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Development of an MEB Novice Chatbot to Improve Chemical 
Engineering Critical Thinking 

 
Abstract 
 
The rise of ChatGPT, and other generative AI tools, has led to a number of debates in higher 
education. Multiple news articles have noted the many ways students are already using it in 
classes and how instructors have had to adapt. Given that ChatGPT has been able to improve 
quickly and dramatically at solving a broad range of exam and homework problems, and that 
spending on these technologies continues to grow across industries, how AI is being used across 
fields makes it difficult to ignore in engineering education. 
  
These changes have forced instructors to consider how to use (or ban) AI in their classrooms. For 
instance, some see these tools as a means of access–helping raise all students, especially those 
from disadvantaged backgrounds, to a minimum level of knowledge–which may allow students 
to develop more complex skills, such as critical thinking, application, and synthesis. Critical 
thinking in engineering is a complex set of skills that engineers need to tackle ever-evolving 
challenges (e.g., articulating and challenging assumptions in problem solving, designing 
experiments, and collaborating with other engineers), skills that map to multiple ABET Student 
Outcomes. As more AI-powered technologies are used in engineering practice, teaching critical 
thinking skills across the engineering curriculum will become more important than ever–as AIs 
easily generate correct-sounding false arguments. 
  
In our Material and Energy Balances (MEB) course–the first technical chemical engineering 
course our sophomores and transferring juniors take–one of the learning objectives is for 
students to be able to critique solutions and determine the qualities of stronger proposals. We 
have previously targeted this objective through case-based activities, group discussions, and peer 
review; and saw an opportunity for AI to further support these activities. 
  
In our presentation, we will share our use of a customized retrieval-augmented generator (RAG) 
chatbot built on ChatGPT that we designed to serve as a stand-in for a novice engineer with 
which students can practice critical thinking skills, with a primary focus of critiquing proposed 
solutions. This is opposite to how many other instructors have employed chatbots in their 
teaching (e.g., as automated tutors or experts). As far as the authors are aware, this application of 
an intentionally errant AI-chatbot has not yet been shared in the engineering education literature. 
We will share our approach to training and developing our MEB Novice chatbot, and its use in 
our MEB class. We will discuss how we selected misconceptions to be targeted for errors, how 
we tuned the bot to be errant enough for our teaching goals (e.g., with the goal of dropping the 
accuracy rate of the MEB Novice bot from ~90% to ~70%), and how we evaluated the accuracy 
of the MEB Novice bot. We also will share how we compared different iterations of our trained 



MEB Novice bot against each other and commercially available AI chatbots to which students 
may have access. By sharing our experience, we hope to encourage our colleagues to try 
experimenting with other AI-powered techniques that are likely to become more common in 
engineering education and higher education at large. 
 
Introduction 
 
The rise of ChatGPT, and other generative AI tools, has led to a number of debates in education 
as to what this means for teaching and learning. From early on in its release, multiple news 
articles point out the many ways students are using it in classes and how instructors have had to 
adapt—from changing how and where students write drafts or shifting to oral exams [1], to 
focusing on thinking processes or return to pen and paper [2]—and the debate around its use in 
higher education has intensified with continued uncertainty. The Digital Education Council 
(DEC) Global AI Student Survey, which ran in 2024 across 16 countries and recording nearly 
4000 responses from bachelors to doctoral students, found nearly 86% of respondents used AI in 
their studies, with 54% of students using AI weekly and 24% using AI daily for their studies [3]. 
A November 2023 poll of over 900 higher education professionals by EDUCAUSE found that 
the outlook for AI’s impact on higher education is mixed, with over 60% reporting expected 
increases in academic dishonesty with AI tools, while a similar percentage (>55%) also stating 
that these tools are expected to increase access to higher education [4]. AI usage amongst faculty 
and staff has also increased quickly since the launch of ChatGPT, jumping from 26% from 2023 
to 61% in 2024 amongst administrators [5], and 36% of college instructors reporting use in 2024  
[6]. Instructors who use AI-tools have been typically using the tools to outsource teaching tasks, 
such as course design, assessment development, and even grading [5]. Chatbot performance has 
historically improved quickly—ChatGPT had been able to improve from a B- exam performance 
in a typical MBA course to an A+ between November 2022 and January 2023 [7], for 
instance—and that spending on these technologies continues to grow [8], these generative AI 
tools will continue to improve and specialize into more fields. 
  
Response within higher education to ChatGPT and other generative AI tools has been decidedly 
mixed [9], with the initial instinct for some instructors and schools was to block access and try to 
detect AI-use as a means of cheating [10]. Many instructors continue to voice concern with 
academic integrity an AI—70% of faculty in 2024 stating that they have had to redesign 
assessments to combat AI-use—with 60% of non-AI users voicing negative impacts on student 
learning with AI (though this is reduced to 36% amongst faculty who use AI regularly) [6]. 
Despite this and other concerns, others see opportunity in the changes AI will cause in education. 
In 2023, an EDUCAUSE survey found 54% of the 1000 respondents were optimistic or very 
optimistic towards generative AI [11], and that in 2024 more than 50% of respondents said they 
expected AI to help reduce workloads and over 40% said that AI would help make assessments 
more meaningful [4]. There also are instructors experimenting with ways to better incorporate 



the tool into learning instead of combatting its use, such encouraging students to use ChatGPT to 
design circuits and write code in an electrical engineering senior design project [12], encouraging 
its use as a research tool to help students analyze large sets of records for trends [13], or 
improving brainstorming or helping to break the challenge of a blank page [14]. Some see these 
tools as a means of access—helping raise all students, especially those from disadvantaged 
backgrounds, to a minimum level of knowledge [15]—which allows more students to attain more 
complex skills, such as critical thinking, application, and synthesis [12, 16]. 
  
In chemical engineering, educators have used ChatGPT to improve the problem-solving process 
for students, especially in core courses. Recently, Tsai et al. [17] employed ChatGPT to allow 
students with limited programming experience to develop their own computational models 
towards solving problems, such as modeling a steam power plant and calculating its efficiency. 
Kong et al. [18] demonstrated how ChatGPT can be used to assist in the design of distillation 
columns in an interactive learning environment. ChatGPT and other Large Language Models are 
also being explored for use as virtual tutors for specific technical practices, such as training 
students in Good Manufacturing Practice (GMP) at the masters level [19]. As far as the authors 
are aware, no applications of generative AI have been published for courses earlier in the 
chemical engineering curriculum, such as for Material and Energy Balances (MEB). 
 
