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Abstract
Data science careers are projected to grow by more than 30% by 2032, yet data science academics
are lacking and cannot satisfy the growing market demand for qualified data scientists.
Additionally, K-12 data literacy rates are declining, introducing a gap between modern
data-driven society and the ability of members of society to understand data. Early experiences
with STEM subjects have been shown to influence and predict students’ long-term career
outlooks and outcomes. In the context of data science, this means that early introduction at the
K-12 level is crucial in order to develop and maintain the data science workforce. Although there
are efforts to include data science in K-12 education, this area of research remains understudied.
This study aims to shed light on the landscape of K-12 data science education research in the
United States. We methodically investigated studies from 2014 to 2024. The papers were
analyzed, focusing on pedagogy, assessment methods, and the tools and techniques used to teach
data science to the K-12 population. The results of this literature review demonstrate the need for
more early childhood data science education research and curricula. Additionally, it underscores
the importance of creating targeted and accessible curricula to equip students of all ages and
backgrounds with foundational data skills. Current K-12 data science education emphasizes
equality, diversity, and the importance of meaningful connections between students and the
content or datasets they engage with.

Introduction
The recent advances in sensor networks and data storage devices, combined with advancements in
machine learning and data analysis systems have led to the emergence of the discipline of data
science. Due to the rapidly expanding nature of the field of data science, as well as the substantial
impact that data have on our everyday lives, it is becoming essential for younger populations to
have early access to data science education and tools. However, decades worth of data science
research has mainly focused on college level academics, leaving the K-12 population underserved
in this area.

This growing gap in K-12 education coincides with the evolution of data science as a field, whose
meaning has shifted significantly since its inception. While the term ”Data Science” has existed
since the 1990s, its meaning has changed substantially over time. While the original definition of



data science focused on the storage and management of data, the term is used currently in
reference to the process of turning data into insights and new knowledge.

Understanding the data science life cycle is essential to designing effective education frameworks
for K-12 learners. The data science life cycle involves several main steps: problem definition,
getting domain knowledge and designing research, data planning and collection, data cleaning
and wrangling, feature engineering and selection, model design, model evaluation, then
communicating results and proposing action. Given this structured approach to data science, it is
crucial to address how these principles can empower individuals, especially young learners, to
navigate a world increasingly shaped by data.

Data science education and data literacy in today’s youth are important not only to create and
maintain a well-educated society, but also to combat the increasing issues of widespread
misinformation, disinformation, misleading data, and privacy violations [1]. Incorporating data
science into K-12 education can equip students with the skills to critically analyze data, identify
discrepancies, and avoid falling victim to misinformation and misleading data representations. In
fact, research has been performed on how to leverage data misrepresentation for student benefit
[2; 3]. These foundational skills are best acquired during K-12 education rather than solely at
university levels, as college education is not accessible to the entire population and data science
education should be. Additionally, younger individuals have more malleable brains and are
therefore especially suited to acquire novel skills like data literacy during this critical
developmental period [4].

In addition to fostering critical data literacy skills, integrating data science education into K-12
curricula can also play a significant role in shaping students’ broader STEM identities, which
begin forming early in life. Stereotypes about STEM fields significantly influence students’ career
interest and perceived self-efficacy, which disproportionately discourages underrepresented
groups such as females and minorities [5]. By focusing on providing equitable and engaging
STEM experiences, educators can foster broader confidence and interest in these fields. Early
exposure to engaging and accessible STEM education not only prepares children for higher
education but also helps dismantle barriers that prevent many students from pursuing hard
sciences [6].

The deficiency in K-12 data science education, combined with the importance of early exposure
to data science, inspired the development of this literature review. Young people should be
equipped with the skills necessary to become educated and productive citizens, enabling them to
make informed, independent decisions and minimize the influence of misleading statistics. This
literature review examines the existing body of research on K-12 data science education, aiming
to provide educators and researchers with insights for developing effective curricula and
advancing the field. Additionally, this study seeks to identify specific deficiencies in the K-12
data science education literature, with the intent of motivating future researchers to ”fill the gap”
and address these shortcomings, to further advance education in this area. Ultimately, the goal is
to boost the field of K-12 data science education, allowing it to be integrated into K-12 settings on
a wide-scale, ensuring that younger generations are prepared to navigate our increasingly
data-driven world.



