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Automated Analysis of Knowledge Types in Computer Science Textbooks: A 
Natural Language Processing Approach to Understanding Epistemic Climate 

 
Introduction 
 
Curricular materials, such as textbooks, assignments, and lecture slides, convey messages about 
disciplinary values, assumptions, and beliefs [1]. They help students recognize and learn the 
ways of knowing and doing typical of their disciplines, promoting students’ domain 
identification and knowledge construction processes. Textbooks have been used to examine the 
nature of knowledge presented across various fields, revealing the narratives, questions, and 
content they prioritize and value [2]. For example, Robinson’s [3] analysis of introductory 
electrical engineering textbooks spanning roughly 80 years suggests that more recent versions 
prioritize fact-based content through rote procedure application than earlier, more theoretical 
versions. These findings align with other disciplinary perspectives that frequently find textbooks 
favor technical and procedural knowledge over alternative approaches, portray fields as fixed 
bodies of knowledge, and minimize the positionality of disciplinary experts in defining and 
shaping disciplinary knowledge [4], [5], [6], [7], [8]. When narratives remain unchanging and 
monolithic, they not only obscure the dynamic, inquiry-driven nature of disciplinary work but 
also risk marginalizing students whose experiences and identities are not reflected in dominant 
epistemic assumptions [9]. Further, by recognizing and addressing these limitations, educators 
and researchers can promote curricular materials that more accurately represent the evolving 
character of knowledge in engineering education and foster a learning environment that values 
diverse perspectives. 
 
Support for this effort is limited, as few textbook analyses have been performed in engineering 
education; particularly those focused on how engineering knowledge is represented and 
conveyed to students. Small study samples reveal certain aspects of how engineering 
epistemology exists and is shown to students, but such investigations are limited in both their 
transferability to alternative contexts and in their accessibility to researchers looking to examine 
textbooks in their field. For example, contemporary engineering textbooks may include technical 
language alongside practical real-world examples to illustrate how theoretical concepts translate 
into tangible applications. Consequently, applying an analysis process from mathematics 
textbook education (e.g., [10]) may not capture these nuances in sufficient detail. Such 
approaches may also fail to highlight aspects considered valuable for engineering educators. 
Similarly, a coding scheme developed for electrical engineering textbook analyses may not have 
the same applicability for biomedical or civil contexts. It follows that these traditional techniques 
are also time-intensive and frequently require disciplinary expertise for their analysis and 
interpretation, limiting educators’ ability to understand how students experience engineering 
epistemology as it is displayed to them by their programs. In this regard, engineering knowledge 
is not a static, unchanging entity but an evolving body of knowing and doing that is often 
“hidden” from students [11]. “Visibilizing,” [12] or making visible its qualities and mechanisms 
thus requires techniques able to bridge disciplinary boundaries and their characteristic ways of 
knowing.  
 
To address these methodological limitations in textbook analysis, we propose a framework that 
conceptualizes engineering knowledge as knowledge types: representations of distinct ways of 



knowing or doing engineering that each has a unique purpose, implications, and way it is 
expressed in text. Knowledge types can be observed across various disciplines and their 
curricular materials, allowing for greater transferability between analyses. Further, we propose a 
methodological framework leveraging natural language processing (NLP) techniques to analyze 
the presence of knowledge types in computer science (CS) textbooks. Accordingly, this study 
focuses on developing and validating this methodology through three main contributions: (1) 
establishing a taxonomy of textbook knowledge types in CS education, (2) developing a 
synthetic dataset generation approach to create training data for knowledge type classification, 
and (3) demonstrating the feasibility of using transformer-based models to distinguish between 
different forms of knowledge presentation. By focusing on an element of the epistemic climate 
students experience during their engineering education [1], we aim to validate methods that 
could eventually enable systematic analyses of its knowledge presentation and application; 
helping connect students’ epistemic cognitions to their identity development [13], [14]. 
Specifically, the following research questions guide this study: 

1) How can knowledge types in computer science textbooks be systematically categorized 
to reflect different forms of knowledge presentation and their epistemic implications? 

2) How effectively can synthetic datasets be generated and validated for training NLP 
models to identify knowledge types in CS educational materials? 

3) How well can transformer-based models distinguish between different forms of 
knowledge presentation in CS textbooks, and what patterns emerge in their classification 
performance across knowledge types? 

 
Background 
 
As students experience and engage in engineering programs, they are exposed to various 
messages about engineering, including norms and assumptions about engineering knowledge and 
knowing. Transmitted through pedagogical techniques, relationships, curricular materials, 
evaluations, and support systems, these messages comprise the epistemic climate, or the aspects 
of an environment that impact students’ epistemic development. Curricular materials, in 
particular, play a unique role in the engineering epistemic climate given their role as authorities 
and conveyors of knowledge. A form of curricular materials, engineering textbooks, place a 
disproportionate emphasis on technical content; however, textbook analyses are limited in their 
scope and size due to their resource intensiveness. However, advancements in NLP have opened 
new avenues for broadening textbook analyses, which we look to leverage to examine the 
knowledge representations present in engineering textbooks.  
 
Engineering Education Context and Epistemic Development 
 
Engineering programs are incubators for students’ identity and professional formation. Through 
norms, practices, content, and messages, engineering programs shape how students come to see 
themselves and their relationship with engineering. In classrooms, labs, departments, and 
institutions, students experiences shape their learning and cognitive development [15]. One 
aspect of this cognitive development considers students’ beliefs about the nature of knowledge 
and knowing, referred to as their epistemic beliefs [16]. Students’ epistemic beliefs represent 
how they understand and approach knowledge and knowing, including their beliefs and attitudes 
about what knowledge is, how it’s acquired, and what makes something “valid.” Such beliefs and 



attitudes about knowledge are central to engineering practice, where knowledge and practices are 
often borrowed from other domains [17], requiring a sophisticated ability to collect, evaluate, 
and apply information.  
 
Engineering programs influence students’ epistemic development through spaces and 
opportunities to learn and enact the knowledge and knowing processes associated with 
engineering practice [18]. Educational psychologists have referred to these environments as 
“epistemic climates,” which can be understood as the overall environment or context in which 
ideas about knowledge and knowing are communicated, negotiated, and reinforced. More 
specifically, Muis et al. [1, p. 335] defines an epistemic climate as the “facets of knowledge and 
knowing that are salient in a learning or educational environment, that interact with and 
influence a learner’s epistemic beliefs.” From this conceptualization, they identify five central 
elements in educational epistemic climates: pedagogical approaches, authority structures, 
curricular materials, evaluation practices, and support mechanisms. These epistemic climate 
attributes interact and collectively shape how students perceive the nature of engineering 
knowledge; for instance, whether they see it as fixed, evolving, situated, interconnected, and how 
they learn to justify and validate what counts as that knowledge [1]. 
 