With the increasing use of AI tools, students are beginning to recognize critical thinking as a 
place where they should be focusing their learning efforts in college, even though they may not 
be directly using that language. Critical thinking in engineering is defined as a complex set of 
skills that engineers need to tackle ever-evolving challenges, which includes the ability to 
articulate and challenge assumptions in problem solving, designing hypotheses and experiments, 
structuring problems, and being able to collaborate with other engineers [15], skills which map to 
many of the ABET student outcomes 1–7 [20] and are similar to metacognitive tools [21]. 
CRITHINKEDU—a European Commission to assess critical thinking in EU higher 
education—noted a gap that employers saw between the critical thinking new engineering 
graduates had and what they expected for the role, despite having strong technical skills [22]. 
This may partially stem from the difficulty that STEM faculty have in defining critical 
thinking—a lower percentage can confidently describe critical thinking in discipline compared to 
their non-technical peers [23]—and has led to less than ideal coordination in the teaching of 
these skills across the engineering curriculum and the need for more pedagogical approaches that 
can help teach critical thinking to engineering students [15]. As pertains to AI, as reported in the 
DEC 2024 survey of students, 58% of students feel that they do not have sufficient AI skills, 
48% felt unready for an AI-enabled workplace, and 80% say AI integration at their university is 
not meeting their expectations [3]. These surveyed students asked for greater using and 
understanding AI (>70%) so that they would be better equipped to evaluate AI-generated 
responses. Critical thinking is key to be able to evaluate and consider the trustworthiness of AI 



responses in practice, and therefore would be a way of helping to address these concerns of 
university students. 
 
Within chemical engineering, inquiry- and problem-based activities have been used to help teach 
critical thinking skills across the curriculum. Prince et al. describe activities in which students 
need to predict heat transfer outcomes that are designed to create cognitive conflict, where 
students practice critical thinking skills while addressing their pre- and misconceptions in the 
subject [24]. Problem-based learning is used in chemical engineering labs at the University of 
Toronto to create a more open learning environment where students need to structure open-ended 
problems and work together to test hypotheses [25]. Software tools have even been developed 
within a chemical engineering context to help students detect and address technical flaws and 
errors in designs [26]. However, these tools are typically applicable at the advanced 
undergraduate level, and not for introductory courses when students are being introduced to 
engineering ways of thinking. 
 
In our MEB course—the first technical chemical engineering course our sophomores and 
transferring juniors take—one of the learning objectives is for students to be able to critique 
solutions and determine the qualities of stronger proposals. We have previously targeted this 
objective through case-based activities, group discussions, and peer review, and we saw an 
opportunity for AI to further support these activities. As we wanted to particularly focus on 
common misconceptions in MEB, we sought concept inventories that might help us measure 
student learning throughout the course, and help us focus on particular concepts for 
student-chatbot interactions. We had found that there are only a few concept inventories for MEB 
[27–29], and we did not feel these published inventories were aligned with our course and 
learning objectives. So, as a part of our project, we developed a 16-question concept inventory 
that targets common student misconceptions that could be used to test chatbots on MEB 
concepts. These questions were constructed based on misconceptions found in our joint 
experience teaching MEB over 15 semesters at two different institutions. 
 
For our main project, we have developed a customized retrieval-augmented generator (RAG) 
chatbot, powered by ChatGPT 4o that can serve as a stand-in for a novice engineer with which 
students can practice critical thinking skills, with a primary focus of identifying and critiquing 
proposed solutions. Though this idea may be similar to others who propose ChatGPT as a means 
to help students learn to evaluate explanations [30], as far as the authors are aware, this 
application of an AI-chatbot as a novice (instead of an engineering expert or a tutor [19]) has not 
yet been shared in the engineering education literature. Similarly, our project departs from many 
other chatbots and companies that allow you to speak to famous individuals [31], or subject 
matter experts created from scholarly publications [32]. Instead, our RAG approach uses an 
application typical to specialized corpuses of data (e.g., internal company documents [33], or 
course content which has been done by others at our institution) to serve as a basis of a chatbot 



that is directed to speak the language of the course but make mistakes common to those of 
students in the course. This use case of an AI chatbot can additionally leverage what is 
commonly seen as a shortcoming of generative AI—the tendency to hallucinate information 
[34]—and help prepare students to be more skeptical of AI output and to better utilize chatbot 
responses in practice. 
 
In this paper, we will share our approach to training and developing our MEB Novice chatbot, 
and its use in our MEB class. We will discuss how we selected misconceptions to be targeted for 
errors, how we tuned the bot to be errant enough for our teaching goals (e.g., trying to drop the 
response quality of the MEB Novice chatbot to perform more like a C-student with 70% 
accuracy than an A-student with 90% accuracy), and how we evaluated (i.e., graded) the 
accuracy of the MEB Novice bot. We also will share how we compared different iterations of our 
trained MEB Novice bot against each other and commercially available AI chatbots to which 
students may have access. We will also discuss how students use this chatbot in the class—in 
directed activities (e.g., homework problems that ask students to respond to a proposed solution 
by the chatbot) and natural use by the students when given access to the bot. Though we are still 
working to continue to weaken the accuracy of our chatbot responses (currently at 80% or 
B-level), we hope that by sharing our experience that we can encourage our colleagues to try 
experimenting with other AI-powered techniques that are likely to become more common in 
engineering education and higher education at large.  
  
Altogether, we believe our project begins to address two current challenges in engineering 
education: teaching critical thinking and working with AI-tools. Successful building an 
Engineering Novice chatbot for MEB has allowed us to demonstrate the use of ChatGPT as a 
positive learning tool in the field, a conceptual approach for a chatbot that could be useful in 
other courses in the chemical engineering curriculum where working with a novice engineer 
could be a helpful experience (e.g., design) or misconceptions are common and gaining exposure 
to solutions with these misconceptions would likely improve student learning (e.g., 
thermodynamics and transport). 
 
Methods 
 
Chatbot Development. The chatbot is created using a base model of OpenAI’s ChatGPT 4o. In 
order to customize the chatbot, there are two parameters that can be altered.  
 
The first is the files which the chatbot has access to. When creating the chatbot, we give the 
chatbot access to files containing a course’s lecture slides, syllabus, and other relevant material. 
Before it can retrieve any information, OpenAI pre-processes these documents by splitting them 
into smaller text segments and encoding them into vector representations (also called 
embeddings). These embeddings are then automatically stored in a specialized database (called a 
vector store) that allows the system to quickly find which segments are most similar to any given 



query. The chatbot uses RAG (Retrieval Augmented Generation) to answer student questions 
using content from the files. All of these steps are done automatically when the documents are 
uploaded to OpenAI. When a student asks a question, the chatbot looks up the most relevant 
chunks from its vector store by comparing the question’s embedding to the stored document 
embeddings. When relevant information is identified, the chatbot retrieves it from the files. Then 
it uses this information in its response to the student. This process ensures that the chatbot’s 
answers are grounded in the uploaded course materials and remain accurate to the content that 
the instructor provided.  
 
