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Association between fundamental skills on physics pre-course 

assessment and post-course test performance 

 

Abstract:  

Early intervention is beneficial to student outcomes in any course. Determining which skills are 

most critical for student success may enable more rapid identification and intervention for 

students who require additional assistance.  In this study, the authors used two assessment tools: 

the Force Concept Inventory (FCI) and the Conceptual Survey of Electricity and Magnetism 

(CSEM). These tests were administered in calculus-based physics courses to gauge student 

knowledge at entry and exit. While these tests are useful for obtaining information about student 

growth, they have typically not been useful as predictive tools. For this study, the authors 

examined specific fundamental skills assessed on these tests to determine if entrance 

performance on questions assessing those skills was an indicator of future performance. The 

authors divided questions into three categories: verbal, diagrammatic, and complex (requiring 

understanding of both language and image interpretation). Data from tests administered between 

2017 to 2024 were analyzed to determine if any predictive relationship existed between entry and 

exit scores. Further, the authors assessed whether any relationships were associated with 

demographic variables like gender, major, and grade level. Verbal and complex pre-test scores 

accounted for some of the outcome on post-test scores on the FCI but were not predictive of raw 

or normalized gain.  Diagrammatic questions did not seem to contribute to the change between 

pre- and post-test scores, although this may be a result of the low number of questions in that 

category.  All three categories contributed to post-test measurements on the CSEM and 

accounted for some of the change seen in all three types of post-test measurements.   

Introduction 

 One of the most commonly used assessment tools is the Force Concept Inventory (FCI). 

[1]  Since its introduction in 1992, it has been used as a learning assessment tool for physics 

classes worldwide, while its use has been heavily studied.  During this time, researchers have 

evaluated the tool to understand whether there are some questions on the test that may be biased 

due to gender or present hurdles to those for whom English is not their primary language. [2] [3] 

[4] 

 We have used the FCI for nearly a decade in physics assessment for college- and 

university-level physics courses, and during this time, have observed some of the difficulties that 

students have with understanding the wording on the assessment.  Observationally, students tend 

to be intimidated by the test, particularly when the questions appear to involve a significant 

amount of reading.  This prompted questions regarding whether the language used on the exam 

was a barrier to doing well on the assessment as well as whether the FCI may also be assessing 



language skills and not just physics understanding.  This question is particularly relevant in light 

of recent assessments indicating that, in the USA, reading scores have been dropping nationwide. 

[5] 

 To answer this question, we chose to evaluate both the FCI and the Conceptual Survey of 

Electricity and Magnetism (CSEM) in terms of how much the questions depend on language, 

graphical representations, and a combination of the two.  We hypothesized that a strong 

dependence on language use in the assessment would result in measurable differences in student 

performance in each category.  We also hypothesized that these differences would result in post-

test scores or gains that would depend more heavily on questions from the verbal category, i.e. 

questions that did not contain graphical representations.  Finally, we anticipated that gender and 

grade level may result in differences in student performance in one or more of the categories. 

Method and Results 

Force Concept Inventory 

We used test results from both the FCI and the CSEM.  These were administered in 

Physics I and Physics II courses, respectively, between the years 2017 and 2024.  These courses 

are calculus-based physics courses taken primarily by students in science and engineering majors 

at the University of Jamestown.  Both courses were taught by the same instructor during this 

time.  Physics I used a flipped-course format and Physics II used a lecture format. 

We analyzed the questions in both examinations and broke them into three categories: 

verbal, diagrammatic, and complex.  Verbal questions were those that only required the written 

text to solve.  Some verbal questions included diagrams, but these problems were considered 

verbal if the diagram did not provide any information that was not explicitly stated in the text.  

Diagrammatic questions were questions which had minimal verbiage requiring the student to 

interpret a diagram.  Complex questions were a mixture of both: the questions included some 

information in the text and some in illustrations, and the problem could not be solved without 

information from both the text and illustrations.  Because of how these are defined, each question 

can only belong to a single category. Table 1 shows the categorization of questions for both the 

FCI and CSEM.   

Table 1: Categorization of FCI and CSEM questions 

Category FCI Questions CSEM Questions 

Verbal 1-4, 13, 15-17, 25-30 1-5, 10, 11, 13, 14, 16, 21, 24 

Diagrammatic 6, 7, 12, 14 6, 12, 15, 22, 23, 26, 28 

Complex 5, 8-11, 18-24 7-9, 17-20, 25, 27, 29, 31, 32 

 

Subtotal scores were determined by adding single points for correct answers in that 

subsection and dividing by the total number of questions in the subsection.  For example, if a 



student correctly answered two of the four diagrammatic questions on the FCI, their total 

diagrammatic score would be 0.5. 