The epistemic climates in engineering programs provide opportunities for students’ epistemic 
development [13]. Students receive cues about what counts as valid knowledge and processes of 
knowing, both from explicit content and from unspoken cultural and disciplinary norms. For 
example, Faber et al. [14] showed that participation in undergraduate research experiences 
(UREs) shapes engineering students’ epistemic development through social interactions, 
legitimate participation in research practices, reflection, and identity formation. They noted that 
different research environments activated different epistemic beliefs and assumptions in students, 
contributing to their understanding of what research is and how engineering knowledge is 
generated. In a related study, Faber and Benson [19] similarly found that the epistemic climate 
significantly shapes students’ problem-solving strategies by influencing their goals and 
motivation, depth of engagement, source selection, evaluation approaches, and willingness to 
consider alternative solutions. One student, Lily, exemplified this influence saying, “Yeah, if this 
[homework] was a huge part of my grade, or was a big test or big group project, I definitely 
would have looked further than on my online book, my textbook, and my slides. I would have 
gone to the library and found books on [the homework topic], and pulled my information to 
support my ideas, or talked about things that could oppose what I was trying to prove. Because it 
was just a homework assignment, I did not do that” [19, p. 692]. Montfort et al. [20] argue that 
engineering students’ epistemic beliefs are likely outcomes of early engineering course 
structures, with their focus on simplified, well-defined problems that promote an epistemic 
climate portraying knowledge as certain and static. Students interpret instructor actions, like 
reassigning problems, as signals about the nature of knowledge, despite not being the instructor’s 
intent. The authors reveal the complexity of civil engineering faculty’s beliefs about engineering 
knowledge, but show faculty tended to evaluate knowledge claims differently in teaching versus 
research contexts. This suggests that faculty members’ beliefs both shape and reflect an 
epistemic climate that can sometimes send mixed messages to students about the nature of 
engineering knowledge and problem-solving.  
 



By illustrating the ways in which research experiences, course structures, and faculty practices 
convey messages about what counts as valid knowledge, these studies highlight the multifaceted 
nature of epistemic climates within engineering programs. Students’ beliefs about engineering 
knowledge are shaped not only by explicit instruction but also by the subtle signals embedded in 
pedagogical choices, assessment formats, and disciplinary norms. Although existing work 
underscores the significance of these climates, further inquiry is needed to fully understand how 
various elements of an engineering curriculum operate in tandem to influence students’ epistemic 
development. One such element, the curricular materials themselves—particularly textbooks—
serve as a powerful yet often overlooked source of epistemic messages. The following section 
focuses on textbook analysis, examining how textbooks convey assumptions about engineering 
knowledge and the potential implications for students’ epistemic beliefs and professional identity 
formation. 
 
Curricular Materials and Textbooks as Conveyors of Epistemic Messages 
 
Engineering programs traditionally rely on curricular materials, such as textbooks, lecture notes, 
and assignments, to complement time spent in classrooms [2], [21], [22]. These materials 
provide content and structure for students’ learning, helping them relate to and understand 
engineering knowledge and practices. In traditional, lecture-based instruction that dominates 
engineering classrooms [23], curricular materials often function as instructional aides to 
reinforce what is delivered in class [2], [22]. They may also offer students structured continuity, 
additional depth, and varied methods of engagement to support their learning. Alternative forms 
of student-directed (or student-centered) learning approaches similarly emphasize curricular 
materials as entry points for classroom learning [22], [24], [25]. These pedagogical models often 
rely on students taking the initiative—discovering, exploring, and constructing knowledge on 
their own—making curricular materials function as both a primary source of information and a 
scaffold for learning. Across these and other pedagogical approaches common in engineering 
programs, curricular materials reflect priorities for student engagement and knowledge 
construction, doing more than merely transmitting information; they shape learning 
environments, support learning autonomy and collaboration, and influence how knowledge is 
constructed, used, and validated. Muis et al. (2016) highlight this central role of curricular 
materials in students’ cognitive development, noting that students’ critical thinking abilities 
depend on content that challenges their epistemic beliefs. That is, for students to become critical 
consumers of information, including their abilities to synthesize, evaluate, practice, and justify 
engineering knowledge, “content and domain-specific epistemology (i.e., methods used within a 
specific domain regarding the advancement of knowledge and processes of knowing) be 
embedded within the curriculum” [1, p. 352].  
 
For these reasons, analyses of textbooks and other curricular materials can be directed to help 
researchers understand how engineering knowledge is described and conveyed to students. Many 
curricular materials currently used—not just textbooks—rely on predefined, decontextualized, 
closed-ended technical problem-solving, despite the complex, contextualized, open-ended 
sociotechnical problems practicing engineers face [26]. While some engineering textbooks (e.g., 
[27]) have sought to integrate social and technical content by incorporating social justice, ethics, 
problem definitions, and professional development considerations, many still rely on technically-
focused a developed during the Cold War ([28], as cited in [24]). Robinson [3] analyzed 



engineering textbooks’ approaches to teaching electrical circuits over about 80 years (1940-
2017), focusing on how they present and understand engineering knowledge. Although more 
recent textbooks included brief “real-world” applications at the beginnings and ends of chapters, 
they primarily concentrated on mathematical analysis, problem-solving, and technical details, 
minimizing theoretical explanations. By contrast, earlier textbooks contained more detailed 
written explanations, emphasized theoretical understanding, and showed how fundamental 
principles explain diverse phenomena. These changes reflect disciplinary cultures and values, 
shaping how students understand engineering knowledge and knowing processes [1]. Each era’s 
textbooks reflect and reinforce distinct professional cultures, hierarchies of knowledge, and 
assumptions about what constitutes “real” engineering practice. Engineering education research, 
therefore, must not only improve current textbooks and curricular materials to reflect engineering 
practice but critically evaluate them for the beliefs and attitudes they impart about engineering 
knowledge and knowing.  
 