The other parameter is the chatbot’s system prompt. This prompt informs the chatbot of its 
purpose, and can be used to alter its tone and/or behavior. For this application, the system prompt 
was initially:  

“You are a student in Material and Energy Balances. You sometimes make mistakes when 
asked a question, but are confident in your answer even when incorrect. Your tone should 
be that of a learning college student.” 

This system prompt causes the chatbot to make mistakes even in scenarios when it has the 
capability to correctly answer the student’s question. After testing, the initialization prompt was 
changed to: 

“You are a student in Material and Energy Balances. You commonly make mistakes of 
the following types: you write balance equations using mass, moles, and volume; you 
conflate yield, selectivity, and conversion; you treat all types of mole measures as the 
same; you treat equilibrium and steady state as the same; you are poor at degree of 
freedom calculations; and you make conceptual mistakes about phase equilibria. 
Regardless of whether you are correct, you are always confident in your answer and will 
double down on your explanations. Your tone should be that of a learning college 
student.” 

 
Testing and development of the chatbot was done by the instructors of the course to find an 
initialization prompt that would drop the accuracy rate of the RAG model of about 90–95% 
correctness (or an A-level response) to about 70% (a C-level response). This is the lowest level 
of tuning we could do without completely retraining the model. Further tuning could have been 
done by supplying additional materials to produce new embeddings that underlie the RAG 
model, which would require a complete rebuilding of the chatbot. 
 
Students interacted with the chatbot through a simple web interface—an application 
programming interface (API) showing a chat window, which was accessible through Canvas, our 
learning management system (LMS). They could then type to send messages to the chatbot that 
accessed ChatGPT via their API to generate responses. A sample exchange that shows the simple 
interface and how results are presented to students can be seen in Figure 1.  



 
Figure 1. Sample interaction between a user and the MEB chatbot. Text bubbles are colored grey 
for user inputs and blue for the chatbot. Users type below to submit queries to the bot. 
 
Concept Inventory Development. From our experience teaching Material and Energy Balances 
(MEB) courses at two institutions across 15 semesters, we identified eight concepts with which 
students in MEB typically tend to struggle during classroom discussions and on assessments: 

1. Volume Balances—which students may use instead of mass balances without proper 
assumptions; 

2. Vapor-Liquid Equilibrium—which are new concepts to students or are extensions of 
concepts students may be familiar with but under simpler contexts; 

3. Reactor Metrics—which students need to define correctly and with the appropriate 
system boundaries; 

4. Alternative Mole Measures—which tend not to appear outside of chemical engineering 
contexts; 

5. Closed Systems—which students may forget to take into account before answering; 
6. Equilibrium vs Steady State—which students common conflate;  
7. Recycle Streams—which introduce more complex relationships between parameters in a 

process; and 
8. Degrees of Freedom—which we use in contexts students might already have experience 

with and thus have preconceived notions about. 
 
For each concept, we assigned two questions that highlight one or more misconceptions students 
typically have, which may be a misunderstanding of the concept or forgetting to account for it. 
Some questions are taken from homeworks or exams from our previous offerings of the course. 



A full list of these questions can be found in the Appendix at the end of this paper, tagged with 
their targeted misconceptions and question type. 
 
Chatbot Testing. Using the questions developed for our concept inventory for MEB, we tested 
our own chatbot and five commercially available chatbots that have free versions (with 
accounts). The five commercial chatbots we tested are OpenAI’s ChatGPT 4o mini (i.e., the free 
version), Google Gemini, Meta AI, Microsoft Copilot, and Anthropic Claude. Four of these are 
within the top five chatbots by market share [35] (excluding Meta AI). In a survey of college 
students and their use of AI by the Digital Education Council, ChatGPT was the predominant 
chatbot that students used for study (66%), with Microsoft Copilot (25%) and Google Gemini 
(<25%) getting smaller primary usage (Grammarly was used by 25% of students, but is not a 
chatbot, and Anthropic Claude was mentioned in the “other” category of the survey) [3]. Meta 
AI was added because a Facebook or Instagram account is needed for use, which many students 
are likely to have (e.g., 85% of college students have Instagram accounts in 2023 [36]), and Meta 
AI can be accessed directly in those apps. 
 
The chatbots were asked the concept inventory question verbatim and (optionally) were followed 
up with by the tester with additional queries (akin to an oral exam with a student). The chat logs 
of the entire interaction were then copied into a document to be reviewed later. Dates of 
interactions were logged, as these commercial chatbots are continuously updated, and a response 
on one day may differ from a future date. 
 
Responses to the questions were then reviewed by two “graders,” who evaluated the chatbot 
responses along three yes/no categories and assigned a final grade to the response. After grading, 
interrater reliability scores were calculated to measure consistency. The yes/no categories were: 

● Misleading Answer—Responses that may seem logical on its face to a student, though 
incorrect due either to bad assumptions or a misunderstanding of underlying concepts; 

● Misconception—Responses that contain the targeted misconception of the question, and 
does so in a way that students in MEB are likely to demonstrate this misconception; and 

● non-ChemE-like Answer—Responses that answer the question in a non-chemical 
engineering-like approach (e.g., answer the question through a chemistry or physics lens). 

 
Annotated examples of each type of response across these three categories are shown in Table 1 
(with associated grade). Grades were assigned on an A to F scale with the following guidelines: 

A Correct with only insignificant errors (e.g., equation copy error or numerical error) 
B Mostly correct (e.g., minor conceptual or logical errors) 
C Not great (e.g., multiple errors but still generally in the right conceptual direction) 
D Mostly incorrect (e.g., multiple conceptual errors with some correct content) 
F Bad info or gibberish (e.g., scattershot response or nonsensical answer) 

 



Table 1. Annotated Example Chatbot Responses 
Misleading 
Answer 

Q: What would weigh more (on Earth), an ozmol of diatomic oxygen (O2) or a lbmol of 
diatomic hydrogen (H2)? 
 
Response (Meta AI on Dec 26, 2024): 
Comparison of Weights 
To determine which weighs more, we need to calculate the weight of each. 
1 ozmol of O2: The molecular weight of O2 is 32 g/mol. Since 1 ozmol is equal to 1 
ounce-mole, we need to convert this to grams. 1 ounce is equal to 28.35 grams, so 1 ozmol of 
O2 is equal to 32 g/mol * (1 oz / 28.35 g) = 1.13 mol. The weight of 1 ozmol of O2 is then 
1.13 mol * 32 g/mol = 36.16 grams. 
1 lbmol of H2: The molecular weight of H2 is 2 g/mol. Since 1 lbmol is equal to 1 
pound-mole, we need to convert this to grams. 1 pound is equal to 453.59 grams, so 1 lbmol of 
H2 is equal to 2 g/mol * (1 lb / 453.59 g) = 4.42 mol. The weight of 1 lbmol of H2 is then 4.42 
mol * 2 g/mol = 8.84 grams * (453.59 g / 1 lb) = 1 lb or 453.59 grams. 
Since 453.59 grams (weight of 1 lbmol of H2) is greater than 36.16 grams (weight of 1 ozmol 
of O2), a lbmol of diatomic hydrogen (H2) weighs more than an ozmol of diatomic oxygen 
(O2).  
 