Methods
This paper is a literature review. The approach taken to collect the papers for this review involved
several key steps: First, we employed database searching, where targeted queries were entered
into various academic databases to identify papers relevant to our research questions. Next, we
used snowballing. We used backwards snowballing, which involved examining the references of
already-identified papers to discover additional relevant studies. We also used forwards
snowballing, employing Google Scholar to identify papers citing those already collected.
Snowballing was a major component of the paper collection process. Lastly, we employed
’literature review synthesis’, analyzing past literature reviews to identify key themes and papers
for the field.

The research in this review spans a 10-year period, from 2014 to 2024. During the search for
studies on K-12 data science education, we initially identified 249 papers. The following filters
were applied to refine the collection: 53 papers were excluded due to geographic region. 7 papers
were excluded based on publication date falling outside the specified range, and 6 papers -
masters theses or doctoral dissertations - were removed. Additionally, 18 papers unrelated to
K-12 education and 49 papers deemed irrelevant based on their content were excluded. After
applying these criteria, 116 papers remained and were analyzed for this review. A visual summary
of the filtering process is shown in Figure 1.

Figure 1: Diagram of Paper Filtering

Keywords, Databases, and Criteria The keywords used in the database queries (”Tools” Or
”Technology” Or ”Resources” Or Pedagogy” Or ”Curriculum”) AND (”K-12” Or ”Middle



School” Or ”High School” or ”Elementary School” or ”Primary School” or ”Children”) AND
”Data Science Education”. The search engines used were Google Scholar, IEEE Xplore, ACM,
and K-State Libraries Search. The source types were limited to scholarly journals and conference
papers or proceedings. Masters and doctoral dissertations were excluded, and the scope was
further narrowed to studies conducted in the United States within the last 10 years.

Results
Our general research questions are as follows:

• RQ1 What are the trends in current K-12 data Science education?

• RQ2 What kinds of datasets are most effective in K-12 data science education?

• RQ3 What tools exist for K-12 data science education?

• RQ4 What K-12 data science curriculum and frameworks exist?

• RQ5 What areas of K-12 data science education have insufficient research?

RQ1 Trends in K-12 Data Science
A commonly employed method for enhancing data science learning involves making data relevant
to students through personalization and context-dependent learning. This strategy has been shown
to boost student engagement and participation by connecting the concepts they learn to real-life
scenarios, demonstrating the importance of data science beyond academic settings. Additionally,
providing context-dependent content supports the inclusion of underrepresented groups, promotes
social justice, and advances equity in data science education. Numerous studies highlight the
critical role of equity and context-dependent learning mechanisms in data science education,
emphasizing that data and projects should be meaningful and personally relevant to students.
Reaching a diverse audience is crucial for well-rounded data science education, and prioritizing
student-relevant topics creates a more inclusive and meaningful learning environment. The main
data science education trends found in this review can be seen in Table 1. It is evident that social
issues and diversity is the largest trend in data science research, followed by cultural relevance
and proximity.

Theme Description References
Cultural Relevance Cultural and political material used [7; 8; 9; 10; 11; 12]
Agency in Learning Student agency in research/learning [13; 14]
Social Issues and Diversity Social issues/feminism in data science [15; 16; 17; 18; 19; 20;

21; 22; 23; 24; 25; 26]
Data Proximity* How the dataset relates to the learners [27; 28; 29; 30; 31]
Student-Sourced Data Datasets created using student information [32; 33; 34]

Table 1: Trends in K-12 Data Science Education
*Note: For further reading on proximity, refer to [35].



RQ2 Datasets
Datasets used in data science education play a significant role in fostering student engagement
and interest. Additionally, using effective and context-relevant datasets can help students
recognize the relevance and importance of data science in real life situations.