Textbook analyses conducted in other disciplines have similarly revealed their overly technical 
and procedural knowledge emphasis. For example, in science education, textbook analyses 
examining the representation of scientific knowledge find that it is often presented as bodies of 
facts rather than as processes of inquiry and experimentation [4]. Mathematical textbooks 
likewise tend to emphasize procedural knowledge over conceptual understanding in proofs, 
prioritize imitative reasoning, and portray mathematics as a fixed body of knowledge [5], [6], 
[7]. In history education, analyses have found variations in how textbooks handle conflicting 
historical accounts, presenting historical knowledge differently (e.g., as fixed narratives vs. 
interpretive processes) [8]. Notwithstanding, history education pedagogy frequently requires 
students to memorize facts, dates, and themes rather than engage in critical historical inquiry, 
decreasing students’ interest in the subject [29], [30]. Common across these disciplinary findings 
is a tendency toward absolutist and static presentations of knowledge in curricular materials, 
which has consequences for students’ critical thinking and engagement. Danielak et al. [9] 
underscore this concern, showing that rigid representations of engineering knowledge do not 
resonate with all learners, hindering their identity development and domain identification. To this 
end, Nilsson and colleagues [31], [32] exemplify the current challenges facing equitable and 
representative curricular materials, showing that chemistry textbooks commonly minimize the 
contributions of female scientists through sex-linked, subsidiary, communal, and doubt-laden 
language, lionize them as models of perseverance, and underrepresent females in images and 
other textbook components. Combined, textbook content informs students’ conceptions of what 
information is considered valuable, which approaches to knowledge construction are legitimate, 
who has the authority to define success, and what practices are recognized as competent; that is, 
textbooks help students recognize and learn their epistemic climates [1], [12]. However, 
engineering and non-engineering textbooks frequently favor static and procedural representations 
of knowledge and knowing, reinforcing values and beliefs that neither represent actual practice 
nor prioritize diverse ways of knowing and learning in their fields.  
 
Leveraging Natural Language Processing for Textbook Analysis 
 
Despite being central components in many curricula, textbook analyses—particularly those 
examining the presentation of knowledge—are scarce in engineering education and are often 
limited in their number and scope. This may be a consequence of the variation in textbook 



content and use across engineering programs and disciplines, or because they require time-
intensive manual analysis processes, namely close reading and coding. Additionally, there are 
challenges in maintaining consistency in qualitative coding across textbooks as researchers may 
not have the domain experience to recognize unique disciplinary language, particularly for 
complex argumentative or explanatory text [10]. These limitations hinder textbook comparisons 
across contexts and periods; the coding scheme from one textbook may not be applied to another 
or across time. By contrast, quantitative forms of textbook analysis have used frequency counts 
of certain terms or concepts to analyze content [33]. However, these approaches may rely on 
specific word sequences or language, omitting semantically similar language and reducing 
complex ideas to simple, countable units. These word sequences may cover broad patterns but 
miss deeper, more nuanced meanings and how ideas develop and connect throughout a text.  
 
However, recent advances in generative artificial intelligence (gen-AI) have opened avenues to 
wider systematic textbook analyses, including those focused on knowledge representations. In 
particular, natural language processing (NLP) a subset of gen-AI, enables computers to quickly 
parse and understand text by identifying the meaningful parts of sentences [34]. Since the release 
of ChatGPT and similar chatbots, engineering education researchers have explored diverse use 
cases of NLP, including for analyzing student writing and assignments, examining curriculums, 
research data processing, student support, and assessment [35], [36], [37]. Recent work by our 
research group [38] has also demonstrated the potential for NLP to aid qualitative thematic 
analysis by expediting the codebook generation process. Importantly, these efforts take 
advantage of how NLP handles semantically and syntactically different text by identifying 
patterns between word embeddings. Models learn these patterns from massive amounts of text 
data through a process called “self-supervised learning” during which the model predicts missing 
words or next words in sequences [34]. This builds a base understanding of language by 
encoding the role and meaning of words into their embedding patterns and relationships. NLP 
researchers commonly refer to models like BERT, GPT, T5, RoBERTa, etc. with this base 
understanding as “foundational models” because they serve as a foundation that can be adapted 
for many downstream tasks [39], [40]. As an example, the GPT model from OpenAI refers to the 
core “Generative Pre-trained Transformer” model, which is used as the foundation for all GPT 
variants, including GPT-4o. These foundational models capture general language and transfer 
well across domains, enabling them to be tailored for different tasks through processes like fine-
tuning. Fine-tuning augments a pre-trained model by re-training and optimizing it for a specific, 
smaller dataset. This process improves its performance in tasks that require an advanced 
understanding of that dataset [41]; for instance, fine-tuning a model using clinical notes to 
identify patients’ demographic information [42].  
 
Applied to textbook analyses, fine-tuning a model could theoretically be performant at 
determining the types of knowledge represented in textbooks. However, this presents two 
questions: What are “knowledge representations,” and how can a model distinguish between 
their “types?” To illustrate, for a model to ascertain that a textbook predominately contains 
mathematical knowledge, it would need a functional concept of mathematical knowledge to 
guide its detection. The following section addresses these questions, which are further 
complicated by the nonexistence of a dataset containing engineering textbook passages labeled 
for the types and styles of knowledge they possess. In this investigation, we sought to address 
this need by exploring the potential of synthetic datasets for fine-tuning. As a preliminary step 



toward this goal, we leveraged large-language models (LLMs)—massively-sized (billions to 
trillions of parameters) pre-trained models focused on language tasks [37]—to generate a 
synthetic dataset of textbook passages labeled according to their knowledge representations. 
From this, we illustrate the initial performance of a fine-tuned BERT model, demonstrating the 
possibility of systematic and rapid textbook analysis according to their knowledge content and 
representation.   
 
Method 
 
To generate a labeled synthetic dataset of CS textbook passages, we first needed to define the 
labels, which we refer to as knowledge types. We then evaluated sample CS textbooks to identify 
instances of knowledge types across sections, chapters, and books before leveraging a LLM to 
help consolidate these instances into a set of distinct knowledge types; each representing a 
category of information or understanding that serves a particular purpose in engineering 
education and practice. This set of knowledge types allowed us to generate 10,000 samples of 
labeled synthetic textbook passages, occurring in random textbook locations (e.g., section 
beginning, subsection end, after equation, sidebar) and contexts (worked example, failure 
analysis, practice application, derivation proof). We then present the initial results of a fine-tuned 
foundational BERT model trained on this synthetic dataset.  
 