We used a generalized linear modeling approach, beta regression, to assess the 

relationship between post-assessment scores with pre-assessment scores.   We assumed the 

distribution of the post-scores followed a beta distribution because the values are percents 

summarized as proportions and constrained in the interval 0 to 1 exclusive of 0 and 1. [6]  We 

used a logit link function to transform the post-scores prior to modeling.  Because 

multicollinearity also can be an issue among predictor variables in beta regression, we developed 

a suite of a priori plausible models that excluded within each model pre-assessment scores that 

showed strong simple correlations (r>0.7). [7]  The models chosen are shown in Table 2.   

 

Table 2: A priori models developed avoiding potential multicollinearities among predictor 

variables and subject matter expertise. 

Model Predictor Variables 

Null Null 

1 Verbal 
2 Diagrammatic 

3 Complex 

4 Verbal + Diagrammatic 

5 Verbal + Complex 

6 Diagrammatic + Complex 

7 Pretest 
8 Diagrammatic + Gender + Gender×Diagrammatic 

9 Complex + Gender + Gender×Complex 

10 Verbal + Gender + Gender×Verbal 

11 Diagrammatic + Level + Level×Diagrammatic 

12 Complex + Level + Level×Complex 

13 Verbal + Level + Level×Verbal 

14 Pretest + Gender + Gender×Pretest 

15 Pretest + Level + Level×Pretest 

 

The predictor variables included the FCI verbal pretest score (Verbal), FCI diagrammatic 

pretest score (Diagrammatic), FCI complex pretest score (Complex), FCI total pretest score 

(Pretest), Gender (Gender), and grade level (Level).  The FCI total pretest score was positively 

correlated with verbal, diagrammatic, and complex pretest scores, so none of the models 

included a linear combination of the total pretest score with any of the subscores.  Figure 1 

shows the bivariate scatterplot among the four pretest scores.  These show the relationship 

between the pretest scores, indicating that the FCI total score should not be used in the same 



model as the category pretest scores.  No significant differences were detected between males 

and females, nor among grade levels, for any of the predictor variables (all p >0.05).  Hence, we 

included two-way interactions between gender by each predictor variable and level by each 

predictor variable.  Small sample sizes precluded using gender and level in the same model. 

 

 

Figure 1: Bivariate scatter plot among continuous predictor variables. 

We used the model selection approach prescribed in [8] to rank the models using 

Akaike’s Information Criteria (AICC).  For the models with the lowest AICC values, we 

computed the correlation between the predicted post-scores from the model and the actual post-

scores to assist with interpreting model fit. [9]  Evaluation of the selected models was repeated 

using the SPSS Automatic Linear Modeling function to examine simple linear regression 

models.  The results of this analysis are shown in Table 3.  It should be noted that models 14 and 



15 did not find significance in the interactions when modeled using simple linear models and 

reduced to model 7.  Therefore, a comparison was only made among models 5-7. 

Table 3: Summary of models and AICC model selection results using beta regression and 

comparison with simple linear models (last two columns) for prediction of FCI post-test scores. 

Models with ΔAICC > 15.47 were excluded. 

Modeli Ki AICC Δi ri RSS Linear 

ri 

Linear 

AICC 

Linear 

Δi 

5 4 -121.54 1.77  0.62 2.237 0.60 -485.84 2.17 

6 4 -107.47 15.47  0.49 3.038 0.61 -472.43 15.58 

7 3 -123.31 0.00  0.62 2.733 0.61 -488.01 0 

13 5 -105.08     3.052    

14 5 -119.90 3.41   2.721    

15 5 -119.98 3.33   2.725    

 

Both methods of analysis implied that model 7 was preferred model.  Model 5 accounted 

for a similar amount of variance but required more parameters.  The comparison between 

methods indicated that the simple linear models were sufficiently accurate for the purposes of 

this study.  The generalized linear model accounts for 38% of the change from pre- to post-test 

scores, while the simple linear model accounts for 37% of the change.  These values match other 

studies such as [10] that indicate that other factors such as motivation account for the rest of the 

change pre-test to post-test scores. 

The simple linear regression for model 7 predicts FCI Post-test Score = 0.250 + 0.796 × 

FCI Pre-test Score.  The significance of both coefficients was p<0.001 with n=128.  For the 

model, F1, 126=75.643 and R2=0.37.  Figure 2 shows the comparison of post-test predicted scores, 

based on this model, with actual post-test scores. Simple linear regression of Model 5 predicted 

FCI Post-test Score = 0.268 + 0.425 × Complex pre-test score + 0.405 × Verbal pre-test score.  

