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Developing an AI/ML activity for a BME physiology course 

Introduction 
The current employment landscape is likely to undergo significant changes as the prevalence of data-driven 

work increases. The types of engineering jobs available and the skills required for these jobs will be affected 

[1]. Rather than the traditional computational skills (e.g. writing code, data structures, statistics), critical skills 

for graduates of engineering degree programs will shift to a higher level - including the ability to conceptualize, 

identify, organize, and make sense of data using statistical and machine learning (ML) tools. More importantly, 

how engineers use the results from data to solve engineering problems is constantly changing [1]–[3]. For 

example, the US Food and Drug Administration (FDA) communication and regulation on using artificial 

intelligence (AI) in medical technology development continues to be updated [4], [5]. In order to prepare our 

undergraduate biomedical engineering (BME) students for these changes in the use of data, broadly, our 

program refers to this field shift as one of “data skills”. We see data skills as reflecting the challenges for 

biomedical engineers, or any engineers, that begin before and end well after the use of any particular AI or ML 

algorithm or approach. The critical role of data in such work is well established and represents a necessary 

perspective in preparing BMEs to lead technically competent and morally defensible AI/ML work [6], [7]. 

Our data skills curriculum is actively evolving. We aim to increase student engagement in data skills-related 

learning longitudinally. Many programs have created specific course(s), majors, or minors in data science[2], 

[8]. While adding a major or minor is effective for students who choose this type of coursework, we see a 

broader need to create a variety of opportunities that are tailored to the needs of different interests and career 

paths of different students. All students should have some exposure, alongside opportunities for greater depth 

that flow from this introductory exposure.  

Introducing data skills in undergraduate BME education poses particular challenges. Many BME programs are 

structured so that students receive a broad range of coursework. This breadth of work may come at the cost of 

depth into topics critical for their future careers in the field [9]. Our department determined that developing a 

separate introductory course in data skills would not be feasible. This decision was based on limitations on 

degree credits, space, and other practical challenges. In addition, studies have shown that BME students have a 

limited view of the types of careers that they may attain after graduation[10], [11] - in part attributed to the 

presentation of different topics as broad and disparate. We are motivated to integrate data skills content into 

existing required courses in ways that both further learning in the course itself and address our practical 

challenges. The result is a program of curricular change where data skills elements are incorporated into each 

required undergraduate BME course.  

In this paper, we describe the development, implementation, and evaluation of one such activity - using ML 

diagnostics of Atrial Fibrillation (AF) from electrocardiogram (ECG) data to build cardiac systems knowledge 

in a junior-level Systems Physiology course. We developed and tested two versions of this activity: a longer 

version requiring access to hosted graphics processing unit (GPU) computing services, and a shorter version 

that can run on laptops. We used a pre-post survey to measure student perceptions of their skills in and career 

inclinations towards data skills abilities, and their perceptions of the applicability of data skills in jobs. The 

activity could be easily adopted in similar classes and includes suggestions on how to scale it to range from 35 

minutes to 2 hours of course time. We also report on our general approach for developing this activity so other 

institutions may consider using this model for teaching data skills to their students. All files for the activity are 

provided in a GitHub repository. 

Activity and Implementation 
The activity we developed was designed to serve both data skills and course-specific learning objectives. In this 

section, we describe the curricular and course context as well as the activity. As noted in the intro, this activity 

is part of a larger data skills initiative in our undergraduate curriculum. Our effort to change BME 

undergraduate courses exists within a rapidly increasing ecosystem of AI/ML learning opportunities for 

students at our university. These include an AI/ML-centric minor available to all engineering students [12]. The 
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minor is interdisciplinary and is available to students in both our College of Engineering as well as our College 

of Liberal Arts. Learning outcomes include understanding and applying AI in the student’s primary discipline 

and evaluating the ethics of AI and ML uses. There are three required and five total courses – a required AI 

ethics and Policy course, a statistics course, and an AI/ML focused applications course. Multiple departments 

have an AI applications course, and students are able to choose from those courses based on the types of AI/ML 

applications they are interested in – with an encouragement to learn cross-disciplinarily. Other opportunities for 

students to learn about AI include elective courses, seminars, research, and free computing services through a 

specialized Artificial Intelligence Makerspace built in partnership with NVIDIA.  

Data skills in our BME curriculum 
Emerging from ongoing concerns about preparing BME students for modern engineering work, the BME 

faculty and other stakeholders engaged in a process of discussion, ideation, and definition of what role AI/ML 

should play in our curriculum. The result was a set of data skills:  

1. Implement algorithms for data analysis as a working code in a programming language such as Python, 

MATLAB, R, or C/C++   

a. Write scripts combining off-the-shelf data processing tools   

2. Describe probabilistic models and demonstrate the use of standard tools of statistical analysis and machine 

learning   

3. Use regular operations in spreadsheet programs (e.g. Excel)   

4. Use data to solve engineering problems in biology and medicine    

a. Apply statistical analysis and machine learning tools to different datasets and understand their 

limitations    

b. Justify design decisions, inputs, and constraints   

c. Recognize biases or underlying assumptions within datasets and that their use may pose risks to 

certain populations   

d. Organize and present data visually to an audience  

 

The data skills were developed with input from, reviewed by, and approved by the department’s faculty and 

external advisory board. The list of skills also maps to those identified by industry leaders in other research 

[13]. During development, the consensus was that the rapid emergence of AI/ML represented a motivation and 

framing of the need for our students to develop data skills. However, a narrow focus would likely distract from 

what students actually need to be effective engineers. Therefore, we defined a set of general data skills, 

including connections to AI/ML and to other ways data-driven engineering occurs. We believe it is important to 

situate AI/ML as a continuation of the use of data, rather than as an entirely separate skillset.  

In parallel with approving the skills themselves, the faculty approved a requirement that some aspect(s) of these 

data skills must be integrated into each required undergraduate course. While the scope of that integration was 

left open-ended, it must be transparent and identifiable to both instructors and students. The integrations were 

intended to generally adopt the following pedagogical principles: 

● Meaningfully link the core content of a course to an authentic application of the use of data, ML, statistics, 

and/or use of engineering computing tools in biomedical engineering work 

● Enhance, rather than replace or compress, learning about existing content in the course 

● Not require any pre-requisite knowledge beyond that already required for the course 

● Focus on application and exposure over first principles or mastery 

Two foundational educational frameworks guide specific interventions enacting these principles. The first was 

the ICAP framework [14]. The nature of these interventions as application-based and focused on linking led to 

an emphasis on collaborative and student-directed exploration of AI/ML applications wherever possible. The 

second was a focus on a higher level and forward-looking reflection as described by Kember and 
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colleagues[15]. Such activities are already common in our program and are largely guided by established 

frameworks including inquiry and project-based learning, and conceptual change [16].  

