 showcases the landscape of programming education being transformed by
innovative platforms and initiatives. The development of Table 1 stemmed from an extensive
review of existing programming education methodologies, aiming to identify effective strategies
that enhance student engagement and mastery. This table was compiled through a combination of
direct observations of student learning behaviors, and an analysis of widely recognized
educational platforms. By exploring various instructional techniques, including interactive
exercises, gamification, mentorship programs, and industry collaborations, the table reflects a
diverse range of approaches catering to different learning styles. The selection of these platforms
was informed by their proven success in improving programming proficiency, fostering critical
thinking, and bridging the gap between academic learning and real-world applications.
Codecademy and Khan Academy democratize access to resources, promoting inclusivity. Girls
Who Code and the University of Waterloo's co-op program bridge academia and industry,
equipping students with practical skills. Flexible learning options from Udacity and personalized
support on Coursera enhance student retention. Gamification and interactive platforms like
CodeCombat foster engagement, while LeetCode aids in effective assessment. Collaboration
with industry professionals, exemplified by Stanford's CS193p course, ensures students are
prepared for the dynamic demands of programming careers, marking a promising future for the
field.

STRATEGIES AND APPROACHES

The constructionist perspective on knowledge profoundly shapes the instructional methods
employed in programming mastery. Instead of simply receiving information, constructionism
advocates for active involvement and experiential learning. In the realm of programming
education, this entails interactive coding tasks, project-driven approaches, and collaborative
problem-solving sessions. These instructional techniques aim to offer students chances to
explore, experiment, and build their comprehension of programming principles through hands-on
practice. The constructionist perspective can be manifested through the following pivotal steps:

i. Step 1 - Active Engagement: Students are immersed in dynamic coding exercises,
actively crafting and refining code rather than passively absorbing information through
lectures. Aldadur [13] examines how gamification enhances software development
education by promoting active engagement through interactive coding exercises. Using
Genially games in a renewable energy programming class, students tackle challenges like

hangman and Jumanji, fostering motivation, competence, and collaboration while
dynamically refining their coding skills.

ii. Step 2 - Experiential Learning: By embarking on project-based tasks, students embark on
a journey of software development, where they apply intricate programming principles
within real-world scenarios. Lim [14] developed a java-based educational game and
examined how the game functions as a dynamic platform for teaching programming
concepts, with a particular emphasis on fostering non-happy path exploratory testing
skills.

iii. Step 3 - Collaborative Learning: Within collaborative teams, students navigate intricate
programming challenges, exchanging insights and critiques to collectively conquer
complex problems. Hayashi et.al [15] used flipped classroom model to enhance
programming education by shifting lectures online, allowing in-class time for
collaborative coding exercises. Since 2013, they have implemented this approach in C
and Java courses, fostering motivation and deeper understanding. Through teamwork,
students navigate complex programming challenges, refining their skills together.

iv. Step 4 - Inquiry-Based Learning: Empowered to delve into independent exploration,
students embark on research quests, proactively seeking solutions to coding conundrums,
igniting a fire of curiosity and self-driven learning. Coleman and Nichols [16] integrated
inquiry-based learning into algorithmic programming through pair programming, where
students collaborate and are assessed in pairs, and the initial findings show increased
attendance and higher module assessment scores, though examination performance
remained unchanged compared to previous cohorts.

v. Step 5 - Reflection and Iteration: Post-project completion, students meticulously analyze
their methodologies, pinpointing avenues for enhancement and iteratively refining their
solutions to achieve heightened functionality.

These transformative steps meticulously shape programming pedagogy, accentuating active,
experiential, collaborative, inquiry-driven, and iterative learning paradigms. Nejad [17] proposes
that in constructivism, the instructor's role shifts from being a provider of answers to a facilitator
of learning experiences, where they use observations and intuition to create environments for
student-driven knowledge construction, employing questions to stimulate critical thinking and
problem-solving. However, Bers [18] critiques the overreliance on a "problem-solving” metaphor
in coding tools for students, noting that they often resemble logic games or puzzles, and proposes
using a metaphor of expression to foster creativity in coding education instead. Such an approach
nurtures not only deeper understanding but also enhances critical thinking abilities and instills a
sense of ownership in learning outcomes. By empowering students to engage actively in their
educational journey, constructionism serves as a catalyst for achieving proficiency and mastery
in programming.