Comments: The calculations seem reasonable, but leave out portions of the units, conflating 
mole and mass units. Students simply following the math would be misled by this answer. 
Though this answer also highlights a misconception around how to use non-gram-mole mole 
units. C / Not Great. 

Misconception Q: To increase the overall yield of a chemical process, a recycle stream is added by placing a 
separator after the reactor that completely separates the products from the unreacted reactants. 
All unreacted materials are then mixed with the original inputs to the process and fed into the 
reactor. The reactor yield for the reaction was 50% before adding the recycle stream. Can you 
determine from this information what the reactor yield is after adding the recycle stream? Can 
you determine the overall process yield after adding the recycle stream? Why or why not? 
 
Response (Microsoft Copilot on Dec 26, 2024): 
### Reactor Yield After Adding the Recycle Stream: 
The addition of a recycle stream does not change the intrinsic yield of the reactor. The reactor 
yield (the percentage of reactants converted to products in one pass through the reactor) 
remains at 50%. This is because the reactor's performance characteristics and the reaction 
kinetics are unchanged by the recycle process. 
 
### Overall Process Yield: 
The overall process yield, however, can increase due to the recycling of unreacted materials. 
When you recycle the unreacted reactants, they have additional chances to be converted into 
products in subsequent passes through the reactor. This means that although the single-pass 
yield (50%) does not change, the overall yield of the process increases because the unreacted 
materials are repeatedly cycled back and converted. 
 
### Calculation of Overall Process Yield: 
To determine the exact overall process yield after adding the recycle stream, you would need 
detailed information about: 
- **The amount of unreacted reactants recycled:** The efficiency of the separation process. 



- **Number of passes through the reactor:** Depending on the completeness of each cycle. 
 
Without this specific information, we can't calculate the exact overall process yield. However, 
conceptually, adding a recycle stream increases the overall process yield by ensuring that 
unreacted reactants are given multiple opportunities to be converted into products. 
 
### Example: 
If 50% of the reactants are converted in the first pass, and 50% of the remaining unreacted 
reactants are converted in the next pass, and so on, the cumulative conversion rate will 
approach 100% over multiple cycles. The precise calculation requires integrating these 
multiple passes, often using iterative or more advanced mathematical models. 
 
### Summary: 
- **Reactor yield** remains 50%. 
- **Overall process yield** increases with the recycle stream but cannot be exactly determined 
without additional detailed information. 
 
I hope this explanation helps! Let me know if you have any more questions or need further 
details. 😊 
 
Comments: Doesn't calculate overall system balances, which would reveal that there is only 
one stream in and out. Instead, like many students, the chatbot attempts to iterate its way to a 
steady state solution, a misconception for solving recycle stream problems targeted by this 
example. C / Not Great. 

Non-ChemE-like 
Response 

Q: Under most circumstances (ignoring nuclear chemistry–which we will not consider in our 
course), mass can neither be created nor destroyed. Therefore, we can therefore account for 
mass flows in and out of a process and set up a balance equation (i.e., a material balance). Do 
you think we can do the same thing with volume instead of mass? Why or why not? Give an 
example where this would work. 
 
Response (Anthropic Claude on Dec 26, 2024): 
Let me think about this step-by-step: 
 
1. First, I realize this is a question about volume flowrates, and we just discussed that volume 
is not conserved. This means I'll need information about how volume changes during: 
- The mixing of A and B 
- The reaction of A + B → C 
- The reaction of C → D 
 
2. We know: 
- Input: 1 L/s of A and 1 L/s of B (2 L/s total input) 
- First reaction goes to completion (all A and B convert to C) 
- Second reaction has 50% conversion (half of C becomes D) 
 
3. What we don't know: 
- How volume changes when A and B mix (non-ideal mixing effects) 
- The molar volumes of each species (A, B, C, and D) 
- Whether the reactions cause volume changes 



- If there are any temperature or pressure changes that could affect volumes 
 
Therefore, no, we don't have enough information to determine the flowrate of D in L/s. 
 
To solve this, we would need: 
1. The molar volumes of all species (A, B, C, D) under process conditions 
2. Information about mixing effects between A and B 
3. Temperature and pressure conditions throughout the process 
4. Density data for all species 
 
With this information, we could: 
1. Calculate the actual volume after mixing A and B 
2. Calculate the volume change from A + B → C 
3. Calculate the final volume after C → D (50% conversion) 
 
Would you like me to show how we'd use this information to calculate the final flowrate if we 
had it? 
 
Comments: The chatbot logically steps through the problem, but never explicitly sets up a 
mass balance in order to solve (nor does the chatbot mention density). This is an example of 
generally solving the problem, but not like a chemical engineer. B / Mostly Correct. 

 
Once the two graders finished reviewing the responses, an average “GPA” was calculated for 
each chatbot (A → 4, F → 0, as a whole and across certain misconceptions) as a way to 
holistically evaluate the chatbot’s abilities in MEB. The chatbot performance across the three 
categories is also reported as an average percentile (with 100% as entirely bad in these 
categories—misleading, misconception-filled, non-chemical engineering-like responses). 
 
Course Description & Class Use of the Chatbot. MEB is the first technical course students take 
in the chemical engineering major at Columbia University, and, may be the first course students 
take that engages in numerical engineering problem solving. Students in this in-person course are 
second- and (transferring or major-changing) third-year undergraduates entering the chemical 
engineering major with enrollment typically 25–30 students each term. The course primarily 
focuses the application of material and energy balances to the analysis of process flows with the 
course-level learning objectives shown in Table 2. 
  

Table 2. Course Learning Objectives 
By the end of the course, students will be able to… 
LO1. Explain how chemical engineers approach problems, and the roles they serve across industries. 

LO2. Propose quantitative solutions to a variety of complex problems using approaches familiar to chemical 
engineers (e.g., balance equations). 

LO3. Critique solutions and determine the qualities of stronger answers through a chemical engineering lens. 