There are some guidelines recommended by researchers regarding dataset selection and
production. Firstly, grounding datasets in diverse, lived experiences can enliven data and
effectively promote social justice and equity [36]. In fact, many researchers have expounded the
importance of diverse datasets, as evidenced by the ”social issues and diversity” section of the
data science trends. Additionally, student proximity to the data should be regarded, as the students
should at least be reasonably expected to be familiar with the data topics. Some research has even
used public data from local communities to ensure student proximity to the data and allow them
to compare data patterns to their own experiences [37]. Researchers have posited that data should
be actively produced instead of passively collected in an educational context, arguing that having
students act as data producers can help them understand the nature of data, and productively
participate in society [38]. In fact, a simulated dataset generation tool has been developed to allow
students and teachers to create their own datasets tailored to to their needs [39].

Some main factors to consider when choosing and examining datasets include proximity, recency,
and size. In a review on data science tools, researchers found that most datasets were either
”fresh” or not time-relevant (recency), very small in size, and used real data that youth can be
expected to be familiar with (proximity) [40]. This was in accordance with another, large-scale
K-12 data science dataset review, wherein 296 datasets in K-12 data science curricula were
evaluated to identify trends and best practices [41]. The findings showed that most datasets were
small, recent, and did not reflect student interest, though they were typically familiar to students.
The importance of considering diverse learners and student interests when choosing datasets was
expounded by the authors. Another dataset review examined the datasets used in YouCubed data
science curricula, and further confirmed the previous findings [42]. Similar to the other studies,
most datasets were small, recent, used real data, and were loosely relatable for the students.
Entertainment and media was the most common topic, followed by politics. In another study,
twelve high school teachers were interviewed and asked to discuss what datasets create the most
authentic data science experience [43]. Three main authenticity aspects were found: the data are
”messy”, require more work than other datasets, and involve computation. These dataset
guidelines, reviews, and discussions provide an understanding of the current landscape of K-12
data science datasets used in education, and indicate promising future directions for enhanced
student engagement and learning.

RQ3 Tools
General reviews of K-12 data science tools have been conducted by multiple researchers. One
such review by Israel-Fishelson et al. examined popular introductory K-12 data science education
tools, and identified three main categories: Block-Based Programming, Programming/Analysis
Environments, and Data Visualization [44]. The tools discussed in their study are outlined below.
For a more detailed exploration of these tools, readers are encouraged to refer to the original
paper.



Block-Based Programming tools: Blockly, BlocklySQL, BlockPy, EduBlocks, MakeCode Data
Science Editor, NetsBlox, Scratch Data Blocks, Snap!, GP, iSnap, DBSnap, mBlock.

Programming and Analysis Environments: Bridges CS, Google Colab, Jupyter Notebook, Kaggle,
Pyret, Quorum, mBlock.

Data Visualization: CODAP, DataClassroom, Datacommons, GapMinder, TinkerPlots, Tuva,
iNZight.

Another such general review was performed by Moon et al., finding four main tool types:
gathering (databases), gathering (surveys), programming, and visual analysis. The main tools
discussed were CODAP, RStudio, EduBlocks, Tableau, Google Sheets, APIs, Colab, Pyret
[40].

Pimentel et al. also investigated K-12 tools for teaching data science, finding four main genres of
tools: spreadsheets, visual interfaces, scripting languages, and other interfaces [45]. Spreadsheet
tools: Google Sheets, Excel, Apple Numbers. Visual tools: CODAP, Data Classroom, Ruva,
iNZight, Social Explorer, Gapminder, Tableau. Scripting languages: Python, R, Julia. Other
tools: Stata, SPSS, YouCubed, Colab.

As is evidenced by the reviews above, many tools have been developed and used to aid in K-12
Data Science education. Table 2 details the tools found in the papers reviewed for this study,
broken down by category and target age range. As evidenced in the table, the majority of the tools
are used for data visualization and analysis.

Data Visualizations Data visualizations have been discussed by researchers, including
considerations for age-appropriate approaches. One study found that elementary-grade students
typically engage with simpler visualizations, such as tables, pie charts, bar graphs, timelines, line
graphs, and maps [55]. Once in secondary school, students encounter more complex
visualizations, including multi-set, stacked, and layered variations, along with additional formats
like population pyramids, time series, and bubble charts. Another study highlighted that the most
effective data visualization approach is dependent on the unique needs of the teaching context,
and that combining various visualization methods is often ideal for more deeper and more
comprehensive student learning [56].