Course description 
The course in which we implemented this activity is an upper-level introductory physiology course that consists 

of two 1-hour lectures and one 2-hour Problem Solving Studio (PSS) [17] per week, with some content 

delivered using required course videos. The course is designed to help learners connect disarticulated 

physiological concepts to solve system-wide problems. The general content covered is typical of introductory 

physiology courses[18], [19]. However, the course is somewhat different in the extensive focus on integrating 

knowledge across individual organs and systems to troubleshoot signs and symptoms affecting the entire 

system. The PSS sessions emphasize evaluative and applicational questions (i.e., higher levels of Bloom’s 

taxonomy[20]). The sessions, which operate at Chi’s active level [14], are typically built around medical case 

studies and typically ask students to make treatment or other decisions in the case studies.  We designed a full 

version of the activity (see next section) that could take the place of a PSS session focused on connections 

between cardiac anatomy, the cardiac cycle, and electrical recordings via ECG. We implemented the 

compressed version of our activity (also, see next section) in a PSS session focused on connections between 

cardiac dysfunction and connections to the respiratory system and respiratory symptoms. 

Activity 
We designed the data skills activity to integrate manual and ML interpretation of ECG traces to diagnose AF. 

Neural network models have been used to detect AF in research studies (e.g., [21]–[23]), but we have not found 

published work that describes the use of this system as an instructional tool. The activity takes the entirety of 

one PSS session (max 110 minutes) in the systems physiology course [17]. This assumes students come in with 

the appropriate software installed and configured. Students work in groups of 4 on a worksheet that guides them 

through the activity. During the fall of 2024, we developed 2 versions of the data skills activity which we 

implemented with two different groups of students for evaluation (Table 1.) Both versions were based on the 

same high-level changes to an existing course session on cardiac and/or pulmonary physiology, depending on 

the material that is relevant to the curriculum at the time of the activity. This section describes the activity 

development at a high level and then specific activities in each are described in two subsections below. Note 

that all activity materials are provided in the GitHub repository [24]. 

Table 1. Description of the design and implementation of 2 new versions of the activity 

 Original Activity  

(no data skills) 

Activity Version 1 (Full) Activity Version 2 (Compressed) 

Time allotted in class 110 minutes 110 minutes 110 minutes 

~ Time on data skills 0 minutes 90 minutes 35 minutes 

Required resources Worksheet, pen GPU-based computation [25] 

and Google Spreadsheet on 

student laptops, worksheet, 

pen, code and data files 

MATLAB (with Deep Learning or 

Statistics and Machine Learning, and 

Signal Processing Toolkits) on and 

Google Spreadsheet accessed through 

student laptops, worksheet, pen, code and 

data files 

Pilot size - 8 students divided into 3 

groups 

142 students across 3 course sections. 

Each section contained up to 48 students 

in groups of 4 

Survey data No No Yes 

Observational data No Yes Yes 
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As noted, the activities were guided by two educational frameworks by Kember and by Chi [14], [15]. We 

sought to intentionally evaluate and elevate the levels of engagement and reflection. As much as possible, we 

modified existing activities to move from the active or constructive level to the interactive level and create 

moments that are likely to elicit critical reflection. Examples of these changes are discussed throughout and also 

highlight our four pedagogical principles described in the previous section. 

Starting from the existing cardiac/respiratory dysfunction activity mentioned above, both versions of the data 

skills activity integrate training and inference of ML models. In keeping with our principles, no physiology 

content was removed, although the way students engage with it did change. For example, in the original activity 

(no data skills), students label the P, Q, R, S, and T parts of a wave on a model ECG of a single heartbeat. In the 

revised data skills activity, students were asked to use the parts of the wave to mark features indicative of a 

cardiac diagnosis on a single ECG rhythm strip showing approximately 9 beats, and including noise. Then, 

focusing on applications, they are asked to extend that knowledge to classify multiple ECGs presented to them 

as showing symptoms of AF or not. Finally, enhancing and linking this content to other courses, they are asked 

to consider mathematical features of such waves that could be used in computational analysis. A comparison of 

the student tasks in the two versions of the data skills activity is shown in Table 2. 

Table 2. Comparison of the Full and Compressed Versions of the Data Skills Activity 

Student Task Compressed version Full version 

Train GPU-based model to distinguish AF vs. not AF  x 

Enter manual diagnoses and compare across student groups x x 

Classify test data and compare model performance information across 

student groups 

x 

(w/pre-trained model) 

X 

(w/model they train) 

Answer physiology-based questions x x 

Answer questions centered around the clinical use (and consequences of 

the use) of this AI tool 

x x 

Train a model of their choice based from several options highlighting 

common ways to improve ML performance (e.g., more parameters) 

 x 

Development of the code for the activities 
Both the full and compressed versions of the activity are a simplified version of and use the same data as the 

2017 edition of the George B. Moody PhysioNet Computing in Cardiology Challenge[26]. The 2017 challenge 

asked teams of researchers to create classification algorithms to aid clinicians in interpreting ECG signals 

among four possible categories. The simplified version is based on example code created by MathWorks in the 

MATLAB software language[27].  

While the example code the activity is based on is generally aligned with the activity, it was written to 

demonstrate an implementation of a set of software functions - not to scaffold an educational activity. 

Therefore, we (the authors) revised the code before running the activity in four ways. First, it was refactored 

and organized to align with the activity prompts and questions. Second, comments explaining the code itself 

were replaced with comments explaining the practical aspects, links to physiology, and modeling decisions that 

the code reflected. This included obfuscating or glossing over aspects of the code that were extraneous to the 

activity's main goals (e.g., loading data from physionet). Third, in the full version of the activity, we added an 

additional model training run in which groups made choices on how to improve their model. Fourth, the 
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example MATLAB code only worked in the most recent releases of MATLAB1. That did not align with the 

varying releases installed by our students and on our institutional compute cluster. To accommodate this, we 

wrote multiple versions of some sections of code using appropriate functions from all major releases over the 

last 4 years. The code for the activity is included in supplemental materials. As noted earlier, we prepared two 

versions. The full version includes the actual training activities as well as the inference activities but requires 

significant computational resources, described later in the paper. In contrast, the compressed gives students pre-

trained models that can be reasonably run on a typical student laptop.  