  



Previous efforts have been made to target learning objectives 1 and 2 in the course, but the goal 
of development of the novice MEB chatbot was to target the third learning objective. This 
learning objective—critiquing solutions and determining the qualities of stronger answers 
through a chemical engineering lens—has been a challenge in both designing activities around 
and assessing student learning. As such, we wanted to further focus efforts in the course to better 
enable students in developing this skill within the course, which has previously been done 
through group discussions and peer review. Additionally, we had found that students tended to 
take more time to correct bad answers when given to them as in-class problems as compared to 
iterations of the same problem without an answer given. We wanted to produce more activities, 
similar to this correction activity, where students had some response to an engineering problem 
(of unknown quality) that they were tasked to either agree or disagree with the chatbot, and to 
explain their reasoning.  
 
In alignment with learning objective 3, in Fall 2024, we provided our chatbot to students through 
a link on our course website (via Canvas, our LMS), which was supported through a 
collaboration with the computer science department. Students were able to freely use the chatbot 
throughout the course, and were told that we would have access to all the chat logs, albeit 
anonymized. Students seemed to often use the chatbot for study and homework after release. 
 
Additionally, to help direct student use of the chatbot and to help them hone their critical 
thinking skills, homeworks in the second half of the course all contained one problem where 
students had to ask the chatbot a particular question and answer the following questions:  

1. Do you agree with the chatbot?  
2. Why do you think the chatbot is right or wrong?  
3. On a 1–5 scale (where 1 is not confident at all and 5 is extremely confident), how 

confident are you that the chatbot is correct? Why?  
 
Students were graded on whether they identified an error (if any) and how well they explained 
their reasoning when agreeing or disagreeing with the chatbot. Each of the problems that 
students were asked were connected to a misconception that we had previously identified and 
had designed the chatbot to be more errant in when responding. An example homework problem 
using the chatbot can be seen in Figure 2. 
 
One of the major benefits of using the chatbot is its probabilistic nature. In practice, for the 
students, this means that students could ask the same question—like the homework question 
shown in Figure 2—and get different answers somewhat randomly. An example of two such 
responses that the chatbot produced in response to this example question are shown in Figure 3. 
Giving students different explanations and presentations of a solution to critique is one way how 
the chatbot can be much more powerful than a single response for students to all review. 
 



 
Figure 2. Example homework problem that students are tasked with interacting with the MEB 
chatbot and engaging in questions to hone their critical thinking skills. 
 

 
Figure 3. Three example responses from the chatbot to the question shown in Figure 2, 
demonstrating how the chatbot can give different answers, explanations, and presentations, to 
which students would then rate and respond. Examples a and b were created with the question 
from Figure 2 verbatim. Example c was generated by the chatbot when the user called out an 
error in the answer given in example b. These are just three examples of responses for the 
fractional conversion calculation, for which many other solutions were given. 
 
The MEB chatbot was released to students in the fifth week of the 14-week course. This was 
done to make sure students had some baseline vocabulary on process flow analysis before giving 
them access to a chatbot that was trained on the full set of course materials. Since the chatbot 
would be able to draw on future course content, we felt that it would be far less confusing to 



students once they had some of the formalism and practice with the ways of thinking in the 
course to better engage with the chatbot. The chatbot was allowed to be used on homework and 
other assignments, as long as students referenced its use in their responses. However, the chatbot 
was turned off during the days of the exams to prevent students from trying to use it (though they 
were otherwise allowed to use their computers for these open book, open note assessments). 
Although the chatbot was designed to be errant, we did not relay this to students. Instead, 
students were told that the chatbot was in beta—running for the first time a chatbot in the 
course—and that we would not be able to guarantee the goodness of the generated responses. 
 
Concept Inventory Use in Class. The same concept inventory questions were used to test 
students at the beginning and end of the course in an ungraded quiz. As we had developed two 
questions for each targeted concept, one of the two was given in the concept quiz in the first 
week of the course, and the other in the last week of the course in order to measure student 
performance against these misconceptions. These data are not being included in this paper as our 
IRB protocol was still undergoing review at the time the first draft was due. For similar reasons, 
measurements of student critical thinking is not shown in this paper, which is planned for future 
work for this project. 
 
Results & Discussion 
 
Evaluation of Commercial Chatbots for Material and Energy Balance Concepts. We tested 
commercial chatbots with our 16 Material and Energy Balances (MEB) concept inventory 
questions on Dec. 26 and 27, 2024 and against our customized MEB chatbot on Jan. 15, 2025. 
As these chatbots are always changing and being updated, our evaluation of these questions 
against these chatbots may not necessarily be representative of future performance. We (two 
graders) independently evaluated outputs from the chatbots on an A–F scale, and the scores were 
numerically averaged to evaluate the performance of these chatbots on our MEB questions, and 
determine how often the responses were misleading, contained misconceptions, or were not 
ChemE-like in approach, summarized in Table 3. 
 

Table 3. Overall Performance of Commercial Chatbots on MEB Concepts 

Chatbot 
Anthropic 

Claude 
ChatGPT  
4o mini 

Google  
Gemini Meta AI 

Microsoft 
Copilot 

MEB 
Chatbot 

Average Grade 3.56 2.88 2.81 3.25 2.81 2.97 

Letter Grade A- B- B- B+ B- B 

% Misleading 25% 44% 50% 31% 44% 47% 

% Misconception 25% 44% 56% 31% 56% 56% 

% non-ChemE-like 38% 50% 38% 31% 44% 59% 

 



Overall, as shown in Table 3, Anthropic Claude performed best on the 16 MEB questions scoring 
3.56/4 (A-) on average, and having the lowest misleading and misconception-containing answers 
of the tested commercial chatbots. Meta AI was second best with an average of 3.25/4 (B+), with 
the lowest non-chemical engineering-like answers of the five. ChatGPT 4o mini, Google Gemini, 
and Microsoft Copilot all performed relatively similarly with a B- average on the questions, and 
higher rates of misleading, misconception-containing, and non-ChemE-like responses. These 
differences likely stem from differences in the underlying datasets on which these chatbots were 
trained. For instance, based on the way some of these chatbots (Anthropic Claude and Meta AI) 
responded to alternative mole measure questions, we would guess that common MEB textbooks 
were likely contained in their training set to give answers using that particular vocabulary. Our 
customized chatbot scored marginally better than ChatGPT 4o mini with a B average on the 
questions, which is expected both because it is trained on our course materials and because it 
runs on ChatGPT 4o, the more powerful paid version of ChatGPT. 
 