The significance of all three coefficients was p<0.001 with n=128 with F2, 125=37.470 and 

R2=0.365.  It was assumed that the constant value was a result of instruction as both models had 

similar constants. 

Similar procedures were followed to determine whether pretest scores and subtest scores 

were predictor variables for the FCI gain, defined as the difference between post- and pre-test 

scores, and normalized gain. [11]  These relationships did not appear to be sufficiently strong, so 

these were not considered in the remainder of the analysis. 

We next attempted to determine if similar relationships existed between particular 

concept categories and the final post-test score.  To do this, we examined the concepts tested by 

the FCI and determined which problems applied to each of the categories.  The concepts tested 

by the FCI include Newtons first law (FL), Newton’s second law (SL), Newton’s third law (TL), 

kinematics (lumped masses undergoing translation or rotation) (Kin), superposition of forces and 



fields (SP), and kinds of forces (gravitational, mechanical, etc) (For).  The problems assigned to 

each category are given in Table 1.  The resulting problem distribution is shown in Table 4.  It 

should be noted that not all categories are represented in the FCI, and some problems fall into 

more than one category. 

There were four categories of problems that were found to be significant predictors of 

post-test FCI scores at the 95% confidence level: complex kinematics (p<0.001), verbal third law 

(p=0.002), verbal kinds of forces (p=0.013), and complex first law (p=0.021).  The regression 

predicted that FCI Post-scores = 0.277 + 0.236 × complex kinematics + 0.161 × verbal third law 

+ 0.205 × verbal kinds of forces + 0.127 × complex first law.  The model had n=128, R2=0.378, 

and F4, 123=24.386. 

 

Figure 2: Scatterplot showing the predicted scores from regression vs actual post-test scores 

from model 7. 

Conceptual Survey of Electricity and Magnetism (CSEM) 

To evaluate CSEM scores, three sets of analyses were performed.  Regressions were 

performed with final post-test score, raw gain, and normalized gain as the dependent variables.  

For each of the dependent variables, three sets of predictors were examined.  The first was the 

pre-test final score, the second included the pre-test category scores, and the final looked at the 

conceptual categories.  The categorization of the CSEM questions into verbal, diagrammatic, and 

complex was shown in Table 1.  Table 5 shows how these were sorted into concepts.  The results 

of this analysis are shown in Table 6 for n=67.   



Table 4: Problems associated with each concept at category on the FCI.  Significant predictors 

are highlighted. 

Concept Category Problems 

First Law (FL) 
verbal 17, 25 
diagrammatic 6, 7 
complex 8, 10, 11, 23, 24 

Second Law (SL) 
verbal 26 
complex 8, 9, 21, 22 

Third Law (TL) verbal 4, 15, 16, 28 

Kinematics (Kin) 
diagrammatic 12, 14 
complex 9, 19-22 

Superposition (SP) 
verbal 17, 25 
complex 8, 9, 11 

Kinds of forces (For) 
verbal 1-3, 13, 17, 27, 29, 30 
diagrammatic 12, 14 
complex 5, 11, 18 

 

Of note is that some of the predictor variables are inversely related to the dependent 

variable.  This is generally considered to be the result of guessing.  This occurs when students 

guess correctly on the pretest but then choose the wrong answer accidentally on the post-test.  

Some analyses can remove these answers when assessing normalized gain. However, they were 

not removed for this study. 

Discussion 

 As has been noted in previous literature, the FCI is not a good predictive tool for future 

performance on the FCI.  In particular, we noted that the FCI pre-test did account for some of the 

change in score, as was seen in Models 5 and 7.  However, we did not find that there was any 

relationship between pre-test scores and raw or normalized gains.  When looking at both the 

models incorporating the category and subfield pre-test scores, the verbal and complex 

categories seemed to provide the best prediction for the post-test scores as none of the predictor 

variables was associated with the diagrammatic category.  It should be noted that these three 

categories comprised 17 of the 30 questions in the examination.  There was no significant 

relationship between any of these variables and either gender or grade-level. 

These results may suggest that students’ language skills may be a factor in their 

performance, and the FCI may be measuring, through a change in score, how well a student 

adapts to the language and terminology used in physics.  This may be a function of background 

exposure to scientific language prior to enrollment in the course, but it may also be a function of 

students’ ability or desire to learn this language.  If this is the case, then improving student 

language skills may be one way to improve student outcomes on the FCI. 