Given common curricular change concerns in engineering education, we want to dissuade others from thinking 

that the use of pre-existing code is a negative for this activity, or that there is a tension between covering any 

specific ML model in depth and covering cardiac physiology. Our focus, as laid out in learning objectives and 

design principles for these activities, was engagement specifically on (1) the evaluation of the output and 

efficacy of such models, (2) the relationship of ML to the existing course content, and (3) the relationship 

between ML and clinical decision making. We believe having students write their own code during this activity 

is an inefficient use of limited time for such an activity in a physiology course. That is, while coding skills are 

important (see list of data skills above), they are a distraction here from our core goals of using ML tools and 

big data to further learn about physiology. Further, that time would almost certainly be spent at the lower levels 

of the ICAP framework where students learn less and would take away time for discussion and reflection. The 

choice to use an established open data challenge and existing demonstration code was motivated by our interest 

in showing opportunities for continued growth to students through these activities. Doing so uncovers potential 

future learning and growth opportunities for students that they otherwise may not know exist. While not directly 

related to the intended learning outcomes, these types of choices are fundamental to our design principles for 

these activities. Students who find interest through these introductory exposures have multiple opportunities for 

future growth as described in the curricular context section. In addition, activities we are developing for other 

required courses in our major will require students to write code. 

Compressed version implementation details 
The compressed version illustrates a minimalist implementation of the activity and how such an implementation 

can integrate into a small portion of a single course session. The compressed version of the activity was 

implemented in the first 30 minutes of a 110-minute course session, with a 5-minute wrap-up discussion at the 

end of the session. This version was implemented in the Fall of 2024 in 3 course sections, each with up to 48 

students working in teams of 4. In this version, students rely on a pre-trained ML model; run all code locally 

(i.e., on their laptop); and focus on model inference, model interpretation, and model application. The code and 

worksheet are divided into parallel ‘sections’ that guide students to run code and answer questions about the 

code, cardiac system, or results of the code concurrently. Students also enter results produced by their code into 

a Google Spreadsheet that allows for comparison, summary, and discussion of results across teams. All relevant 

Supplemental Materials and materials in the GitHub repository are labeled COMPRESSED. 

The activity begins by introducing students to a medical case - a 63-year-old woman with a complex medical 

history who is experiencing declining indicators of cardiac and respiratory function. During the introductory 

portion of the activity, teams run a section of code that loads data from a web archive, splits that data into test 

and training data, and plots three ECGs for teams to visually diagnose. Two of the signals (one normal, and one 

AF) are common among all of the teams to encourage collective decision-making and checking of their 

answers. The third is selected randomly and could exhibit normal physiology, AF, or another irregularity.  

Towards our interactive goal, each group enters their diagnoses of the multiple ECGs into a shared spreadsheet 

(Figure 1). The groups’ diagnoses are automatically checked against the data set labels for accuracy, sensitivity, 

and specificity and the results are shown to all the teams (Figure 2). This created two forms of interaction. First, 

teams could see each other's decisions and check and evaluate their own knowledge when there were 

 
1
 Specifically, the example code existed to demonstrate improved functionally of the MATLAB 2024b release of Deep Learning and 

GPU and Parallel Computing Toolboxes, which introduced new functions to ease the inference portion of modeling. 
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differences. Previously such classification was done independently by each group and submitted to the 

instructor for grading. Second, the shared spreadsheet enabled classwide discussion and debate as the instructor 

asked for multiple perspectives on what guided their diagnosis.  

 

Figure 1. A view of the Google Spreadsheet used by students running the compressed version of the activity. Students select their 

diagnosis for three, two of which are common among all teams (ECG 4 and ECG 1), and one randomly selected for each team by the 

code (ECG X). ECG 4 was labeled in the data set as AF by experts, while ECG 1 was labeled normal. 

The student worksheet asks teams to discuss their diagnosis accuracy, the visual cues they used in their 

diagnosis, and to relate AF to the medical case. When most teams have completed this step, the diagnosis 

indicators of the ‘common’ ECGs are discussed as a course, alongside class accuracy, and comparisons to the 

literature on different types of clinicians (Figure 2).  

The discussion led by the facilitator was targeted to help students articulate a change in their understanding of 

how ECG signals relate to cardiac behavior (i.e., Kember’s topmost critical reflection stage). This discussion is 

guided progressively - reflect on individual team’s diagnoses and knowledge of cardiac physiology, reflect on 

course level performance to assess mastery, and then reflect on reasons their performance might be higher than 

certain groups of clinicians but lower than Cardiologists. We found that students were surprised that their 

accuracy in diagnosing AF2 was more accurate than most groups of clinicians. As statistics is not a prerequisite 

for this class, the discussion here also offered a brief conceptual connection to sensitivity and specificity and the 

implications (e.g., for clinical decision-making) of both false positives and false negatives. 

 

Figure 2. Summary of student accuracy from diagnosing randomized ECGs and comparison to accuracy amongst groups of clinicians. 

After this introduction, students switch to their laptops to engage in the ML portion of the activity. Having 

looked at individual ECGs manually, students used pre-trained ML models to classify a large open data set of 

ECGs. Both the compressed and full activity version models use neural networks to classify ECG signals as 

 
2
 Noting, diagnosis was done by teams and affected by interactive learning in the spreadsheet (see discussion) 
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either AF or not AF. A classification of “not AF” could mean anything from a completely normal ECG trace to 

one with ventricular fibrillation, or even an ECG with incorrect electrical connections.  

Next, students are instructed to run section 2 of the code, which runs an inference process that classifies all of 

the raw ECG signals. This is run on a model pre-trained by the instructors on a GPU-based cluster resource, and 

depending on the student's laptop takes between two and five minutes to complete. To ensure compatibility 

across different MATLAB versions students may have installed, the code includes the same functional steps 

implemented using different functions.  

While the inference code is running3, students are given the intentionally vague question: Translate your visual 

diagnosis of ECG signals into mathematics and discuss challenges in making a mathematical function from an 

ECG. This question was designed to have no concrete answer but rather generate discussion in teams that 

initiate connections between cardiac physiology, signals processing, and mathematics. We expected students to 

invoke calculus concepts like derivatives, peaks finding, energy, or frequency. Some of that occurred, but we 

were surprised by the level to which students struggled with this question or identified such a translation as 

impossible because the data was ‘too complicated’. Faculty interaction during the activity helped enormously, 

often with just minor prompting, and we found students both surprised and excited to see links between their 

math and physiology course content. We plan to provide better priming and scaffolding here in future versions. 

When the code is complete, it generates a confusion chart, inference run time, and test accuracy (Figure 3). 

Students then enter that information into the Google Spreadsheet (Figure 4) and a cross-class summary is again 

generated (Figure 5). Finally, students are asked to put themselves in the shoes of clinicians and asked whether 

they would rely on this diagnostic tool to guide treatment, and what physiological consequences may result 

from a treatment choice based on an incorrect diagnosis. We noted that the model trained on raw ECGs 

performs at a level that is above the level of most clinicians but below the accuracy of our class. The worksheet 

then continues with related physiology content about AF treatment and links between the cardiac and 

pulmonary systems. 