Defining Knowledge Types 
 
To evaluate knowledge representations, we first needed to define them. We opted to scope this 
investigation to CS textbooks because of our disciplinary expertise and to narrow the potential 
outcome space of knowledge types, though future research could explore their transferability to 
other engineering disciplines. Unfortunately, we were unable to find existing research that 
directly proposed a model for how knowledge is conveyed in text, particularly in engineering 
text. Consequently, we conceptually defined a knowledge representation as a “knowledge type,” 
or a distinct category of information or understanding that serves a particular purpose in 
engineering education and practice. Importantly, a knowledge type should be able to “detach” 
from engineering textbooks, meaning they should be observable and applicable to other 
curricular materials and disciplinary venues. This is because knowledge types reflect different 
aspects of what students need to know and understand; attributes of an epistemic climate that 
exhibit coherence across the environment where it operates [12]. For example, conceptual 
knowledge represents theoretical understanding, like what time complexity means, while 
practical knowledge might apply conceptual concepts and show how time complexity can be 
used to compare algorithms. Textbooks often use many such knowledge types throughout their 
material, weaving them together through examples, case studies, and foundational lessons.  
Accordingly, we defined knowledge types as having three qualities: 1) Knowledge types have a 
distinct purpose, 2) Knowledge types have characteristic ways they are expressed in text, and 3) 
Knowledge types have different implications for how students understand what counts as 
knowledge in engineering. These criteria are broken down below. 
 
Knowledge types have a distinct purpose. Each knowledge type serves specific educational and 
professional goals. It has characteristic learning outcomes and contributes differently to 
engineering understanding and functions. This premise recognizes institutional definitions of 



engineering knowledge, such as the Engineering Body of Knowledge published by the National 
Society of Professional Engineers (NSPE), which includes capabilities such as mathematics, 
natural sciences, design, and communication [43]. Each of these capabilities serves unique roles 
in professional practice, which we interpret as representing a distinct way of understanding or 
doing. In a simplified example, conceptual knowledge builds the theoretical understanding 
necessary for engineering analysis and reasoning. This differs from practical and professional 
knowledge which develops the capabilities to solve real engineering problems and work 
efficiency in the profession. While these knowledge types are distinct in their goals and 
purposes, they are compatible and may be connected within a textbook lesson. Their purpose is 
also socioculturally and historically defined, reflecting shifting and different meanings, 
interpretations, and values to different individuals [44].  
 
Knowledge types have characteristic ways they are expressed in text. Specific vocabulary, 
terminology, sentence structures, and rhetorical patterns indicate different knowledge types. 
These variations are critical because they literally define the context, subjects, emphasis, and 
outcomes present in text, thereby representing the mechanism by which different epistemic 
messages are conveyed to students [45], [46]. For example, conceptual knowledge might use 
abstract and theoretical language, mathematical expressions, universal statements (“In all 
cases…”), or particular definitional structures (“X is defined as…”). This contrasts practical and 
professional knowledge which might use action-oriented language, conditional statements (“If X 
occurs, then…”), real-world references, and procedural descriptions. Because of these linguistic 
variations, we can leverage NLP techniques to learn and differentiate between knowledge types. 
However, while linguistic variations exist between knowledge types, we assume there are fewer 
variations within one [47]. The smaller variations can thus be conceptualized as occupying a 
unique region in a high-dimensional space defined by word embeddings, which the model learns 
to associate and categorize [34]. Put another way, defining knowledge types as having 
characteristic linguistic features allows both students and NLP models to learn their purposes, 
features, and outcomes.  
 
Knowledge types have different implications for how students understand what counts as 
knowledge in engineering. Different knowledge types present different implications for students’ 
understanding, including what counts as knowledge in engineering, how knowledge is justified, 
how certain/uncertain knowledge claims are, and who has authority over knowledge [48], [49]. 
This premise draws from discourse analysis theory, which evaluates how text or speech conveys 
significance, practices, identities, relationships, politics, connections, sign systems, and 
knowledge [50]. Consequently, the prevalence and distribution of different knowledge types in 
textbooks can engender biases in how engineering knowledge is presented to students, including 
what types of knowledge are valued and prioritized. For example, conceptual knowledge may 
imply that knowledge is based on mathematical and scientific principles, inscribing a high degree 
of certainty and deriving authority from proofs. However, practical and professional knowledge 
may imply that knowledge is validated through successful applications that may have multiple 
solutions. Its examples may showcase engineers balancing uncertainty and trade-offs, with 
authority coming from professional experience, standards, and application viability. In this way, 
knowledge types convey different messages about the source, certainty, connectedness, and 
justifications of engineering knowledge, shaping students’ learning outcomes and understanding 
of the profession.  



 
This structured approach to defining engineering knowledge serves two purposes. First, from a 
computational perspective, these categories provide boundaries and characteristics that NLP 
model can learn to recognize. This enables both the generation of synthetic training data and the 
development of classification models that can distinguish between different forms of knowledge 
presentations in educational texts. Using a common CS concept and popular sorting algorithm—
QuickSort—to illustrate, conceptual knowledge markers might include abstract principles 
(“divide-and-conquer paradigm”), explanatory language (“stems from”, “creates”), and 
theoretical concepts (“efficiency”, “partitioning strategy”). Conversely, procedural knowledge 
markers pertaining to QuickSort might include numbered steps, implementation verbs (“select”, 
“partition”, “apply”), specific operations (“recursively”), and direct instructions. Given these 
differences, NLP models can be trained to distinguish between knowledge types and used to 
generate synthetic training examples by following linguistic patterns. Second, from an 
educational research perspective, this framework enables a systematic analysis of how 
knowledge is conveyed in engineering textbooks by identifying their prevalence and variations. 
Ultimately, whether using a fine-tuned model or not, quantifying the distribution of knowledge 
representations across engineering textbooks allows researchers to examine potential biases, 
identify gaps in knowledge coverage, and understand the implicit messages being conveyed 
about what types of knowledge are valued in the field. Current textbooks appear to emphasize 
some knowledge types over others [3], [26], so it may be that a more inclusive and multifaceted 
approach to conveying knowledge defines the next generation of engineering curricular 
materials; a mix of theory and applications mirroring engineering practice.  
 
Determining Knowledge Types 
 
This knowledge type definition guided our development of ten distinct knowledge types using a 
combination of manual analysis and gen-AI techniques. Limiting our analysis to CS textbooks 
provided greater control over both the manual analysis and the subsequent generation steps 
which required a detailed prompt. That said, future analyses can look to replicate this process to 
contribute to a more representative and generalizable repository of knowledge types present 
across various disciplinary curricular materials. Notwithstanding, our definition of knowledge 
types requires that their characteristics are observable and consistent across different CS 
educational materials. While some natural variation inevitably exists, analyzing multiple CS 
textbooks across a curriculum enables us to identify common patterns in how knowledge is 
presented to students.  
 