However, Table 2 presents some of the most effective strategies for fostering programming
mastery among students, showcasing the strengths of various instructional methods in honing
programming skills. | developed this table based on my observations and efforts to identify the
most suitable approaches for students learning programming for the first time. These strategies,
such as project-based learning, pair programming, and flipped classrooms, have proven effective

in fostering practical application, collaborative learning, and interactive discussions. The
integration of gamification, code reviews, and adaptive learning platforms further enhances
engagement and personalized learning experiences. Real-world examples, like building
functional projects or participating in coding bootcamps and hackathons, demonstrate the
tangible impact of these methods on student proficiency and readiness for industry challenges.

TABLE 2: Effective strategies for fostering programming mastery

Strategies

Description

Examples

Project-Based Learning

Engages students with real-world
projects to enhance practical application
and problem-solving skills.

Building a fully functional e-commerce
website using React and Node.js as a
class project.

Pair Programming

Encourages collaborative learning by
having two students work together on the
same code, fostering peer-to-peer
learning and teamwork.

Two students working together on a
Python project in Visual Studio Code.

Flipped Classroom

Provides students with learning materials
to study at home and uses class time for
hands-on coding exercises and interactive
discussions.

Students watch tutorial videos on Udemy
and then solve coding challenges in class
using Python.

Gamification

Introduces game elements like points,
badges, and leaderboards to motivate and
engage students in the learning process.

Using Codecademy's badges system to
reward students for completing coding
lessons.

Code Reviews and Peer Feedback

Implements regular code reviews where
students provide and receive constructive
feedback, promoting critical thinking and
code quality.

Students review each other's code on
GitHub and suggest improvements using
pull requests.

Adaptive Learning Platforms

Utilizes Al-driven platforms that adjust
the difficulty and type of content based
on individual student progress and
learning styles.

Using platforms like Codecademy or
Khan Academy for personalized coding
lessons.

Interactive Coding Environments

Employs platforms that allow students to
write and test code in real-time,
providing immediate feedback and
hands-on experience.

Using environments like repl.it or Jupyter
Notebooks for interactive coding
sessions.

Online and Blended Learning

Combines online resources, tutorials, and
virtual labs with traditional classroom
instruction to offer flexible and
comprehensive learning experiences.

Offering a mix of Coursera courses and
in-person coding workshops.

Mentorship and Coaching

Provides students with access to
experienced mentors and coaches who
offer personalized guidance, support, and
career advice.

Pairing students with industry
professionals for one-on-one mentoring
sessions.

Problem-Solving Workshops

Conducts workshops focused on tackling
complex coding challenges and
algorithmic problems, enhancing
analytical and logical thinking.

Hosting regular workshops to solve
problems from platforms like LeetCode
or HackerRank.

Coding Bootcamps

Offers intensive, short-term training
programs that focus on practical skills
and immediate job readiness.

Participating in a 12-week bootcamp to
learn full-stack web development.

Hackathons and Competitions

Organizes coding competitions and
hackathons to encourage innovation,
creativity, and the application of learned
skills in a competitive environment.

Participating in a 48-hour hackathon to
create innovative tech solutions.

METHOD AND RESULTS

A survey was conducted to evaluate student satisfaction across programming courses taken
during their freshman, sophomore, and junior years. The charts below illustrate student responses
to various questions focused on strategies to empower students in achieving programming
mastery, highlighting feedback on course structure, mentorship, and resources provided for skill
development and confidence building.