Table 4. Question Performance of Commercial Chatbots on MEB Concepts 
Question 
(Type*) 

Anthropic 
Claude 

ChatGPT  
4o mini 

Google  
Gemini Meta AI 

Microsoft 
Copilot 

MEB Novice 
Chatbot 

1 (CD) 4.0 3.5 4.0 3.5 4.0 4.0 

2 (QA) 3.0 1.0 2.0 3.0 1.0 2.0 

3 (CD) 4.0 3.0 4.0 4.0 4.0 3.5 

4 (QA) 1.0 1.0 1.0 1.0 2.0 1.0 

5 (QA) 4.0 4.0 4.0 4.0 4.0 4.0 

6 (QP) 3.0 3.0 2.0 4.0 2.0 2.0 

7 (QA) 4.0 3.0 1.0 3.0 1.0 1.0 

8 (QA) 4.0 2.0 4.0 2.0 1.0 4.0 

9 (QP) 3.0 3.0 3.0 3.0 3.0 3.0 

10 (QP) 3.0 3.0 0.0 3.0 3.0 3.0 

11 (CD) 4.0 4.0 4.0 4.0 4.0 3.5 

12 (CD) 4.0 4.0 4.0 4.0 4.0 4.0 

13 (QA) 4.0 3.0 2.5 4.0 2.5 3.0 

14 (QP) 4.0 3.0 4.0 3.0 4.0 4.0 

15 (CD) 4.0 2.5 2.5 2.5 2.5 2.5 

16 (QA) 4.0 3.0 3.0 4.0 3.0 3.0 

Average 3.56 2.88 2.81 3.25 2.81 2.97 

*Question Types: Concepts and Definitions (CD), Qualitative Prediction (QP), and Quantitative Application (QA). 
 
Although average performance may be similar between the last three commercial chatbots, 
looking more granularly at individual questions shows how they perform differently on different 



types of problems and different concepts, as shown in Table 4. Eight different misconceptions 
were targeted by the 16 questions (two each), and Table 5 shows chatbot performances against 
each misconception. By combining the questions in these ways, we were able to find that the 
chatbots tended to be more challenged on average by alternative mole measures (2.5/4 average 
across the commercial chatbots), and vapor-liquid equilibria (2.5/4) questions; and performed 
well on equilibrium versus steady state (4.0/4), reactor measures (3.4/4), and recycle stream 
(3.4/4) problems. When breaking down chatbot performance against the three different types of 
questions—Concepts and Definitions, Qualitative Prediction, and Quantitative Application—as 
shown in Table 6, we find that the commercial chatbots are quite good at questions regarding 
concepts and definitions (3.7/4 on average across the commercial chatbots), but performed more 
poorly against qualitative prediction problems (i.e., increase, decrease, or stay the same, 3.0/4) 
and even worse against quantitative application problems that tended to combine multiple 
concepts together (2.7/4). Our custom MEB chatbot tends to perform in the middle of the 
commercial chatbots tested. 
 
We find that this is generally in alignment with what we had expected with the commercial 
chatbots, where straightforward questions that could be more easily looked up—like conceptual 
or definitional questions—are answered easily by the chatbot, but problems that require synthesis 
of concepts are responded to more poorly. For instance, almost all the chatbots performed well 
on question 1 on whether volume balances were allowed. However, when asked a quantitative 
application question that gives volumetric flowrates and asks for a flow, the poorer performing 
chatbots (ChatGPT, Gemini, and Copilot) attempt to do volume balances to solve the problem. 
 
Compared to the commercial chatbots, our MEB novice chatbot performed in the middle of the 
commercial chatbots, below average on concept and definition problems (5th), on median of 
qualitative prediction problems (tied for 3rd), and above average on quantitative application 
problems (3rd, see Table 6). Comparing misconceptions, the chatbot did more poorly on the 
reactor metrics and equilibrium versus steady state than the others, and did similarly on the 
others. These differences show that our initialization likely made a difference in how the chatbot 
responds to questions, and is getting trapped in misconceptions in ways that we were targeting.  
 

Table 5. Question Performance of Commercial Chatbots by Misconception 

Question 
Anthropic 

Claude 
ChatGPT  
4o mini 

Google  
Gemini Meta AI 

Microsoft 
Copilot 

MEB Novice 
Chatbot 

Volume 
Balances 3.5 2.3 3.0 3.3 2.5 3.0 

Vapor-Liquid 
Equilibrium 2.5 2.0 2.5 2.5 3.0 2.3 

Reactor 
Metrics 3.5 3.5 3.0 4.0 3.0 3.0 



Alternative 
Mole Measures 4.0 2.5 2.5 2.5 1.0 2.5 

Closed 
Systems 3.0 3.0 1.5 3.0 3.0 3.0 

Equilibrium vs 
Steady State 4.0 4.0 4.0 4.0 4.0 3.8 

Recycle 
Streams 4.0 3.0 3.3 3.5 3.3 3.5 

Degrees of 
Freedom  4.0 2.8 2.8 3.3 2.8 2.8 

 
Table 6. Question Performance of Commercial Chatbots by Problem Type 

Question 
Anthropic 

Claude 
ChatGPT  
4o mini 

Google  
Gemini Meta AI 

Microsoft 
Copilot 

MEB Novice 
Chatbot 

Concepts and 
Definitions (5) 4.00 3.40 3.70 3.60 3.70 3.50 

Qualitative 
Prediction (4) 3.25 3.00 2.25 3.25 3.00 3.00 

Quantitative 
Application (7) 3.43 2.43 2.50 3.00 2.07 2.57 

 
To determine whether the two graders’ review of the chatbot responses were similar, we 
calculated interrater reliability measures, as shown in Table 7. This table shows the number of 
times the two graders agreed with each other across 128 responses graded. The rates across all 
four graded categories were at or above 85%. To compare this against the chance that the raters 
were similar we calculated a Cohen's κ, all of which were determined to be greater than or equal 
to 0.7, indicating substantial or near perfect agreement between the two graders. 
 

Table 7. Interrater Reliability Measures 
 Grade Misleading Misconception ChemE-like Answer 
Agree 110 109 119 109 
Total 128 128 128 128 
% Agree 86% 85% 93% 85% 
Cohen's κ* 0.80 0.70 0.86 0.70 

*Cohen's κ ranges from 0 to 1 and rescales rated agreement against agreement by chance, with 
0.8–1 considered near perfect agreement between two raters, and 0.6–0.8 considered substantial 
agreement between two raters [37]. 
 
Use of MEB Chatbot for the Course. Across the first term that the chatbot was made available to 
students, 490 pages of chat logs were produced across four assigned homework problems using 



the chatbot and additional student use (11 pt font Arial, 1-inch margins). With roughly 2.5 
queries listed per page, the students collectively asked over 1000 questions to the chatbot over 
the course from the second month of the course through the final exam (10 weeks). Roughly a 
quarter of the queries are related to the specific chatbot activities required on the homeworks, 
with the rest ranging from basic queries (e.g., definitions and explanations of course concepts), 
homework questions that were not specifically chatbot activities, and practice problems given to 
students to prepare for the exams. Most students seemed to ask singular questions with the 
chatbot, instead of holding conversations with the bot over problems and concepts. 
 