To determine different knowledge types, we began by examining CS textbooks for the authors’ 
university’s undergraduate curriculum. We identified the primary textbook for each required core 
CS course, as shown in Table I. When digital versions were unavailable, we used comparable 
alternatives that were accessible online. This step was to ensure the future fine-tuned model can 
assess actual engineering textbooks without the need for additional transcription. 
 

TABLE I 
CS COURSES AND TEXTBOOKS 

Course Name Textbook 



CS 1114 – Intro to Software Design OpenDSA CS 1114 Online Textbook – Intro 
to Software Design 

CS 2114 – Software Design & Data 
Structures 

OpenDSA CS 2114 Online Textbook –
Software Design & Data Structures 

CS 2104 – Intro to Problem-Solving for CS Whimbey, A., Lochhead, J., & Narode, R. 
(2013). Problem solving and comprehension 
(7. ed). Routledge 

CS 2505 – Intro to Computer Organization I Patt, Y. N., & Patel, S. J. (2004). Introduction 
to computing systems: From bits and gates to 
C and beyond (2. ed). McGraw-Hill Higher 
Education 

CS 2506 – Intro to Computer Organization II Patterson, D. A., & Hennessy, J. L. (2021). 
Computer organization and design: The 
hardware/software interface (Sixth edition). 
Morgan Kaufmann 

CS 3114 – Data Structures and Algorithms OpenDSA CS 3114 Online Textbook – Data 
Structures & Algorithms 

CS 3214 – Computer Systems Bryant, R. E., & O’Hallaron, D. R. (2016). 
Computer systems: A programmer’s 
perspective (Third edition). Pearson 

CS 3604 – Professionalism in Computing Spier, R. (Ed.). (2002). Science and 
technology ethics. Routledge 

CS 3304 – Comparative Languages Sebesta, R. W. (2019). Concepts of 
programming languages (Twelfth 
edition). Pearson 

 
These textbooks were evaluated to find similarities in their content, including chapter/section 
structure patterns, content presentation, common transition elements, and recurring educational 
components. We employed a process of notetaking and clustering where passages were recorded 
and grouped into a priori types, such as conceptual, practical, ethical, procedural, and 
mathematical knowledge, while allowing for new possibilities [51]. This process yielded several 
passages, which were then given to Claude, the large generative model from Anthropic along 
with the following prompt: 
 

You are an expert social science researcher studying computer science textbooks. 
Given a collection of engineering textbook passages, let’s develop a framework 
for categorizing them into distinct knowledge types. For each passage, consider: 
1) Content characteristics: (a) What is the primary purpose of this passage? (b) 
What information is being conveyed? (c) How is it being presented? 2) Linguistic 
features: (a) What vocabulary and phrasing is used? (b) What sentence structures 
appear? (c) What discourse patterns are present? After examining several 
passages, identify emerging patterns that suggest distinct knowledge categories. 
For each proposed category: 1) Define its distinguishing characteristics, 2) 
Explain how it differs from other categories, 3) Provide example passages that 
typify this category. Test your categories by attempting to classify new passages. 
If you find many passages that could fit multiple categories, refine your 



framework to make the categories more distinct. Please analyze the provided 
passages and propose a categorization framework.   

 
Using a LLM for this task was partially exploratory: how well could an LLM consolidate 
disparate textbook samples with moderate direction? As shown in Table II, this method appeared 
to work well and initially yielded 14 codes, which were reduced to 10 according to the 
knowledge type criteria. We used a zero-shot approach based on similar NLP-based qualitative 
coding techniques in engineering education research [38], [52], and the set was evaluated against 
the initial samples to verify their correctness, distinctness, and coherence. For example, the 
following passage from Computer Systems: A Programmer’s Perspective was initially labeled as 
conceptual and aligns with the conceptual (CON) knowledge type: “Combinational circuits that 
perform word-level computations are constructed using logic gates to compute the actual bits of 
the output word, based on the individual bits of the input words” [53, p. 404]. However, these 
comparisons were judgment-based, and no inter-rater reliability was calculated. Future research 
should continue exploring the efficacy of these tools, determining whether NLP-based 
techniques for qualitative analysis constitute valid alternatives while identifying potential 
limitations in their application. 
 

Table II 
TYPES OF CS KNOWLEDGE AND DEFINITIONS 

Code Abbreviation Definition 
Conceptual 
Knowledge 

CON Core theoretical principles and fundamental concepts 
that form the basis of CS understanding, including basic 
theories and principles that underpin the CS discipline, 
explanations of key CS concepts and how they relate to 
each other, fundamental laws and equations central to 
the field, and abstract models and frameworks used to 
understand CS phenomena 

Historical 
Knowledge 

HIS Information about the development of CS concepts, 
techniques, and technologies over time 

Procedural 
Knowledge 

PRO Step-by-step explanations of problem-solving methods, 
experimental procedures, or design processes 

Interdisciplinary 
Knowledge 

INTER Connections between CS and other fields 

Epistemic 
Knowledge 

EPIS Information about how knowledge is constructed, 
validated, and evolves within CS 

Metacognitive 
Knowledge 

META Guidance on how to approach learning and problem-
solving in CS 

Ethical Knowledge ETH Discussion of ethical considerations in CS practice and 
research 

Mathematical 
Knowledge 

MATH Equations, derivations, and mathematical models used in 
CS 

Uncertainty and 
Limitations 

UNC Discussions about the limitations of current knowledge 
and areas of ongoing research or debate in CS 



Practical and 
Professional 
Knowledge 

PRAC The application of CS concepts in real-world contexts, 
including the use of current technologies and adherence 
to professional standards and practices. This 
encompasses case studies and real-world problem-
solving scenarios, information about current CS 
technologies, tools, and software, professional standards, 
codes, and best practices in CS, and practical design 
processes and decision-making in CS projects 