Method: To assess student satisfaction and identify effective strategies for programming
education, we conducted a survey using the Qualtrics platform. The survey targeted freshman
and sophomore students who had recently completed the fundamental programming course.
Participants were given a specific time frame to complete the survey, during which they were
encouraged to provide feedback on their experiences. The survey questions, displayed in the
accompanying graphs, were designed based on insights gathered from student interactions over
the past 4-5 years. All respondents had taken the same programming course and were primarily
General Engineering majors, with some students from Multidisciplinary Engineering. At the time
of the survey, their programming experience was limited to completing an introduction course in
Python, as freshman and sophomore students

Fearless Coders: Empowering Students in Programming Mastery

100%

75%

SR |

Q1: | feel confident in my Q2: | have felt intimidated / fearful Q3: | believe that having a growth Q4 | often engage in hands-on Q5: Learning to code requires

programming abilities. when faced with programming mindset is important for success practice to improve my dedicated time and effort, and
tasks in programming programming skills balancing pregramming practice
with other commitments can be
challenging.
Response
B Strongly Agree [l Somewhat Agree Neither agree nor disagree [l Somewhat disagree [l Strongly disagree

FIGURE 1: Questions 1 -5

Fearless Coders: Empowering Students in Programming Mastery (Q6-Q10)

80%

60%

Q6: | have enhanced my programming ~ Q7: Identifying and fixing errors in code, Q8: | think gamified coding challengas or Q8: The lack of access to quallty Q10: The abundance of programming
skills by pamc\palmg in coding also known as debuggmg has been |nlerachva platforms would h educational resources, or supj languages, tools, and resources
ps or mentorship p ing for me. become a more confident pmg(ammer networks, makes it harder to overcoma available can be overwhelming for me
challenges and progress in my coding [as a beginner], leading to confusion and
Joumey uncertainty about where to start.
Response
B strongly Agree [l Somewhat Agree Neither agree nor disagree [l Somewhat disagree [l Strongly disagree

FIGURE 2: Questions 6 - 10

Based on the student responses to the questions, it seems one of the blockers which prevents
students from becoming successful coders is that students feel intimidated and fearful when
faced with programming challenges. Students also believe that learning to code requires
dedicated time and effort and a growth mindset and balancing programming practice with other
commitments can be challenging. In terms of resolution areas, students believe gamified coding
challenges and interactive platforms have helped students to become more confident
programmers. However, students have mixed opinions about the efficacy of coding workshops
and mentorship programs towards enhancing their programming skills. Lastly students believe
that there are abundant programming resources, but the lack of quality resources is what makes it
harder to overcome challenges and progress in their coding journey.

FUTURE DIRECTIONS

The literature review highlights key challenges in programming education, emphasizing the need
for innovative teaching strategies to address students' fear and intimidation. The student survey
results reinforce these findings, revealing critical gaps in traditional instruction methods while
showcasing the impact of mentorship, structured resources, and interactive learning
environments. These insights inform future initiatives, such as the Fearless Coders program,
which aims to integrate collaborative coding, industry mentorship, and diverse programming
languages to enhance student confidence and skill development. By bridging theoretical insights
with empirical findings, this study paves the way for refining programming education
methodologies, ensuring more inclusive and effective learning experiences. The initiative to
create Fearless Coders further aims to expand its impact by incorporating more diverse
programming languages and advanced topics to cater to a broader student audience. Future
iterations of the initiative will emphasize collaborative coding environments through pair
programming and hackathons, promoting teamwork and knowledge sharing. Additionally, the
integration of industry mentorship and guest lectures from software professionals will provide
students with real-world insights and networking opportunities. To ensure continued success, it is
possible to develop a structured feedback system for continuous improvement based on student
performance and engagement metrics. Emphasis should also be placed on supporting
underrepresented groups in programming through targeted workshops and mentorship. By
continuously evolving and adapting to the changing technological landscape, Fearless Coders
initiative aims to empower students with both foundational skills and the confidence to tackle
complex programming challenges in their academic and professional careers.

Al is significantly transforming both industry and education, reshaping how students learn
programming skills and how professionals develop software. Al-powered tools such as code
completion assistants, automated debugging systems, and intelligent tutoring platforms are
enhancing learning efficiency by providing real-time feedback and personalized guidance. In
industry, Al-driven development environments streamline coding processes, optimize software
performance, and facilitate automated testing, allowing developers to focus on higher-level
problem-solving. Despite these advancements, as Al continues to evolve, it presents both
opportunities and challenges, necessitating a reevaluation of traditional programming curricula to
ensure students are equipped with relevant skills for an Al-driven future.