 

Figure 3. The confusion chart, inference time, and test accuracy reported to students 

after the raw ECG data is classified by the model provided to them. 

 
3
 As a parallel note, we found it important in several of the activities we are developing to use code run time constructively rather than 

as having students simply wait. While code (e.g., a model training run) is executing, we use the time to ask students reflective 

questions about what the code is doing, potential biases, expected outputs, etc. Beyond a better use of class time, this scaffolding both 

serves to increase engagement and allows us to prime students on how to make sense of the output we know they will get. 
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Figure 4. View of the spreadsheet where student teams enter information from their model’s outputs (from Figure 3). 

 

Figure 5. Summary of the performance of a neural network to diagnose AF from raw ECG data. This summary was generated after 

three class sections to show teams the similarity and variance that jointly exist in machine learning training results. 

The choices and structure of this implementation are intended to provide a minimum-impact introduction to the 

use of ML tools in a physiological space. Specifically, this version was developed to show instructors in the 

class and across the curriculum the type of minimal implementation that was possible for the introduction of 

data skills in any course. In doing so, this version of the activity demonstrated to the course instructors how 

‘extra’ or ‘different’ content, such as statistics related to ECG classification, could further student understanding 

of core course content (e.g., the cardiac system) without requiring the removal or adjustment of any content. 

The activity here retained all of the questions of the original activity (i.e., the pre-intervention version). The 

results discussed below suggest that students’ understanding of the core course content actually improved 

compared to the pre-intervention version. If others were interested, it would be possible to pre-train all models 

described in the full implementation and run similar inference code locally to expand this activity in order to 

include the other ML models. We note that we have modified the activity to include some of the ML models 

described in the full implementation for future offerings of this course. 

Full version implementation 
This section is meant to expand upon the general structure and compressed version above. Rather than 

reiterating similar details, it focuses on explaining where the full version of the activity deviates from the 

compressed version. The full version generally expands on the compressed implementation in two ways: (1) 

Students train models and run classification on a GPU-based compute cluster as opposed to running inference 

only and doing so locally. (2) Students train and test three different ML models on ECG. In our efforts at data-

skills-based curricular change, this version is meant to show the possibilities of changing a full 110-minute class 

session. By design, this implementation of the activity is meant to exchange deep work on details of cardiac 

physiology for a deeper introduction into how cardiac physiology can be linked to other areas of engineering 

content - e.g., signals processing and ML. It drops the context of a medical case and replaces it with framing in 

the development of an AF detection product. This version of the activity was piloted with a group of 8 TAs (6 

undergraduate and 2 graduate) for feedback and evaluation. In the Supplemental Materials and GitHub 

repository, all related files are labeled FULL. 
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The full implementation begins with two extra steps compared to the compressed version, then follows the same 

structure until the end of the compressed activity, and then continues. First, the students log in and load the data 

and code on a remote GPU-based compute cluster (see Computational Resources and Collaboration section 

below for details). All code for the activity is then run on that cluster. Second, students open a highly simplified 

version (i.e., no comments, no sections, one model) of the code on a single student laptop and run it. This 

simplified version provides a point of comparison of compute resources during later discussion. Our testing 

showed that by running the code for the remainder of class, training reached only about 10% for one of the three 

models that students train on the cluster.  

At the beginning of the activity, students perform the same random draw of ECGs, but are shown four random 

ECGs to diagnose as opposed to one random and two standardized ECGS. After entering their diagnoses into a 

similar spreadsheet, they are instructed to run the next section of the code, which begins training the first of 

three ML models. Training the model takes about 11 minutes on the NVIDIA H100 GPUs provisioned to 

students on the cluster (described below), so we chose to use that time to have students complete other work in 

the activity. The class has a similar discussion of how they visually classified ECGs. Since the data set has a 

ratio of approximately 7:1 normal to AF ECGS, the activity then walks students through a theoretical model 

where all signals are classified as normal - which would produce an accuracy of about 87% (with 0% sensitivity 

and 100% specificity). This is used to discuss the need for balancing or replication in the data set and the 

potential for bias from data in ML models.  

Once training and inference for the first model are complete, students enter results into their spreadsheet and 

answer questions similar to the compressed version. In the full version, students have the accuracy results for 

both training and test accuracy, with the model producing higher results for training (~90% accuracy) than test 

data (~55% accuracy, 52% sensitivity, 51% specificity). This enables discussion and reflection on an aspect of 

AI (i.e., overfitting) that is not possible in the compressed version. Combined with the manual calculation of the 

theoretical ‘all normal’ model (87%), the differences in accuracy enabled deeper discussion about ML models 

of ECG classification than the compressed version. In the reflection prompt and class discussion, students are 

asked to comment on the reasons and problems of a large difference in training and test accuracy as well as how 

to make sense of a model with lower accuracy than blind classifying all data as normal.  

After analyzing the first model, students then repeat this process for a second ML model. Tracking with the base 

code from MATLAB, this model uses spectral analysis techniques to perform feature extraction on the ECG 

signals. It does so by calculating the overall power spectrum, instantaneous frequency, and spectral entropy of 

each signal. As with the statistics earlier, we note that deep knowledge of signal processing is not prerequisite 

knowledge for this course. The code first displays a graph with one AF and one normal example of the 

processed signal (the signals are labeled this time). Students are asked to perform a visual examination similar 

to the raw ECGs and describe what differences, if any, they can see between AF and normal for the processed 

signals. They then run the training and inference code that displays the same results as the first model, and they 

enter the same data into their spreadsheet. Training this model is significantly faster (3 min), and the training 

(~95%) and test accuracy (~95% accuracy, 95% sensitivity, 94% specificity) significantly higher than the raw 

model. The reflection prompts for this model differ by focusing on how feature extraction signals processing 

relates to the cardiac system and the cardiac behavior characteristic of AF. The teams, and class, then focus on 

comparing the accuracy, efficacy, and practical challenges of using this model with doctors over one trained on 

raw ECGs using a summary of all teams’ results (Figure 6). The expanded time of this activity also enables a 

discussion of the sensitivity and specificity and the prioritization of those in product development. 
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Figure 6. View of the class-compiled data comparing the two trained networks from the full version of the activity. 

The final portion of the full version activity involved students choosing from three options to improve the 

model that used raw ECGs. Each team could choose to either (1) make the network significantly (100x) bigger 

by adding another hidden layer and increasing the number of neurons in each layer, (2) resample the data to 

have 2 AF signals for every normal signal during training, or (3) look at more signals in each training iteration. 