 
Generating Synthetic Dataset 
 
Equipped with distinct knowledge types, we developed a structured data generation approach 
using a LLM. By crafting prompts that specified the desired CS topic, textbook context, location, 
and target knowledge types, we were able to generate synthetic textbook passages with known 
labels. This approach allowed us to create a diverse, balanced dataset spanning different 
knowledge categories while maintaining control over the distribution and combination of 
knowledge types. The synthetic dataset serves dual purposes: providing training data for our 
fine-tuned classification model and establishing a benchmark for evaluating its performance 
across multiple knowledge representations and textbook contexts. However, using a synthetic 
dataset poses many questions regarding the data’s validity. Significant research has documented 
limitations of LLMs, including that they can reproduce or amplify bias in their training data [54] 
and generate fluent and plausible-sounding text but factually incorrect [55]. While these are areas 
of concern for synthetic datasets broadly, LLMs have demonstrated notable proficiency in 
generating “textbook-like” explanations, conveying complex concepts clearly and with structures 
resembling textbooks [56]. These abilities likely result from extensive training data, including 
various educational materials, and LLMs’ pattern recognition and generalization capabilities, 
allowing them to cue into characteristic textbook explanations and connect multiple topics. For 
example, LLMs have been widely used in student tutoring systems, which leverage their 
explanatory capabilities [57]. These tools often include instructions that specify the desired 
outputs. Prompts such as “Explain this for a 5th grader” or “Talk to me at a graduate level,” 
instruct the model to vary the output’s vocabulary complexity, abstraction, field-specific 
terminology, and amount of background information [58]. While less work has examined the 
accuracy and consistency of these educational personas over long conversations, with carefully 
designed prompts and appropriate contextual constraints, LLMs can likely capture the essential 
features common in educational materials, particularly for short outputs [59]. Although these 
findings do not substitute a fine-grained comparison between generated and authentic samples, 
we believe they support our approach given its textbook-specific emphasis and reliance on short 
LLM outputs. Future investigations should examine the authenticity of generated engineering 
material, particularly given its growing use among students for various educational needs [60].    
 
We generated diverse examples of textbook content across different CS topics, contexts, and 
textbook locations, which employed controls to ensure an authentic representation of knowledge 
types. Each generated excerpt was contained by, 1) a specific CS topic (e.g., Software Design, 
Data Structures), 2) a textbook context (e.g., main text, example, exercise), 3) a location within 
the text (e.g., section beginning, after equation), and 4) one or more target knowledge types from 
Table II. This approach resulted from many iterative rounds of prompt designing, which began 



with a simple prompt focused on generating multiple examples for a single knowledge type, 
requiring strict JSON formatting, and including basic guidelines for authenticity and variety. 
However, these initial experiments showed that generating authentic textbook passages required 
providing more contextual information to the model. Without this context, the generated samples 
tended to use repetitive patterns and formulaic introductions (e.g., “In this passage...” or “[Topic 
X] is an approach that...”). While these patterns can appear in textbooks, they don’t reflect the 
full diversity of textbook writing styles. To address this limitation, we enhanced our prompts by 
incorporating specific contexts and passage locations. We again used the Claude model as a 
research assistant to help generate potential contexts, and after refinement, identified various 
contexts and locations which are not included in this manuscript due to space constraints. To 
provide some examples, the list of 27 contexts included items such as proof, case study, 
performance analysis, and debugging process, while items such as section beginning, paragraph 
end, after figure, and sidebar, were included in the list of 14 locations. Yet this approach still 
proved inadequate; there was too much regularity between outputs, particularly those sharing a 
knowledge type and context/location. To remedy this, we modified the prompt to handle multiple 
knowledge types simultaneously while simplifying the output structure to generate single 
examples rather than multiple ones. These changes improved the generated content quality, but 
we still observed repetitive patterns and themes in the outputs. Subsequent prompt versions 
incorporated more specific guidance about content placement and context within topics, 
explicitly discouraged common introductory patterns, and introduced the concept of assumed 
prior knowledge—allowing passages to begin as if continuing from previous content. We also 
added clarifications about both content placement and writing style to enhance contextual 
authenticity. In this respect, we want to underscore the importance of using gen-AI to 
complement, not supplement, researcher decisions. The tendency toward automation bias 
threatens integrity and knowledge creation if left unchecked [61]. 
 
The final prompt version (available upon request) provides more detailed guidance for natural 
writing style and location-appropriate content. This version achieved a better balance between 
sophisticated textbook writing and proper implementation of knowledge types. Importantly, the 
entire prompt development process used the qwen2.5:14b-instruct model [62], which 
was selected because it was large enough to follow complex prompt instructions (unlike smaller 
models) while remaining computationally efficient for large-scale generation. Efficiency is 
relative, however, as we generated 10,000 labeled textbook passages in approximately three days 
using an Apple M2 Ultra Mac Studio equipped with a 24-core CPU, a 60-core GPU, a 32-core 
Neural Engine, 192 GB of unified memory, and 8 TB of SSD storage; Table III shows a few 
examples. While generating such a dataset manually would require significantly more time, this 
duration is still substantial, particularly in light of concerns about the environmental impact of 
gen-AI technology [63], [64]. We take these concerns seriously and implemented several 
measures during the generation process to ensure output validity and correctness, minimizing the 
need for additional rounds of generation.  
 

Table III 
EXAMPLE GENERATED PASSAGES 

Course Knowledge 
Type(s) Context Location Example 



Computer 
Systems UNC Debugging 

Process 
Section 

Beginning 

Debugging in computer systems 
often involves identifying and 
resolving issues that arise during 
software execution. Current 
techniques, such as static analysis 
and runtime monitoring, are 
widely used but have limitations. 
For instance, while static analysis 
can detect potential errors before 
code execution, it may not 
capture all dynamic behaviors of 
the program. Ongoing research 
focuses on integrating machine 
learning algorithms to predict and 
mitigate these shortcomings, 
thereby enhancing the accuracy 
and efficiency of debugging 
processes. This field remains an 
active area of debate due to the 
complexity of balancing 
computational overhead with 
diagnostic precision. 

Data 
Structures 

and 
Algorithms 

CON, 
MATH, 

UNC, EPIS 

Mathematical 
Derivation 

After 
Figure 

Figure 2 illustrates the time 
complexity of a binary search 
algorithm, showing how it 
performs O (log n) operations on 
an array of size n. To derive this 
result mathematically, consider 
that each step in binary search 
halves the remaining portion of 
the array to be searched. Let T(n) 
represent the number of steps 
required for binary search on an 
input of length n. The recurrence 
relation is given by T(n) = 1 + 
T(n/2), where the constant term 
‘1’ accounts for the comparison 
operation at each step. By solving 
this recursive equation, we find 
that T(n) » log2(n), confirming 
the logarithmic time complexity 
as observed in the figure. 