RQ4 Curriculum and Frameworks
Data science education is gradually being recognized as an essential component of K-12
curricula. General frameworks and introductory data science courses have been developed,
focusing both on secondary education [57] and K-12 education more broadly
[58; 59; 60; 61; 62; 63]. As data science is increasingly being viewed as a necessity, the American
Statistical Association has launched initiatives to support its integration into K-12 education.
These initiatives include a list of K-12 resources, a website containing data science learning tools,
a teacher training workshop, and data challenges for high school students [48]. Additionally, a
panel of experts convened to explore improvements in data science education research [64]. Their
recommendations emphasize best practices such as using relevant data to enhance engagement,
prioritizing equity, teaching skepticism, and equipping students with the skills to identify and
address biases and systemic oppression.



Tool / Age Range Description and Features

Thermometer for Kindergarten
Data Inquiry (Kindergarten) [46]

Specialized thermometer designed to help kindergartners
measure and interpret weather data.

Cest La Vis (Grades K-2) [47] Visualization literacy using pictographs and bar charts.

House of Statistics (Grades K-6)
[48]

Website with videos, resources, games to teach data science
and statistics

KiData (Grades 1-6) [49] Web tool for data science lessons and visualizations

Data Science Toolkit (Children)
[50]

Toolkit to analyze and visualize time-series data

Scratch Community Blocks (Ages
8-16) [51]

Access, visualize, and analyze data about Scratch participa-
tion.

Net.Create (Grades 5-6) [31] Visualization tool to explore network data to find relation-
ships and patterns.

CODAP Story Builder (Ages 10-
14) [52]

Interactive data analysis tool for creating narratives using
visual elements

PlayData (Grades 6-12) [53; 54] Block-based programming tool for data visualization

Datamax (High School) [39] Customizable simulated dataset generation tool

Table 2: Tools for K-12 Data Science Education

Many data science courses and curricula designed for K-12 learners utilize creative strategies to
maintain the attention of the learners and enhance their learning by lessons engaging and
enjoyable. Given the diverse age range within K-12 education, these curricula are often tailored to
specific grade levels to address the unique needs and abilities of each group. Table 3 provides an
overview of these curricula, categorized by targeted age levels and primary topics.
Several data science curricula has been analyzed by researchers, with the goal of discovering how
pre-collegiate data science education is taught [95]. The main topics appearing in the analyzed
courses were the nature of data, ethics, data sources, data inquiry, distributions and variability,
measures of center, computer programming, variable associations, data visualization, sampling
and simulating, and machine learning. Many of these topics will already be covered in existing
K-12 courses, but the data science courses bring them together and show the connections between
the concepts. Many new practices are also introduced in these data science courses, including
data scraping, data cleaning, unsupervised machine learning, writing functions, and chaining
functions. This shows that data science holds value as a standalone subject, separate from
statistics, mathematics, or other subjects.

Integration into Existing Courses The nature of K-12 curriculum and schooling does not easily
allow for the creation of an entirely new course focused on data science, largely due to time
limitations. The integration of data science into existing courses can be an efficient way to both
educate students about data science and show practical applications for the concepts they learn.



Age / Grade Level Keywords References
Early Elementary (Ages 4-7) Frameworks, Story Sharing, Cre-

ativity
[65]

Upper Elementary (Grades 1-6) Online Lessons, Visualization [49; 31]
Contextualization, Engagement,
Agency, Proximity

[27; 66; 34]

Data Literacy, Games [67; 68]

Middle School (Grades 5-9) Social Justice, Storytelling [11; 24; 69; 70;
37; 71]

After-School Programs, Work-
shops, Online Tools

[72; 69; 73; 74;
75; 76]

Data Visualization / Exploration,
Proximity

[72; 73; 74; 77;
78; 12; 54]

High School (Grades 9-12) Civic Responsibility, Proximity,
Agency, Social Justice

[79; 80; 81; 7;
11; 82; 83; 84]

Workshop, After-School Programs,
Competitions

[85; 80; 48; 82]

Visualization, Practical Applica-
tion, Proximity

[86; 13; 11; 54;
87]

Computational Thinking, Analysis [88; 89; 90]
K-12 Educators Professional Development, Creat-

ing Curricula, Equity
[91; 92; 93; 94]

Table 3: Data Science Curriculum by Grade Level
Note: Some grade levels overlap as certain curricula target a range of grades without standardized divisions.