None of the options meaningfully improve the accuracy of the model, although options 1 and 2 significantly 

increase training time. The teams entered the results of the models in the Google Spreadsheet similar to the 

other two training runs, which produces another summary similar to Figure 6. The activity wraps up with an 

overall reflection and a discussion of diagnostic usefulness.  

Computational resources and collaboration 
We note that either version of this activity, but especially the full version, would not be possible without our on-

campus access to significant computational resources. For those interested in a local version of the activity, we 

provide all of the pre-trained models4. However, we encourage others where possible to provide students the 

opportunity to perform the training themselves using institutional or commercial compute resources that they 

are likely to have never interacted with directly before. Below we describe the resources necessary and how we 

worked with our institutional compute resources team in planning and developing the activity. 

The Instructional Cluster Environment (ICE) [25] is an investment by Georgia Tech in AI/ML education, 

providing students with a set of supercomputing resources exclusively for student learning and exploration. The 

ICE cluster enables the expansion of AI/ML content in courses and will eventually be open for independent 

student investigations. ICE is free and accessible to any student enrolled in a course that uses it – whether in 

class or on assignments – that any instructor at Georgia Tech has developed. To facilitate easy access to 

advanced computing by students with a wide variety of backgrounds, ICE uses Open OnDemand [28], a 

graphical web portal for supercomputers. MATLAB and other applications are offered through simple user 

interfaces that allocate compute resources by interacting with the Slurm scheduler behind the scenes.  

The overarching cluster runs on Red Hat Enterprise Linux 9 and is equipped with MATLAB version R2023b. 

That version includes the Parallel Computing Toolbox to facilitate GPU-based training and the Deep Learning 

Toolbox to leverage predefined bidirectional long short-term memory (LSTM) architecture support. However, it 

is different than the version of MATLAB (2024b) that the code we modified is based on and did not contain 

some functions in the Deep Learning Toolbox implemented in the MATLAB demo[27]. This forced two of the 

authors to rewrite the inference code using functions available in 2023b (see appendices). The use of 2023b 

relates to issues with memory leaks we have encountered when operating more recent versions of MATLAB on 

our architecture. 

 
4 For those without access to such services, pre-trained model weights are available in the online repository linked in the Supplemental 

Materials. Those pre-trained models allow others to adopt with compressed version of the activity without access to training hardware. 
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For the activity, ICE support staff allocated one node per team of four students scheduled for the duration of the 

in-class session (or out-of-class testing). Students enrolled in the course were automatically provisioned with 

accounts on ICE, including home directories and scratch storage. To ensure availability during the activity, a 

reservation was created for the duration of all PSS session with enough nodes for each PSS group. Students 

were added to a POSIX group unique to the course, and the Slurm reservation used the magnetic feature to 

automatically place jobs submitted by these students during the reserved window onto the specified nodes, 

further simplifying the process for students.  

Each node included 8 CPU cores, 256 GB of RAM, and one NVIDIA H100 SXM5 80 GB GPU. Under this 

configuration, a standard training of 30 epochs with a minibatch size of 200 on a preset bidirectional LSTM 

completes within approximately 10 minutes. The PhysioNet 2017 dataset used in the activity is less than 100 

MB and is provided as serialized, single-file train and test sets from MATLAB to the node. Given the datasets’ 

small size and format, we experienced no challenges regarding dataset storage or I/O performance across 

various storage media. 

For readers without similar on-campus resources, various commercial vendors offer similar GPU computing 

services for MATLAB[29] (Table 3). One good option is Amazon Web Services (AWS) with the ability to 

integrate with the MathWorks Cloud Center to provide a paralleled experience close to native. Additionally, 

MathWorks collaborates with Microsoft Azure Marketplace to offer preconfigured MATLAB instances through 

their software plans. Both AWS and Azure instances support GPU acceleration and can be configured with the 

Campus-Wide License for academic use. However, neither of these plans includes free trials or free-tier GPU 

resources. More generic cloud computing options are also available via deploying MATLAB’s Deep Learning 

Container[30]. However, this approach demands additional effort from course instructors to ensure proper 

configuration, conduct dry runs, and prepare additional instructions for students. We summarized the costs 

required for a single group to complete the two-hour session. It should be noted that miscellaneous costs, such 

as network bandwidth and data transfer, may apply but are not accounted for in the provided table. The extra 

time for the instructors to set and tune the materials beforehand is also not included.  

Table 3. Commercial vendors and estimated costs for GPU computing services for MATLAB. 

Commercial vendor option Cost of one session per group (2 hours, US Dollar) 

AWS EC2 p5.48xlarge** ~$27 

Microsoft Azure ND96isr H100 v5** ~$25 

Estimated H100 remote rental***  ~$4-10 

Notes: All instances feature H100 GPU and Red Hat Enterprise Linux (RHEL) operating 

system (Industry has higher rates with non-free Linux OS (i.e. RHEL). Actual costs likely to 

be slightly higher due to need for testing, setup, and overrun time. 

** Dedicated instances to meet BYOL (Bring Your Own License) requirement  

*** Does not include MATLAB pre-configuration and would require the use of the docker 

hosting approach discussed above. 

Activity Evaluation  

Methods 
We collected multiple forms of data from the first offering of both versions of the activity. From the 

compressed version, we collected pre-post survey data from students as well as observations from the authors 

about the activity implementation and the curricular change efforts that surrounded it. From the full version of 
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the activity we collected comments from the TAs who participated as well as observations from the authors who 

ran the implementation. Our goal at this stage is to address three research questions: 

1) How does the compressed version of the activity affect students’ confidence in their data skills? 

2) Which data skills were most affected by the compressed version of the activity, in terms of confidence, 

perception of relevance to BME careers, and personal interest, and were those skills relevant to the 

activity? 

3) What can we learn about the different implementations, and the process of introducing data skills into 

courses, that can aid future efforts? 

Population and data collection procedures 
For the compressed version of the activity, we sent a pre-post survey to all students enrolled in the class where 

the activity was implemented. Students were sent a pre-survey recruitment email several days before the 

exercise. The pre-survey was closed the morning the data skills exercise was scheduled. After the data skills 

exercise, students were sent a post-survey and given a week to complete the post-survey. Students were offered 

a small amount of extra credit (1% of their final grade) by completing both the pre- and post-surveys, regardless 

of their permission for their surveys to be used in this study. Per IRB rules, they could also receive the extra 

credit by writing a reflection about the data skills exercise for the same credit. Overall, 142 students were 

invited to participate in the data collection. One student opted to write a reflection to receive the extra credit, 

due to missing the pre-survey deadline. Of the remaining 141, 133 completed the pre-survey, 128 completed the 

post-survey, and we matched 115 pre- and post-surveys after removing non-responsive and duplicate responses. 