Computer 
Organization 

II 
PRAC, ETH Optimization 

Process 
Section 
Middle 

Optimizing computer 
performance often involves 
enhancing memory access times 
and reducing latency. Techniques 



such as caching, which leverages 
faster-accessible storage for 
frequently used data, can 
significantly improve system 
throughput. Engineers must 
balance the size of cache with its 
speed; larger caches offer more 
storage but may introduce 
additional delays in retrieval. 
Other considerations also play a 
role, such as ensuring 
optimization strategies do not 
compromise user privacy or 
security by exposing sensitive 
information through shared 
memory resources. 

 
In summary, to address the challenge of limited labeled training data for classifying knowledge 
types in CS textbooks, we developed a data generation pipeline using LLMs. Through iterative 
prompt refinement, we generated a dataset of 10,000 labeled passages, ensuring diversity across 
topics, contexts, and knowledge types. The final dataset serves as both training data for a 
classification model and a benchmark for evaluating its performance.  
 
Model Fine-Tuning 
 
Our study implemented a foundational model for identifying and classifying distinct knowledge 
types in engineering textbooks. Specifically, we utilized BERT [65] with a custom classification 
head, incorporating a dense layer and dropout regularization for multi-label classification. 
Training employed the AdamW optimizer [66] with a learning rate schedule (initial rate: 5e-5), 
binary cross-entropy loss function, and gradient clipping (threshold: 1.0). Key hyperparameters 
included a batch size of 16 (for GPU used), maximum sequence length of 512 tokens (longer 
than each sample), and early stopping patience of 3 epochs. This approach represents an initial 
exploration to determine whether fine-tuning can capture the differences between knowledge 
types given that additional architecture decisions could be subsequently added. 

Analysis of the model's performance revealed several key patterns, with performance varying 
notably across different knowledge categories, as shown in Table IV. ETH showed exceptionally 
strong performance across all metrics, with nearly perfect precision (~0.98) and high recall 
(~0.95), while HIS demonstrated strong recall (~0.92) but lower precision (~0.81). MATH and 
PRO categories showed the largest precision-recall gaps, with MATH having notably higher 
recall than precision. UNC showed balanced and strong performance across metrics (~0.88 for 
both precision and recall). The optimization of classification thresholds revealed important 
differences across knowledge types. Most categories required relatively high classification 
thresholds (0.8), including EPIS, ETH, HIS, MATH, META, and PRO. However, PRAC showed 
the lowest optimal threshold at 0.55, suggesting these knowledge types may be more readily 
identifiable, while INTER and UNC had moderate thresholds (0.6). The variation in optimal 



thresholds indicates different levels of certainty needed for reliable classification across 
knowledge types. Analysis of co-occurrence analysis revealed several significant patterns in how 
different types of knowledge are presented together in the samples, as shown in Figure I. We also 
found strong co-occurrence between MATH and CON (338 instances), suggesting mathematical 
concepts are often presented alongside conceptual explanations. Following suit, there was a 
notable relationship between PRAC and ETH (274 instances), potentially indicating the 
integration of ethical considerations in practical applications. Substantial overlap between 
META and PRO (252 instances) suggests procedural knowledge often includes metacognitive 
elements, although the limited co-occurrence between META and most others may indicate a 
gap in the synthetic dataset or the model’s inability to recognize it in non-procedural contexts. 
Similar non-detections across the knowledge types may indicate that more targeted samples are 
required or that additional architecture features must be implemented for nuanced detection. That 
considered, analysis of prediction confidence distributions provided additional insights into the 
model's classification behavior. CON showed the highest mean prediction confidence (~0.48) 
with substantial variance, while PRO demonstrated relatively high mean confidence (~0.43) but 
with the largest variance. ETH and HIS showed lower mean confidence despite their strong 
performance metrics. Most categories showed significant confidence variance, indicating 
context-dependent classification certainty. 

These findings provide quantitative evidence for how the CS textbook samples construct 
epistemic climates through various knowledge representations. The strong co-occurrence 
patterns between certain knowledge types suggest that the samples frequently present knowledge 
in integrated ways, potentially supporting the development of sophisticated epistemic 
understanding. Although this was partially controlled by the generation process, seeing the same 
observation in the training results indicates the model was able to identify knowledge type 
overlaps while adequately distinguishing between them. Within this co-occurrence, the varying 
confidence distributions and optimal thresholds across knowledge types show that some forms of 
knowledge are more explicitly marked in the samples than others, which has implications for 
how students might perceive and internalize different types of knowledge in their education. 
However, these results simply reflect patterns within the generated sample. To truly capture 
different knowledge types present in CS textbooks and comment on the resulting epistemic 
climate, the model must evaluate the textbooks in Table II. However, even this would be 
insufficient to comment on CS as a discipline. Future investigations will apply similar techniques 
in other CS programs and across engineering disciplines to understand the many ways 
engineering knowledge is presented and conveyed to students.  
 

Table IV 
PER-CLASS PERFORMANCE METRICS FOR EACH KNOWLEDGE TYPE 

Label Threshold Precision Recall F1-Score 
CON 0.7 0.766 0.767 0.766 
EPIS 0.8 0.802 0.672 0.732 
ETH 0.8 0.985 0.951 0.968 
HIS 0.8 0.811 0.916 0.860 

INTER 0.6 0.869 0.801 0.834 
MATH 0.8 0.604 0.789 0.684 
META 0.8 0.661 0.833 0.737 



PRAC 0.55 0.756 0.836 0.794 
PRO 0.8 0.678 0.689 0.683 
UNC 0.6 0.881 0.876 0.879 

 
Fig. 1. Initial model training results 

 
Discussion 
 
This research is a preliminary step toward future investigations that explore the knowledge 
composition of various CS curricular materials, including textbooks. Yet, the results from the 
generation and training processes identified present several theoretical and methodological 
implications for engineering education. Firstly, while not performed in this study, investigating 
the distribution patterns of knowledge types in engineering course materials could reveal implicit 
messages about what kinds of knowledge are valued and privileged in engineering education; 
“visibilizing” the knowledge mechanisms undergirding disciplinary practices [12]. Our 
computational analysis using NLP shows that while certain knowledge types (e.g., ETH, HIS, 
and UNC) have distinctive linguistic and structural characteristics that make them easily 
identifiable, there is also significant overlap and co-occurrence between knowledge types in the 
samples. This integration pattern provides evidence that students must learn to navigate multiple, 
interrelated forms of knowledge rather than developing through discrete stages or categories of 
understanding [25], [45], [67]. If observed across multiple textbooks and programs, this finding 