 

 The CSEM pre-test scores, on the other hand, accounted for some level of variation in 

post-test scores, raw gain, and normalized gain in most of the models.  In particular, most models 

indicated that diagrammatic pretest scores are positively correlated with performance on the 

post-test while language and complex skills on the pretest were generally negatively correlated.  

We did not examine gender or grade-level for the CSEM because of the small sample size.   

 

Table 5: Problems associated with each concept category on the FCI.   

Concept Category Problems 

E-field force (EFor) 
Verbal 10, 11 
Diagrammatic 12, 15 
Complex 19, 20 

Work, potential, field (WP) 
Verbal 11, 16 
Complex 17-20 

Charge distribution (CD) Verbal 1, 2, 13 
Coulomb’s law (CL) Verbal 3-5 

E-field superposition (ESup) 
Complex 7-9 
Diagrammatic 6 

Induced charge (IC) 
Verbal 13, 14 
Complex 25, 27 

Magnetic force (MF) 
Verbal 21 
Diagrammatic 22 
Complex 25, 27, 31 

Magnetic field from current 
(BFC) 

Verbal 24 
Diagrammatic 23, 26, 28 

Magnetic field 
superposition (BS) Diagrammatic 23, 28 

Faraday’s Law (CFL) 
Diagrammatic 30 
Complex 29, 31, 32 

Third Law (CTL) Verbal 4, 5, 24 
 

 An important difference between students who took the CSEM versus those who took the 

FCI is that one must finish Physics I to complete Physics II, where the CSEM is administered, 

but the requirement for entry to Physics I is co-registration in the first calculus class.  Therefore, 

the bar to entry is higher for Physics II than to Physics I, and the larger variance in student 

background and/or ability may explain why the FCI is not as good at predicting how students do 

on the post-test.  This is not a trivial issue because these factors are very difficult to incorporate 

into a predictive model for student success, and it is clear that those factors play a bigger role in 



student performance on these exams than the physics understanding or categorical abilities 

measured on the FCI. [10] 

Table 6: Regression models to predict post-test score, raw gain, and normalized gain on the 

CSEM. 

Dependent 

Variable Model R2 AICC Predictors β p-level 

Post-test score Pre-test total 0.228 -290.99 Constant 0.181 <0.001 

    CSEM Pretest 

total 

0.721 <0.001 

 Categories 0.341 -301.50 Constant 0.259 <0.001 

    Diagrammatic  0.439 <0.001 

 Subfields 0.533 -319.60 Constant 0.802 <0.001 

    ESup, 

Diagrammatic 

-0.103 <0.001 

    BFC, 

Diagrammatic 

-0.120 0.001 

    CL, Verbal -0.152 0.007 
    ESupA, Complex -0.156 0.027 

Raw Gain Pre-test total 0.053 -294.62 Constant 0.192 <0.001 
    CSEM Pretest 

total 

-0.335 .034 

 Categories 0.156 -299.99 Constant 0.222 <0.001 

    Verbal  -0.267 0.019 

    Complex  -0.330 0.014 

    Diagrammatic  0.156 0.048 

 Subfields 0.448 -327.99 Constant -0.329 <0.001 

    CFL, Complex 0.167 <0.001 

    EFor, Verbal 0.218 0.001 

    MF, Verbal 0.074 0.001 

    CL, Verbal -0.051 0.033 

    Esup, 

Diagrammatic 

-0.052 0.018 

    Efor, Complex 0.104 .019 

Normalized 
Gain 

Pre-test total   No relationship   

 Categories 0.108 -256.09 Constant 0.222 <0.001 
    Diagrammatic  0.291 .009 

 Subfields 0.431 -284.93 Constant -0.316 0.003 

    CFL, Complex 0.237 <0.001 

    ESup, 

Diagrammatic 

-0.117 <0.001 

    MF, Verbal 0.110 <0.001 

    EFor, Verbal 0.262 0.003 

 

 There is a small number of diagrammatic questions on the FCI when compared with the 

CSEM, however, and it is possible that a drawback to using the FCI as an assessment tool is a 

potential overreliance on language-based questions to determine students’ understanding.  