Research has been performed and efforts have been made to integrate data science topics into
pre-existing courses. In fact, there have even been proposals and discussions concerning replacing
Algebra 2 with data science courses in schools, with arguments being made that data science is
more relevant and important for young people [96]. This underscores the importance of data
science as a subject, and is a demonstration of the wide range of topics data science covers,
including programming, analyzing and interpreting data, and mathematics.

Researchers have discussed the need to develop resources to introduce data into K-12 and
undergraduate education while still teaching core content [97]. In fact, resources have already
started being developed, such as a framework for teaching data science with an interdisciplinary
approach [98].

A breakdown of the subjects data science has been integrated with in the reviewed papers can be
seen in 4. As is evident in the table, data science is most commonly integrated with art, followed
by comics.

Discussion
The importance of data science education in a well-educated, participatory populus cannot be
overstated. In order to have productive citizens and well-informed individuals in society, we need



Course Type References
Mathematics [99; 100; 101]
Games [102; 103]
Humanities (Social Studies, Art, Science) [104; 105; 106]
Music, Sound [107; 108; 76]
Art [109; 110; 111; 112; 56; 78]
Photography [113; 114; 115]
Dance [116]
Comics [117; 118; 119; 11]
Movies [120]
Personal Data Stories [121]

Table 4: Integrating Data Science into Courses

to be capable of critical thinking, reading and interpreting data sources, determining data validity,
and identifying misleading information. All of these are essential skills in critical thinking, and
society can only benefit from a larger percentage of the population being better informed. Data
science is not only important on a societal level; it is also useful in everyday life. For example, if
an individual wishes to buy a product, a person educated in data science could efficiently
investigate the various reviews and analyses of the product, effectively identifying patterns in the
data. They could also compare features, prices, and performance metrics across similar products
using visualizations. This data-driven approach allows individuals to make more informed and
objective decisions, and avoid potential pitfalls from relying solely on anecdotal evidence or
biased advertisements.

Given the critical role data science plays in empowering both individuals and society, this study
aimed to explore the current state of K-12 data science education through a review of research
trends, tools, curricula, and gaps. RQ1 - Trends: As evidenced in Table 1 social issues and
diversity are the largest trend in the research, followed by data proximity. RQ2 - Datasets: As
discussed in section , diverse, relevant datasets that are close in proximity to the students are
recommended. Most K-12 datasets currently are either recent or not time-relevant data, small in
size, and reasonably expected to be familiar to the students. RQ3 - Tools: Many tools being used
are data visualization tools, programming environments and block-based programming tools, and
online learning tools, as can be seen in Table 2. RQ4 - Curriculum and Frameworks: Visualized
in Table 3, the majority of curricula is for high school, followed by middle school. Upper
elementary school students have a reasonable amount of curricula, however early elementary only
has one curricula found. This leads us to RQ5 - Gaps: The largest gap in the research found is in
early elementary aged curricula, wherein only one curricula was found, seen in Table 3. Gaps in
the research are discussed more in depth below, in section .

One significant finding from this review is the growing emphasis on integrating data science
education into existing subjects, a strategy that addresses both engagement and logistical
challenges in K-12 classrooms. Integration with other subjects enhances student engagement and
participation, therefore enhancing learning outcomes. Additionally, K-12 school days are already
tightly structured, with little room for adding new material or classes into the already rigorous



schedule. By integrating data science into other subjects, we not only create a more holistic view
of data science and its applications, but also make it easier to integrate into classrooms without
needing to ”cut out” any other important areas of study. Arguments are made that data science is
important and expansive enough of a topic to justify its own course [95], however the integration
of data science in any manner in K-12 schooling is better than the alternative of omitting it
entirely. Alternatives to these approaches have been found in after-school programs or ’data
science camps’ [85; 48; 80; 82; 74; 72; 69; 73], which address the timing issue, but leave the
subject less accessible to students, especially those more socioeconomically disadvantaged.