Due to the small number of volunteers who participated in the full activity (8 students, 4 teams), we did not 

collect survey data for the full version. 

Our evaluation of the efficacy of the activity also includes informal comments from the course instructors and 

TAs during the compressed version as well as the participants in the full activity test run. Those are paired with 

observations from the developers of the activity in the results below. We chose not to collect any responses to 

the questions in the activity itself at this time, but plan to generally address student performance on the 

questions in future papers. All components of and the procedure for data collection were approved by the 

Georgia Tech IRB (protocol # H24396 and 2025-26).  

Survey data  
As a parallel part of our curriculum-wide effort to improve student data skills, we are in the process of 

developing a survey-based approach to measuring data skills. We expect to detail the development and testing 

of that survey in later work. In the absence of existing surveys that address data skills as learning outcomes, we 

generated a large pool of items based on concrete skills that map to the list of data skills described earlier. As 

noted earlier in the paper, these data skills aligned with those identified by others as essential in the future of 

engineering [13]. The survey presents each respondent with 15 of these items. Of the 15, 12 items are pre-

selected and shown to all students with another 3 randomly selected from the item pool. Students are asked to 

respond to each general item in three forms: (1) Their confidence in their ability to apply each item, with 

guidance, to BME courses or work, (2) Their perception of the general applicability of the items to BME work, 

and (3) Their personal interest in jobs that make use of each of the items. All forms used a similar four-category 

response as follows: 

● Confidence: No confidence, A little confidence, Some confidence, A great deal of confidence 

● Applicability to Biomedical Engineering: None, A little, Some, A great deal 

● Personal interest in jobs that use these skills: None, A little, Some, A great deal 

We were particularly interested in the analysis of a subset of items most applicable to this activity and course 

context, specifically those about using preconfigured code and making sense of model credibility and 

applicability.  
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Results and Discussion 

Research question 1: Growth in data skills confidence 
We chose to focus on the confidence scale of the survey because we expect confidence to be most mediated by 

individual activities, with personal interest and relevance likely to be much more mediated by outside factors 

[31], [32]. Overall, the pre and post responses to all of the items were well distributed for this type of survey 

data (Figure 7). We expected, and saw, that the applicability of data skills was the most right-shifted (i.e., 

higher) while confidence was more centrally distributed. The finding that the combined set of pre-post 

confidence responses was the least skewed distribution gave us reasonable confidence in applying typical 

descriptive analytic techniques to the data. 

 

Figure 7 Overall distribution of pre and post survey responses, divided by form (i.e., confidence, applicability, and personal interest) 

Overall, the survey results shifted towards greater confidence in their abilities (calculated as the average 

response to all confidence items) from the pre- to the post-survey (Figure 8). We assigned points to the 

responses (with None being 1 point and A great deal being 4). The average response to all of the items about 

confidence increased by 0.3 points (p<.001, from 2.5 to 2.8 - i.e., between A little and Some) on our confidence 

scale. While this growth is small within the scoring of the scale, it reflects a medium effect growth (d=0.53). 

From another perspective, 108 of 115 students saw a growth in data skills confidence pre-post. However, we 

note that while there are meaningful and significant changes, few students had a change in the median response 

category. That is, 65% (75) of students had the same median confidence response category between the pre and 

post-survey - even though their mean responses change. Given that we intend for the scale to measure 

longitudinal changes, we see changes that are smaller than an entire response category step to be likely across 

individual activities. This, among other reasons, motivated our choice to use means rather than medians as the 

main descriptive statistic in our analysis. While there is ongoing controversy about the best way to analyze 

‘Likert-Style’ data, this choice is well grounded in literature that addresses misconceptions about the use of 

means (e.g., [33], which details the extensive history on the topic). 
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Figure 8 Comparison of average pre post response to confidence portion of data skills survey. Graph shows count of responses in 

half-response category steps (columns) and also shows a normal distribution of that same data set plotted at the same half-response 

category step increments (line graph) 

 

Here, we note two things relevant to looking at the scale level change. First, because this is a curriculum-wide 

project where the intended impact is the result of multiple interventions, AND the survey is intended to measure 

that movement across a curriculum, we see small changes. Second, any changes to average confidence response 

will be mediated by the fact that no single activity will cover all of the data skills (i.e., items). For example, 

while this activity involved the use of MATLAB code and understanding the limitations of analyzing ECG raw 

data using neural networks (data skills 1 and 4a) it did not ask students to describe the methods or present data 

visually. For these reasons, when assessing individual data skills activities it is important, and defensible, to 

look at changes in individual items that are more relevant to a specific activity. 

Research question 2: Insights from specific data skills 
Next, we decided to examine the two items that showed the most change between pre- and post-survey 

responses. Our goal was to evaluate whether the change in response patterns was rational in the context of the 

item text and how that item text related to this specific activity. We did so to evaluate whether pre-post changes 

have a logical content basis. We plan to further investigate this in future research with data from multiple 

activities that are aligned with different items to evaluate construct-relevant and -irrelevant variation towards a 

validity argument for the instrument’s use. The usefulness of breaking them out for this activity is not that each 

shows only positive impacts from the activity. In the remainder of the survey results we look at those two items 

across all three forms - confidence, applicability, and personal interest. 

The item with the largest pre-post mean increase (Figure 9) was the the confidence response to the item “Find 

and use prewritten software code, in a software language that you are unfamiliar with, to perform data analysis 

tasks”. The average response went from 2.2 (near A little) to 3.0 (Some) with a similar change in the median 

category. While limited, we see this as evidence in support of our results’ credibility because of its literal 

connections to the activity. For this activity, students were shown, then used prewritten software code from a 

source (MathWorks) with a vast library of similar code - and their confidence in using such a resource went up.  

For the same item, we saw a no change (2.8 to 2.8, with 3.0 meaning Some interest), in interest (Figure 10). For 

applicability, there was no measurable change with both the pre- and the post-survey responses having an 

average of 3.1 and a median response of Some. We see these results as reinforcing our perception that changes 



 

15 

in students' confidence, interest, and sense of applicability are likely to have a complex relationship with 

individual categories and the curriculum. Notably, the fact that applicability started and remained high suggests 

that these activities are responding to aspects of engineering practice students find engaging, but that we also 

need to consider how changes in public perception and media around AI and ML may be informing students’ 

pre-existing knowledge and perceptions of this novel material. 