This use was generally not surprising to the instructors, and steps were taken to check the MEB 
chatbot’s responses to homework and exam questions prior to release of the assignments (for 
which the chatbot generally gave mediocre, C-level responses, though some were mostly 
correct). We attribute the poorer-than-expected performance on the assignment to arise from the 
need for students to parse visual information (tables, phase and block flow diagrams), which the 
chatbot was unable to digest. No specific action was taken to change homework or exam 
questions to weaken chatbot responses this year.  
 
Anecdotally, students said to the instructor that the chatbot seemed to be strong in certain tasks 
(e.g., explaining concepts directly from the course notes), and weaker at complex problems and 
certain specific concepts, in alignment with the learning objectives for chatbot use. Since we 
emphasize a specific problem-solving approach in MEB for process flow analysis—a thinking 
and solving strategy that the chatbot does not employ when answering questions—students 
would have had to translate chatbot answers into the ways of solving in chemical engineering 
before submitting homework solutions for full credit anyways.  
 
Chatbot use was somewhat overwhelming at times throughout the course—often prior to 
homework due dates—bringing the bot down twice during the term due to running out of 
ChatGPT credits. Although less than $100 of credits were used throughout the entirety of the 
course, we did not adequately predict demand and had to scramble to refill credits on our account 
to allow students access to the chatbot for homework assignments. One of the downtimes 
coincided with the first required chatbot activity on a homework assignment, requiring the 
extension of the homework due date until the chatbot was brought back online.  
 
Conclusion 
 
In response to generative AI tools, and the increased use of AI-powered chatbots, we developed 
and released a customized chatbot—built on the course materials—for use in Material and 
Energy Balances (MEB) in Fall 2024. This course is an entry point into the discipline for the 
enrolled second- and transferring third-year students, often the very first engineering class these 
students take. We have previously developed ways of helping students better understand what 



chemical engineers do in real world practice, and to develop quantitative solutions like a 
chemical engineer. The MEB chatbot was designed to help with the third, and most difficult, 
learning objective of the course (Table 2)—for students to critique and assess possible solutions 
to process flow problems. 
 
To develop and test the chatbot we developed a mini-concept inventory that targeted MEB 
misconceptions selected by two experienced MEB instructors (having taught the course 15 
semesters collectively at two institutions). These inventory questions were then used to test five 
commercial chatbots—OpenAI’s ChatGPT 4o mini (i.e., the free version), Google Gemini, Meta 
AI, Microscoft Copilot, and Anthropic Claude—and the customized MEB chatbot we developed 
with collaborators in the computer science department. Each response was evaluated in terms of 
correctness (i.e., a grade) and whether the response is misleading, contains misconceptions, or is 
not answered in a way a chemical engineering student in MEB would (Table 1). Testing and 
finetuning of our chatbot was primarily done through different initializations of the chatbot, with 
the goal of dropping the accuracy rate of the chatbot—especially in the identified common 
misconceptions—from about 90–95% (A-level response) to ~80% (B-level response). A 
screenshot of the interface (Figure 1), and sample responses to an assigned chatbot-enabled 
homework question (Figures 2–3) show how students asking the same exact prompt can get 
different quantitative answers, explanations, and presentations of responses from the chatbot. 
 
We evaluated the performance of the commercial chatbot, and our own custom bot, against the 
mini-concept inventory questions (Tables 3–6). Anthropic Claude (A- average) was found to be 
the strongest against our concept inventory; with Meta AI (B+ average) in second; and ChatGPT 
4o mini, Google Gemini, and Microsoft Copilot (all B- averages) in last with similar scores. 
Grouping by misconception (Table 5), we found that the chatbots tended to be better at 
equilibrium versus steady state problems and reactor-related process analysis problems (A- 
average) and worse at alternative mole measures and phase equilibria problems (C+ average). 
Grouping by question type (Table 6), we found the chatbots did best with the most 
straightforward concept and definition questions (A- average), followed by qualitative prediction 
(i.e., increase, decrease, or stay the same) problems (B average) and quantitative application 
problems (B- average). The last category oftentimes required chatbots to synthesize multiple 
concepts to solve the problem properly, which may be why the chatbots did poorly on the 
problem. For instance, the chatbots generally answered a relatively straightforward problem on 
the validity of volume balances correctly, but they all generally performed poorly when they 
were tasked with calculating volumetric flow within a process with reaction. Our MEB chatbot 
tended to perform at or above the median compared to the commercial chatbots–typically better 
than ChatGPT 4o mini, as our chatbot is trained on course materials and is powered by the paid 
version of ChatGPT, but less well than Anthropic Claude. 
 



Overall, we were satisfied with the use of the chatbot in the course, and students seemed 
generally appreciative of the fact that the chatbot was being provided for free and integrated 
intentionally into the course. Given that the students produced ~500 pages of chat logs, or over 
1000 individual queries to the chatbot—of which only a quarter of these were related required 
assignments using the chatbot—we found that students had used the chatbot throughout the 
course for both homework assignments and general studying for the course. We still are working 
to further tune the accuracy and tone of the chatbot to drop its performance from B-level to 
C-level, and plan to try more complex, and computationally-intensive tuning approaches—such 
as providing new, intentionally-faulty materials into the documents on which the RAG model 
draw—to create an even better chatbot for our specific use case. In future iterations of the course, 
we would work to more directly control the chatbot and manage the credits more carefully to 
prevent downtime on the chatbot. Questions using the chatbot will be further tuned to try and 
elicit better misleading and/or misconception-filled responses (with occasional correct answers). 
Homework and exam questions for which the chatbot is not designed to be used will also be 
updated and tuned to make the chatbot weaker at answering them correctly in full. We hope to 
also develop in-class activities that would leverage the bot in future terms. Further development 
of the MEB concept inventory questions will also be undertaken to validate these questions and 
improve their ability to test chatbots for MEB problems. 
 
As we have not seen this particular application of an AI-powered chatbot—a novice bot for 
developing critical thinking skills in students rather than an expert chatbot that could be used for 
tutoring or querying purposes—in the engineering education literature, we hope that our 
approach encourages other instructors to imagine a wider range of applications for chatbots 
within their own classroom. By sharing our methods for creating, testing, and tuning the chatbot; 
and our experiences in the classroom using these AI-powered tools with students, we hope other 
chemical engineering instructors can see how such tools can better support student development 
of critical thinking skills and lowers the barrier for others to try using these tools themselves, 
even in small ways.  
 