would highlight an area of tension between students’ epistemic beliefs and the materials they 
encounter. Current research shows that while students may acknowledge multiple valid 
perspectives can exist, they often view engineering knowledge as primarily technical, certain, 
and objective (e.g., [68], [69], [70]). Further, students’ epistemic beliefs can clash with their 
experiences or outcome expectations in educational settings, particularly when those settings 
differ from traditional approaches [71]. Thus, the presence of highly interconnected knowledge 
types across engineering curricular materials would be problematic for other aspects of the 
epistemic climate (instruction, support, evaluation) that do not match this interconnectedness, 
potentially diminishing students’ learning [72]. Furthermore, there should be an equal concern if 
this interconnectedness in knowledge types is not equally distributed across engineering 
materials. For example, the model’s varying confidence thresholds suggest what forms of 
knowledge are more thoroughly embedded across materials than others: low represents more 
embedded because it requires less “confidence.” If course materials predominantly emphasize 
technical knowledge types while treating other forms as supplementary, this could reinforce 
technically dominant disciplinary epistemologies [73], [74], [75], [76]. These epistemologies 
would shape students' domain-specific beliefs about knowledge [77], [78], potentially 
marginalizing those who approach engineering knowledge through different epistemological 
frameworks [9] and failing to prepare them for actual engineering practice. Practically, our 
quantitative approach to assessing knowledge type distributions offers new tools for curriculum 
development and evaluation. Authors and instructors can use these computational insights to 
analyze their materials and create more intentionally balanced learning experiences that 
incorporate diverse knowledge types [79]. For example, our analysis could help identify where 
ethical considerations might be integrated into technical problem-solving, or where historical 
context could enrich understanding of engineering principles. This systematic approach to 
analyzing epistemic climate could help engineering educators foster learning environments that 
better support the development of sophisticated epistemic beliefs while making the field more 
inclusive of diverse ways of knowing and learning. 
 
Methodologically, this research offers several significant contributions to analyzing epistemic 
climate in engineering education curricular materials. First, the use of synthetically generated 
training data, validated through independent labeling, demonstrates a potential approach to 
overcoming the common challenge of limited labeled datasets about epistemology in educational 
research. This methodological process is particularly valuable for studying epistemic features of 
curricular materials, where manual annotation would be time-intensive and expert-dependent. 
Traditional methods of analyzing epistemic climates have relied heavily on qualitative analysis 
of classroom observations, interviews, and manual content analysis [1], [12], [78]. While these 
approaches provide rich insights, they demand significant resources and are difficult to scale. 
Our validation of synthetic data generation suggests researchers could potentially bootstrap their 
analysis processes, using carefully generated synthetic data to train initial models before refining 
them on smaller sets of authentic materials. In addition to the synthetic data validation, our NLP-
based approach offers a complementary method that can analyze large volumes of curricular 
materials systematically. The varying model performance across knowledge types suggests both 
the promise and limitations of current computational approaches in capturing the nuanced ways 
knowledge is presented in educational materials. For instance, the co-occurrence patterns we 
identified might be better analyzed using more advanced techniques like topic modeling or 
semantic network analysis [80], [81]. Additionally, the challenge of setting appropriate 



confidence thresholds for different knowledge types raises important methodological questions 
about how to balance precision and recall when analyzing epistemic features of educational 
materials. Future work should explore combining computational and qualitative methods to 
validate and refine these approaches, perhaps through expert review of model classifications or 
mixed-methods analysis of how identified knowledge types manifest in actual classroom 
practices. 
 
Limitations 
 
While we tried to be transparent and explain our reasoning throughout the paper, the current 
prediction model exhibits several limitations that warrant careful consideration when attempting 
to generalize its classification capabilities across CS educational materials. A fundamental 
constraint emerges from the training dataset’s composition, which relies on a relatively modest 
sample size of 10,000 training examples. Although seemingly large, this limited corpus may 
inadequately capture the full spectrum of knowledge representations present in CS pedagogy. 
The dataset’s construction methodology also presents epistemological challenges, as it lacks 
established inter-rater reliability measures and comprehensive thematic analysis protocols that 
would ensure exhaustive coverage of potential knowledge types. The absence of such validation 
mechanisms introduces potential systematic biases in knowledge classification. Furthermore, the 
model’s architectural framework, while leveraging BERT’s natural language understanding 
capabilities, encounters constraints in processing extended textbook passages and may 
oversimplify the inherently interconnected nature of CS knowledge types. The predefined 
taxonomic structure, though theoretically grounded, potentially fails to accommodate emergent 
or hybrid forms of knowledge representation if they occur in new texts outside those surveyed. 
Additional limitations stem from potential sampling biases in the source materials, which may 
not fully represent the diverse pedagogical approaches and subject matter depth across CS 
subfields. These methodological constraints suggest several promising directions for future 
research, including: expanding the training corpus through systematic sampling strategies, 
implementing robust inter-rater reliability protocols, developing more nuanced knowledge type 
representations, and incorporating domain adaptation techniques to enhance generalization 
capabilities. Such methodological refinements would strengthen the model's ability to serve as a 
reliable tool for automated knowledge type classification in CS education materials. 
 
Conclusion 
 
This study introduces a novel approach to analyzing the epistemic climate in engineering 
education through the automated analysis of curricular materials. By developing a taxonomy of 
knowledge types and leveraging NLP techniques, we demonstrate that different forms of 
knowledge presentation in CS textbooks can be reliably identified and analyzed at scale. Our 
results show high classification performance across multiple knowledge types, with F1-scores 
ranging from 0.968 for ethical knowledge to 0.683 for procedural knowledge, validating both our 
theoretical framework and methodological approach. This work makes several key contributions: 
(1) it presents and distinguishes between distinct knowledge types in CS education curricular 
materials, (2) it demonstrates a scalable method for analyzing epistemic climate through these 
curriculum materials, and (3) it describes how future research can explore the knowledge 
patterns presented and interrelated in CS education. These findings have important implications 



for textbook authors, instructors, and researchers working to understand and improve how 
engineering knowledge is conveyed to students. Future work should explore the application of 
these methods to other engineering disciplines, investigate temporal changes in knowledge 
presentation across different editions of textbooks, and examine how different patterns of 
knowledge presentation relate to student learning outcomes. Through the continued development 
of such analytical approaches, we can better understand and intentionally shape the epistemic 
climates we create in engineering education. 
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