 
Figure 9 Comparison of the distribution of CONFIDENCE between pre and post-survey to the item ‘find and use prewritten software 

code, in a software language you are unfamiliar with, to perform data analysis tasks’. The average response increased by 0.8pts, and 

the median response increased from A little to Some). The y-axis is in percentage. 

 

Figure 10 Comparison of the distribution of INTEREST between pre and post-survey to the item ‘find and use prewritten software 

code, in a software language you are unfamiliar with, to perform data analysis tasks’. The average response (2.8, near the top of 

some) and median response (some) stayed the same. The y-axis is in percentage. 
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In contrast, the item with the second highest pre-post growth in confidence was justify decisions made in the 

process of applying statistical and machine learning techniques to data. We see this item as a cautionary tale of 

students’ perception of their skills and activities like this. Students’ confidence increased by 0.8 points (2.1 to 

2.9), with the median shifting from A little to Some. Their sense of the applicability of this skill rose by 0.3 

points (3.1 to 3.4), with the median again rising from A little to Some. Finally, their personal interest rose 0.5 

points (2.6 to 3.1), although the median response stayed the same - Some. One interpretation of this result is that 

students interpreted the item differently than we had intended. Students could have been thinking about using 

the output of the model to justify clinical decisions, but we intended the item to ask about decisions made when 

determining how to apply the model. However, we see this as highlighting a limit in activities that are 

constrained by existing courses and timelines. Students made no modeling decisions in the compressed version 

of the activity. Only one modeling choice was even shown and explained to them - converting ECGs to the 

frequency domain. However, their confidence grew significantly (T(47)=2.9, p<.01). 

This reflects the inherent tradeoff in depth vs. connection in this activity, especially the compressed version. Put 

into educational parlance, this shows the potential risk of decoupling confidence and ability through a focus on 

explanation. The decoupling of perceived and actual learning has been widely reported and we expect it to be an 

ongoing challenge when managing the main constraints these activities present[34]. This is a tradeoff we are 

comfortable with given the educational purpose and context of these activities - curriculum-wide, focused on 

linking content, and serving as a launching point for a variety of opportunities to learn more. However, this 

question highlights that phenomenon in an individual activity, and the need to not treat this or any activity as 

being a single-point solution to introducing new material into a curriculum. This also highlights the importance 

of and value in isolating and analyzing the students’ responses to individual items as part of any scale-level 

analysis. 

Research question 3: Observations and comments from both versions of the activity 
As noted, we also made qualitative observations about student actions and feedback in both implementations, 

with a special focus on the full version. We noted several small technical and logistical details which might be 

helpful to other instructors. These included explaining to students the need to have at least two laptops for each 

group, having MATLAB and the required toolkits installed, and (depending on the room) arriving with a fully 

charged battery. We anticipate future versions having a clear single page of ‘preparation’ instructions that 

include details such as the need to install a virtual private network (VPN) to access our cluster (for the full 

implementation).  

Further, we expected students to be familiar with the use of the run sections and inline output of the live editor 

in MATLAB because it is used in multiple other courses in our department. The challenges students 

experienced most often were based on improper IDE use, such as looking at the command window not the live 

editor window for output, or being unclear about when computation was complete. An additional challenge was 

making progress more visible during the longer training and classification code runs because they were a longer 

time scale (minutes not seconds) compared to most code our students have written in other contexts. Options 

here include a printed counter for the classification code and enabling MATLAB’s built-in progress window for 

the training code. However, we disabled the training window as we found that, in combination with the VPN 

remote desktop, and some software versions, it caused errors when students ran the training on our compute 

cluster. We also encountered a few MATLAB file-handling issues with Apple systems that we plan to fix.  

There was also a need to prep teaching assistants on some of the terms that were glossed over in the worksheet 

or code. We expected that students would focus on what was asked, but found that the novelty of the activity 

seemed to motivate more engagement and questions. For example, the first model trained is a Long term-Short 

Memory (LTSM) neural network. Prior to the activity, we decided that an explanation of what an LTSM was 

and why we had chosen it was not relevant to the core activity and removed it. However, the TAs noted that if 

students were interested, it would be important to have the ability to answer some questions in the moment 

instead of the only option being to go look at the extra resources listed to learn more. We plan to address this in 
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the future by adding a ‘machine learning dictionary’ to the back of the assignment that covers topics like ‘what 

is a feature’ and ‘what is an epoch’ as a better bridge. In the full activity version, students identified connections 

to content that used in later courses (e.g., a later lab course studies heart rate variability, or connecting to our 

statistics course.) A major summative note from students was the appreciation for something that linked the 

quantitative/math-heavy parts of our curriculum and the more information-heavy portions of our curriculum. 

While that does happen in later courses, which some of them had experienced, they appreciated the opportunity 

for it to happen earlier. 

Regarding the overall activity design, students who ran the full activity version noted that they perceived the 

experience of training models on the cluster to be of high value. They also appreciated having the comparison 

of the cluster to local training efficiency. Conversely, the authors facilitating the full version noted a need for 

more precise, and more ‘higher level’ questions. We had kept the number of questions small to not overwhelm 

students but found that they were often left waiting for training runs to complete - time that could be filled with 

more reflection or connections to the physiological content. We expect to add questions about where this model 

could/could not be used in clinical support. We also observed that the options in the third run felt disconnected 

and random, and plan to restructure those to reflect three options within a single change - balanced, unbalanced, 

and over weighted - in the future. 

Challenges and unexpected victories 
There are two primary faculty-related challenges that we experienced in implementing this activity: one 

practical and one technical. The practical challenge was faculty buy-in. Multiple classes in our curriculum are 

now in the process of developing interventions from the skills and principles discussed in this paper, with two 

courses (Biotransport and Biomechanics) prioritized for 2025-2026. In that process, we have generally found 

that focusing on application without introducing the underlying mathematics was a challenging pedagogical 

principle for faculty. Specifically, the tradition of theoretically focused engineering teaching that is common in 

engineering is at odds with a willingness to focus on connecting information within a course, and an 

applications focus. We found three prominent examples of the challenge of faculty buy-in while planning for 

our activity: 

1. They expressed concerns that students did not know the underlying mathematics of AI/ML tools.  

2. They expressed frustration at having to ‘fit’ new material into the courses. 

3. They were concerned about the time it would take for them to design and learn to implement a new activity.  

We note these because they situate our efforts at curricular change within fairly common objections within the 

literature [35]–[37]. Through the development process, we have reinforced the pedagogical principles to faculty 

as well as situated the work in any individual course in the larger ecosystem of AI/ML learning opportunities 

for students. We also provided support for the time required to design the activity by using a team of instructors 

to develop, test, and refine student-facing materials. With an eye towards longer term and larger scale efforts, 

faculty in the course have recently expressed interest in developing similar activities to support learning of other 

areas of physiology content in the same course. 