IRB Note 
At the time of the original draft, the authors were in the process of IRB protocol approval, and, 
therefore, survey data and student work were not included in this paper. Since then and before 
the final draft submission deadline, this project has been deemed IRB exempt (IRB-AAAV6904). 
Discussion of some preliminary data covered by IRB may be included in the paper presentation. 
Future work will include comparing student and chatbot performance on the concept inventory, 
and measuring student critical thinking skills at the beginning and end of the term. 
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Appendix: MEB Concept Inventory Questions for Chatbot Testing  

 
# 

Misconception 
Targeted 

Question 
Type 

 
Question 

1 Volume Balances Concepts & 
Definitions 

Under most circumstances (ignoring nuclear chemistry–which we will 
not consider in our course), mass can neither be created nor 
destroyed. Therefore, we can therefore account for mass flows in and 
out of a process and set up a balance equation (i.e., a material 
balance). Do you think we can do the same thing with volume instead 
of mass? Why or why not? Give an example where this would work. 

2 Volume Balances Quantitative 
Application 

1 L/s of pure A and 1 L/s of pure B is added to a continuous process 
where A + B -> C goes to completion in a first reactor and C -> D at 
50% conversion in a second reactor. Do you have enough information 
to determine the flowrate of D (L/s) out of the process? What 
information would you need to do so? 

3 
Vapor-Liquid 
Equilibrium 

Concepts & 
Definitions 

Water boils at 100C at 1 atm. Is it possible for water to be in the air of 
a room that is at 25C and 1 atm, assuming steady-state? Why or why 
not? How would you determine the maximum amount of water that 
air could carry? 

4 
Vapor-Liquid 
Equilibrium 

Quantitative 
Application 

You want to design a process using two flash drums to purify a 100.0 
gmol/s feed stream of 50. mol% A and 50. mol% B, to produce a 
product stream enriched in B. A is more volatile than B and forms an 
ideal mixture. 
The feed stream (Stream 1) is fed into a flash drum and reaches 
vapor-liquid equilibrium at a temperature T, with the liquid outlet 
stream (Stream 2) flow rate three times as fast as the vapor outlet 
stream (Stream 3) flow rate. 
Assume that the lower and upper bound of the range of possible T 
values is Tb to Td, where Tb is the bubble point and Td is the dew 
point. At what temperature setting for T would you expect the highest 
purity of B be achieved, and in which stream (tops or bottoms)? Do 
you expect the flow rate of the tops or bottoms to be greater when 
operating at this temperature? Why? 

5 Reactor Metrics Quantitative 
Application 

If I have a reaction A --> 2 B, and I have 1 mol/s A enter the reactor, 
and 2 mol/s B exit the reactor, what is the fractional yield? 

6 Reactor Metrics Qualitative 
Prediction 

To increase the overall yield of a chemical process, a recycle stream is 
added by placing a separator after the reactor that completely 
separates the products from the unreacted reactants. All unreacted 
materials are then mixed with the original inputs to the process and 
fed into the reactor. The reactor yield for the reaction was 50% before 
adding the recycle stream. Can you determine from this information 
what the reactor yield is after adding the recycle stream? Can you 
determine the overall process yield after adding the recycle stream? 
Why or why not? 

7 
Alternative Mole 
Measures 

Quantitative 
Application 

Which has more molecules, a lbmol of He or a gmol of He? If they 
are not equal, what is the ratio between the two values? 



8 
Alternative Mole 
Measures 

Quantitative 
Application 

What would weigh more (on Earth), a ozmol of diatomic oxygen (O2) 
or a lbmol of diatomic hydrogen (H2)? 

9 Closed Systems Qualitative 
Prediction 

A saturated solution of NaCl in water is heated. Does the mass of salt 
dissolved in the water increase, decrease, or stay the same? How 
about the concentration? 

10 Closed Systems Qualitative 
Prediction 

A saturated solution of N2 in water is cooled. Does the mass of N2 
dissolved in the water increase, decrease, or stay the same? How 
about the concentration? 

11 
Equilibrium vs 
Steady State 

Concepts & 
Definitions 

Does a steady state process always have to be at equilibrium? Does an 
equilibrium process always have to be run at steady state? Why or 
why not? 

12 
Equilibrium vs 
Steady State 

Concepts & 
Definitions 

A continuous process has a reaction where the product stream of the 
reactor is not at the composition that would be predicted for the 
reaction at equilibrium. Since the reaction does not seem to be at 
equilibrium, does that mean the process must not be at steady state? 
Why or why not? 

13 Recycle Streams Quantitative 
Application 

A reactor that you are designing is limited by equilibrium, but your 
team is still trying to push the overall process yield higher. One 
member of your team suggests adding a recycle stream to the process 
by adding a splitter that would mix some of the reactor output back 
with the original feed stream. Would this help the process achieve a 
higher yield? Why or why not? 

14 Recycle Streams Qualitative 
Prediction 

Your colleague Mary is designing a reaction with recycle system 
involving the production of methylcyclopropane (C4H8, “M”) from 
cyclobutene (C4H8, “C”) via an isomerization reaction. 
C → M (R1) 
 
Because she has a very old computer, she wants to qualitatively 
analyze her design first, assuming steady-state. Parameters that she 
can manipulate are 
· Input molar flow rate of C in Stream 1 (input) is initially set to 600.0 
gmol/s; 
· Single-pass fractional conversion of C in the reactor is initially set to 
0.600; 
· Fractional selectivity of C to M in the reactor is initially set to 0.600; 
and 
· Recycle ratio in the splitter is initially set to 0.600. 
Fill in the blanks below with “increased”, “decreased”, or “stayed the 
same”, and briefly explain your choice. Assume all other parameters 
except the one in question are held constant. 
If she increases recycle ratio at the new steady-state: 
a) Overall fractional conversion will have ________________, 
because [explain] 
b) Molar flow rate of M in Stream 4 (output) will have 
________________, because [explain] 
If she increases single-pass fractional conversion of C, , at the new 



steady-state 
c) Overall fractional conversion, will have ________________, 
because [explain] 
d) Molar flow rate of M in Stream 4 (output), will have 
________________, because [explain] 
If she increases input molar flow rate of C, at the new steady-state 
e) Overall fractional conversion, will have ________________, 
because [explain] 
f) Molar flow rate of M in Stream 4 (output), will have 
________________, because [explain] 

15 Degrees of Freedom Concepts & 
Definitions 

When balancing a chemical reaction, is it possible to have multiple 
viable sets of stoichiometric coefficients that are not just multiples of 
each other (e.g., not just 2x every stoichiometric coefficient)? Why or 
why not? 

16 Degrees of Freedom Quantitative 
Application 

Ammonia production can be made safer by producing H2 instead of 
feeding it into the system. From the following three reactions, we 
want to produce a net reaction with no H2 and no CO. Is this problem 
under-, over-, or exactly specified? 
CH4 + H2O → CO + 3H2 
CO + H2O → CO2 + H2 
N2 + 3H2 → 2NH3 
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