Students in majors who require physics generally have been found to have higher visual-spatial 

skills than students in other majors. [12] The CSEM assesses this skill area more thoroughly than 



the FCI, and we see that these questions contribute to the prediction models developed with these 

categories.  It therefore seems plausible that one way to improve the predictive ability of the FCI 

would be to incorporate more questions relating to diagrammatic aspects of understanding 

Newtonian mechanics.  Research has already been done on shortened versions of the FCI that 

map to questions on the full FCI and show comparable assessment value. Neimenin et. al. chose 

9 questions (7 verbal and 2 complex) and created representational versions of these questions, 

while Han et. al. created two shorted versions of the FCI by selecting a subset of questions. [4] 

[13]  Interestingly, the shortened versions used by Han et. al. each consisted of 6 verbal, 6 

complex, and 2 diagrammatic questions, so these were approximately the same ratio as 

represented in the original FCI.  Future work on this topic should examine whether additional 

diagrammatic questions on either the FCI or a shortened version provide better predictions of 

student performance after taking a course.  A modified version of this test could better answer 

whether the test is measuring all relevant skills accurately or if students need more instruction in 

the areas that are being assessed with the FCI. 

Conclusion 

We attempted to determine if student performance on the FCI was affected by 

performance on questions with a heavy verbal focus.  We did this by examining models of 

student performance using both beta regression and linear regression.  Both methods produced 

similar results.  The preferred models seemed to correlate weakly with verbal and complex 

questions but not with diagrammatic questions.  This effect was not seen on the CSEM where 

pre-test performance on diagrammatic questions were positively correlated with final test scores 

but complex and verbal had more complicated predictive ability.  However, it is unclear if this is 

a result of the small number of diagrammatic questions on the FCI resulting in an effect too weak 

to measure or due to students’ interaction with language on the verbal and complex questions.  

Further work using modifications to the FCI may be necessary to answer this question. 

Appendix I 

Table 7 provides descriptive statistics for pre- and post- test scores on the FCI and CSEM.  These 

statistics represent only matched scores, i.e., those values for which the student has both pre- and 

post-test scores. Table 8 provides score information for both instruments based on gender and 

grade level. One student was enrolled as a high school student and omitted from grade level data.  

For some students, the grade level information on the CSEM was no longer available and 

therefore was omitted. 

 

 

 

 



Table 7: Statistical information describing test score categories. 

Test score n Mean St. Dev. Minimum Maximum 

FCI      

Verbal Pretest 128 0.271 0.152 0 0.857 

Diagrammatic Pretest 128 0.574 0.314 0 1 

Complex Pretest 128 0.302 0.186 0 0.916 

Overall Pretest Score 128 0.321 0.147 0.033 0.900 
Overall Posttest Score 128 0.502 0.187 0.097 0.933 

Raw Gain 128 0.185 0.151 -0.133 0.667 

Normalized Gain 128 0.275 0.213 -0.200 0.850 

CSEM      

Verbal Pretest 67 0.246 0.123 0 0.667 

Diagrammatic Pretest 67 0.205 0.175 0 0.750 

Complex Pretest 67 0.223 0.101 0 0.417 

Overall Pretest Score 67 0.234 0.092 0 0.500 

Overall Posttest Score 67 0.248 0.128 0.125 0.688 

Raw Gain 67 0.115 0.112 -0.219 0.344 

Normalized Gain 67 0.149 0.151 -0.333 0.458 

 

Table 8: Statistical information describing FCI test scores by gender and grade level. 

  Mean (SD) 

Group n 

Pretest 
Posttest 

Overall 

Raw 

Gain 

Normalized 

Gain Verbal Diagrammatic Complex Overall 

FCI         

Gender         

Male 102 
0.288 

(0.158) 
0.608 (0.308) 

0.315 

(0.199) 

0.339 

(0.153) 

0.521 

(0.185) 

0.185 

(0.146) 
0.282 (0.207) 

Female 26 
0.203 

(0.100) 
0.442 (0.311) 

0.253 
(0.117) 

0.253 
(0.097) 

0.438 
(0.178) 

0.185 
(0.172) 

0.247 (0.240) 

Grade 

Level         

Freshmen 78 
0.291 

(0.163) 
0.590 (0.312) 

0.312 

(0.193) 

0.333 

(0.155) 

0.506 

(0.203) 

0.177 

(0.157) 
0.270 (0.228) 

Sophomores 27 
0.249 

(0.135) 
0.546 (0.286) 

0.262 

(0.147) 

0.291 

(0.116) 

0.511 

(0.149) 

0.220 

(0.141) 
0.309 (0.188) 

Juniors 11 
0.214 

(0.096) 
0.455 (0.270) 

0.348 

(0.148) 

0.299 

(0.103) 

0.468 

(0.162) 

0.165 

(0.149) 
0.236 (0.213) 

Seniors 11 
0.208 

(0.108) 
0.614 (0.424) 

0.295 

(0.176) 

0.290 

(0.136) 

0.483 

(0.163) 

0.193 

(0.127) 
0.275 (0.181) 
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