CONCLUSION

Empowering the next generation of coders requires a multifaceted approach that combines strong
foundational programming instruction with mentorship, collaboration, and continuous skill
development. By fostering a supportive learning environment, integrating real-world problem-
solving, and encouraging creativity, students can build both confidence and technical expertise.
Moving forward, sustained efforts in inclusive education and adaptive teaching methods will
ensure all students have the tools to thrive in the evolving tech landscape. A key component of
this empowerment involves the continuous refinement of teaching methodologies that emphasize
active learning, such as problem-based projects and peer mentoring. Providing students with
hands-on experience through collaborative coding sessions and real-world challenges helps
bridge the gap between theory and practice. Additionally, implementing structured feedback
loops and personalized learning resources can further address individual learning needs, ensuring
every student has an opportunity to excel. To truly prepare the next generation for success,
coding education must also focus on holistic skill development, including communication,
critical thinking, and ethical problem-solving. Encouraging diverse representation in coding
spaces and offering mentorship to underrepresented groups can create a more inclusive tech
community. By prioritizing both technical mastery and professional growth, future programmers
will be better equipped to innovate and lead in a rapidly evolving digital world.

REFERENCES
[1] Rushkoff, D., 2010. Program or be programmed: Ten commands for a digital age. Or Books.

[2] Kelleher, C. and Pausch, R., 2005. Lowering the barriers to programming: A taxonomy of programming
environments and languages for novice programmers. ACM computing surveys (CSUR), 37(2), pp.83-137.

[3] Vann, R.J. and Abraham, R.G., 1990. Strategies of unsuccessful language learners. TESOL quarterly, 24(2),
pp.177-198.

[4] Blumenfeld, P.C., Kempler, T.M. and Krajcik, J.S., 2006. Motivation and cognitive engagement in learning
environments (pp. 475-488). na.

[5] Corneliussen, H.G. and Prgitz, L., 2016. Kids Code in a rural village in Norway: could code clubs be a new arena
for increasing girls’ digital interest and competence?. Information, Communication & Society, 19(1), pp.95-110.

[6] Guzdial, M., 2010. Does contextualized computing education help?. ACM inroads, 1(4), pp.4-6.

[7] Robins, A., Rountree, J. and Rountree, N., 2003. Learning and teaching programming: A review and discussion.
Computer science education, 13(2), pp.137-172.

[8] Hancock, C.M., 2003. Real-time programming and the big ideas of computational literacy (Doctoral dissertation,
Massachusetts Institute of Technology).

[9] Sorva, J., Karavirta, V. and Malmi, L., 2013. A review of generic program visualization systems for introductory
programming education. ACM Transactions on Computing Education (TOCE), 13(4), pp.1-64.

[10] Lahtinen, E., Ala-Mutka, K. and Jarvinen, H.M., 2005. A study of the difficulties of novice programmers. Acm
sigcse bulletin, 37(3), pp.14-18.

[11] Portnoff, S.R., 2018. The introductory computer programming course is first and foremost a language course.
ACM Inroads, 9(2), pp.34-52.

[12] Denning, P.J., Comer, D.E., Gries, D., Mulder, M.C., Tucker, A., Turner, A.J. and Young, P.R., 1989. Computing
as a discipline. Computer, 22(2), pp.63-70.

[13] Aldalur, 1., 2025. Enhancing software development education through gamification and experiential learning
with genially. Software Quality Journal, 33(1), pp.1-27.

[14] Lim, A., 2023, October. Design and Develop a Game for Teaching Programming Concepts to Beginners. In
Wellington Faculty of Engineering Symposium.

[15] Hayashi, Y., Fukamachi, K.I. and Komatsugawa, H., 2015, April. Collaborative learning in computer
programming courses that adopted the flipped classroom. In 2015 International conference on learning and teaching
in computing and engineering (pp. 209-212). IEEE.

[16] Coleman, S.A. and Nichols, E., 2011. Embedding inquiry-based learning into programming via paired
assessment. Innovation in Teaching and Learning in Information and Computer Sciences, 10(1), pp.72-77.

[17] Iran-Nejad, A., 1995. Constructivism as substitute for memorization in learning: Meaning is created by learner.
Education, 116(1), pp.16-32.

[18] Bers, M.U., 2020. Coding as a playground: Programming and computational thinking in the early childhood
classroom. Routledge.