The technical challenge is related to the resources needed to replicate this activity. Because of course releases, 

the two authors who developed the activity were able to attend and assist with all offerings of the compressed 

and full versions. That lowered any potential barriers to knowledge and training for faculty and TAs involved in 

the course - both real (including the time it would take to acquire this training) and perceived. We, as faculty at 

[R1 institution], are also aware that we have computational resources available to us for free that others may 

not. While the decision to pre-train models in the compressed version was initially meant to be a “backup”, 

meant to reduce the risk of the activity going wrong, we see it as useful to enable others without our resources 

to replicate the activity with lower cost (Table 3). If others are interested in replicating the activity, we include 

all of the pre-trained models in our GitHub repository [24]. 
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Although we did not measure student learning of cardiac physiology and ECGs, the instructors of the course 

informally reported better student performance on exam questions related to ECGs compared to prior semesters 

without this activity. It would be valuable to measure this learning in the future. We also saw unexpected ways 

in which learning was created. We were surprised at how students used the Google Spreadsheet in the manual 

diagnostic portion of the activity. We included the Google Spreadsheet entry as a way to keep track of teams' 

progress but found students using it for self-directed learning. Once several teams had entered their diagnoses, it 

was very common for other teams to take these answers into consideration before entering their own diagnoses. 

They tended to answer the same way as other teams before them. When running the activity with a third group 

of students, we hid the answers of each team from the others. We noted that there was more variability in 

student diagnoses in this class. When using this activity, instructors can consider whether they do or do not want 

to show the work of each team to the whole class while the activity is in progress. We are inclined to make such 

work visible in the future, which can enable TAs and instructors to engage and ask questions about why teams 

changed answers to help uncover misconceptions or errors and reinforce learning about cardiac behavior. 

However, there is also an opportunity to force students to commit to a decision and then justify it. Our only 

definitive suggestion is to make clear that the diagnoses are not graded for accuracy. 

Conclusions 
Overall, we see this activity as generally achieving what we intended it to. That is, it made new learning about 

new material adjacent to physiology a part of the class. This both built the confidence of students in their data 

skills and abilities and better linked this course to other courses. As noted in the Results and Discussion section, 

the small changes in student perceptions about data skills make sense given that the respondents only had a 30-

minute exposure to the activity. We are primarily interested in results across our curriculum as activities like 

this multiply. Overall, a critical but secondary implication of this activity was the impact it had on our faculty. 

Once we overcame the challenges of faculty buy-in for this activity, seeing what was changed grew the interest 

of a variety of faculty and courses in implementing similar activities. The low instructional overhead, the small 

course footprint, and the relative ‘coolness’ (to quote a participant) of getting to use the cluster all helped build 

further buy-in beyond the impact the activity had on students. None of that is to say that this activity was not 

without challenges or further work to do. 

Future directions 
As noted in the Results and Discussion section, we have several modifications we plan to make to the activity in 

future semesters. We plan to continue making the activity a part of the class. In future semesters we plan to take 

two primary actions related to research and assessment of the activity. The first is to collect students' answers to 

the activity questions to enable us to more directly evaluate learning. Second, we plan to work with the 

instructors to either offer the full version of the activity across the class or to have some sections offer each 

version to allow for a better comparison. 
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Supplemental materials 

*Due to size and paper length constraints all files for this activity are hosted on a github repository* 

Link to full repository of all published data skills materials: 

 https://github.com/owinslett3/GT-BME-Data-skills-in-Undergrad-Curriculum  

Link to repository for the activity described in this paper: 

https://github.com/owinslett3/GT-BME-Data-skills-in-Undergrad-

Curriculum/tree/18539ef771874c06c28b18d2793a41c210ef876b/Systems%20Physiology\ 

Link to syllabus for the activity described in this paper: 

https://github.com/owinslett3/GT-BME-Data-skills-in-Undergrad-

Curriculum/blob/18539ef771874c06c28b18d2793a41c210ef876b/Systems%20Physiology/Systems%20Physiol

ogy%20Spring%202025%20Syllabus.pdf 

Link to google sheets for the activity described in this paper:  

https://github.com/owinslett3/GT-BME-Data-skills-in-Undergrad-

Curriculum/blob/18539ef771874c06c28b18d2793a41c210ef876b/Systems%20Physiology/Systems%20Physiol

ogy%20Compressed%20Assignment/ECG%20Classification%20PSS.xlsx 

 

https://github.com/owinslett3/GT-BME-Data-skills-in-Undergrad-Curriculum
https://github.com/owinslett3/GT-BME-Data-skills-in-Undergrad-Curriculum/tree/18539ef771874c06c28b18d2793a41c210ef876b/Systems%20Physiology/
https://github.com/owinslett3/GT-BME-Data-skills-in-Undergrad-Curriculum/tree/18539ef771874c06c28b18d2793a41c210ef876b/Systems%20Physiology/
https://github.com/owinslett3/GT-BME-Data-skills-in-Undergrad-Curriculum/blob/18539ef771874c06c28b18d2793a41c210ef876b/Systems%20Physiology/Systems%20Physiology%20Spring%202025%20Syllabus.pdf
https://github.com/owinslett3/GT-BME-Data-skills-in-Undergrad-Curriculum/blob/18539ef771874c06c28b18d2793a41c210ef876b/Systems%20Physiology/Systems%20Physiology%20Spring%202025%20Syllabus.pdf
https://github.com/owinslett3/GT-BME-Data-skills-in-Undergrad-Curriculum/blob/18539ef771874c06c28b18d2793a41c210ef876b/Systems%20Physiology/Systems%20Physiology%20Spring%202025%20Syllabus.pdf
https://github.com/owinslett3/GT-BME-Data-skills-in-Undergrad-Curriculum/blob/18539ef771874c06c28b18d2793a41c210ef876b/Systems%20Physiology/Systems%20Physiology%20Compressed%20Assignment/ECG%20Classification%20PSS.xlsx
https://github.com/owinslett3/GT-BME-Data-skills-in-Undergrad-Curriculum/blob/18539ef771874c06c28b18d2793a41c210ef876b/Systems%20Physiology/Systems%20Physiology%20Compressed%20Assignment/ECG%20Classification%20PSS.xlsx
https://github.com/owinslett3/GT-BME-Data-skills-in-Undergrad-Curriculum/blob/18539ef771874c06c28b18d2793a41c210ef876b/Systems%20Physiology/Systems%20Physiology%20Compressed%20Assignment/ECG%20Classification%20PSS.xlsx