A key focus in developing K-12 data science curricula is making the learning engaging and
enjoyable to improve retention rates among students. While researchers have worked on
integrating data science into many various other fields of study as seen in Table 4, one that stands
out as being widely studied and investigated is data science integration with art. Many studies
have been published with novel methods of combining data science with various forms of art,
such as music, physical art, dance, photography, and literature. The combination of data science
with arts has been shown to deeply engage K-12 learners by applying data science in a ”fun” way,
both showing its utility and how interesting it can be. Gamification is a similar approach that has
been studied, with similar value: if K-12 students can enjoy their data science studies, they will
have higher engagement, participation, and retention. Lastly, a common sentiment noted for
increasing student engagement is to provide student agency in more steps of the data science life
cycle, including selection of datasets, analysis, and visualization creation.

Data science education is a fairly new field in comparison to artificial intelligence, computer
science, and other STEM courses. Due to the novelty of this field, the literature base for data
science is not as expansive as it is for these other areas. While many promising papers and
approaches to teaching K-12 data science were discovered during this literature review, it is clear
that more work needs to be done in this area. While curricula are being developed to bring data
science to pre-collegiate schools (as seen in Table 3), the actual implementation of these curricula
is lacking. It is essential that our populus are data literate and educated, and the best way to
ensure this is to introduce data science at a young age, in a widely accessible place - public
schools. Most data science education research to date focuses on the undergraduate level, which,
while important, is out of reach for a large portion of the population. This gap is evident even at
the undergraduate level, where data science is often offered only as an elective, leaving many
students, including those in computer science, without exposure to this essential discipline. This
illustrates the great need for the development and implementation of accessible data science
studies for all, starting in pre-collegiate levels.

RQ5 Gaps This literature review has examined numerous papers discussing K-12 data science
education; however, there are areas where this research is notably lacking. One area in need of
more research and investigation is early childhood data science education. Early childhood is a
crucial developmental period during which brains develop rapidly, making it an ideal time to
introduce foundational skills like data literacy. As evidenced by Table 3, there are significantly
fewer frameworks and curricula designed for early childhood and elementary-aged learners
compared to older students. This disparity is likely due to the unique challenges of developing
lessons that are both engaging and age-appropriate for younger children.



Another area that should have more research is data science tools, specifically with gamification
features. Incorporation of gamified learning tools could greatly enhance student engagement and
make it easier for teachers to integrate data science into their classrooms without adding
additional burdens.

Finally, student agency in the data science life cycle is an underexplored area. Allowing students
to participate in the creation, collection and selection of datasets has been recognized as highly
beneficial to the learning process [38]. Despite this, the majority of datasets used in the reviewed
studies were pre-selected by instructors, leaving students without the opportunity to engage in
these critical stages of data science. Incorporating more opportunities for student-driven dataset
development would provide a more holistic and impactful learning experience.

Limitations and Future Work
This literature review focuses exclusively on papers from the United States. As a result, it does
not account for variations in how data science is defined or taught in other countries. These
differences could provide valuable insights into alternative approaches and best practices that
were not examined in this study. Additionally, papers published in languages other than English
were excluded, which may have limited the scope of this review. Despite the potential value of
these studies, the language barrier prevented their inclusion.

A challenge encountered during the review process was the use of inconsistent terminology. Many
studies relevant to data science do not explicitly use the term ”data science”, making them difficult
to identify during the search process. While efforts were made to locate such papers, it is possible
that relevant research was missed due to this. Additionally, some of the papers reviewed lacked
detailed explanations of their methodologies, requiring certain information to be inferred.

Future work in this area should expand the scope of investigation beyond the United States to
include a global perspective on K-12 data science education. Examining international approaches
and comparing them with U.S.-based practices could uncover new strategies and reveal cultural or
systemic factors that influence data science education. A broader, multilingual review would also
be valuable, as it could capture diverse methods and insights that may be underrepresented in
English-language literature.
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