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From Barriers to Bridges: A Case Study on Engineering
Education

Abstract

Despite decades of efforts to promote diversity, equity, and inclusion in STEM education, women,
minorities, black, indigenous, and people of Color students remain underrepresented in undergrad-
uate engineering programs and STEM education even as the distribution of student demographics
evolves. To examine these disparities and contribute to regional educational improvement, Texas
was chosen as a model state for this case study, given its diverse and evolving K-12 student pop-
ulation. In Texas, between 2013 and 2022, the percentage of White students in K-12 decreased
from 30.66% to 26.74%, while the Hispanic/Latino student population increased from 50.17% to
52.36%. The proportion of Black or African American students remained the same (12.50% to
12.65%) while the two or more races students increased from 1.78% to 2.89%, and Asian students
changed from 3.65% to 4.68%. Compared to national enrollment by year, we found that dispari-
ties persist in Texas, where Black or African American, and Asian students are enrolled at lower
percentages. In particular, Texas had a smaller population of Black or African American female
students than the US (7.57% in 2013 and 7.37% in 2022), with only 6.61% in 2013 and 6.20%
in 2022 in Texas. The underrepresentation raises concerns about barriers deterring students from
minority groups from pursuing engineering degrees, a challenge observed across multiple states
despite varying demographic compositions. In this paper, we collect data and conduct a detailed
case study by examining university data on engineering education, including enrollment, retention,
and degree completion. We are dedicated to identifying the primary factors and barriers that influ-
ence the education of minority students in the field of engineering. Machine learning is introduced
and used as a key tool to analyze the collected data and predict future trends in engineering ed-
ucation. Results, challenges, and future efforts are then discussed. The findings from this study
provide insights into existing challenges and propose strategies to address barriers and promote a
more inclusive engineering education landscape.

Introduction

The past few decades have witnessed an unpredictable and rapidly changing world fueled by high
technologies. As the world’s leading global leader in science and technology, the United States
has invested the most in research and development and awarded the most advanced degrees [1].
Although absolute science and technology levels continue to increase, the relative share of global
science and technology activities in the US is seen to be declining, according to the 2024 State
of U.S. Science and Engineering issued by the National Science Board [2], [3]. This is mainly
due to the shortage of skilled technical workforce in the fields, who have emerged as the driving
force for remarkable achievement and innovation in the United States. A study conducted by
the Manufacturing Institute and Deloitte [4], [5] predicts that there might be 3.8 million unfilled
positions across the entire U.S. between 2024 and 2033, and approximately half of these available



positions (1.9 million) will remain unfilled if the skills and applicant gaps cannot be filled. There
is an urgent necessity to enhance university enrollments and degree completion to help fill the gaps
and meet the demands of high-skilled professionals.

This shortage of skilled technical workforce with university degrees can be attributed to the
lack of interest in higher education and careers in STEM (Science, Technology, Engineering, and
Mathematics)-related fields at both K-12 and college levels. The latest State of U.S. Science
and Engineering [6] and NSF BPCnet’s public data [7], [8] show that women, minorities, and
BIPOC (Black, Indigenous, and People of Color) people are underrepresented in K-12 education
and among bachelor’s degree holders in science and engineering fields. In 2022, the percentages
of K-12 students who identify as Black or African American (15.09%), Hispanic/Latino (26.89%),
American Indian or Alaska Native (0.98%), and Asian (5.12%) remain below the national average
of 47.79% for White students. States overall face varying circumstances in K-12 and STEM ed-
ucation. Compared to the national enrollment by year, we identified lower percentages of Asian
and Black or African American students in Texas. Specifically, the percentage of Black or African
American female students in Texas was 6.61% in 2013 and 6.20% in 2022, which is far lower
than the national average of 7.57% in 2013 and 7.37% in 2022. Other demographics, except His-
panic/Latino, experience similar situations in Texas.

On top of that, pursuing higher education in STEM fields after graduating from high school to
college is challenging, as students face increased academic demands, greater independence, and
the pressure towards earning a degree. Only 333,000 (18%) out of 1.8 million bachelor’s degrees
were awarded in STEM in the cohort year 2015-2016, although there was 3.1 million youth aged
16 to 24 who were high school graduates [9] and the national high school graduation rate hit 71.7%
in 2011-2012. In fall 2012, 7.2 million (40%) undergraduate students [10] were enrolled in 2-year
institutions (also called community colleges) for certificates and associate degrees, and 10.6 million
(60%) were enrolled in 4-year colleges and universities for bachelor’s degrees. However, within
6 years, only 5% of undergraduate students who enrolled in community colleges had received a
certificate, and 22% had received an associate’s degree, while there were 51% of undergraduate
students who enrolled in 4-year colleges and universities and received a bachelor’s degree. It
has been clearly observed that the persistence, retention, and attainment of STEM undergraduate
students in community colleges and 4-year universities remain low while gender disparities [11] in
STEM education persist.

To promote equity, diversity, and inclusion in STEM education, in this study, we indepen-
dently collect university data from the state of Texas to investigate the intersection of demographic
trends, institutional funding, and program effectiveness and the effect these factors have on STEM
program growth using machine learning. The machine learning algorithms used are decision tree,
adaptive boosting, random forests, residual neural network, long short-term memory, convolutional
neural network (CNN), transformer, and a standard linear regression model. To avoid overfitting,
we first group the universities into subcategories based on the sum of squared errors (SSE). The
universities in the same group share various similarities, including comparable funding levels, in-
stitutional policies, and program structures geared at assisting underrepresented groups in STEM
disciplines. Based on the clustering, we report our experimental results and research findings per-
formed using various metrics, including R* score, MSE (Mean Squared Error), RMSE (Root Mean
Squared Error), and MAE (Mean Absolute Error). The results can assist in emerging quantitative



Table 1: Efforts to Improve STEM Enrollment

Activity Implementation
STEM Learning Community Women in STEM, SLC program, first-year interest groups
Living Communities On-campus housing specific to STEM majors

STEM Specific Honors Program | STEM based honors courses and thesis options
Career Preparation and Network- | Career centers, internship pipelines, industry partnerships
ing Opportunities

Peer Mentorship Efforts Mentorship programs, classroom visits, campus career
panels
STEM Research Opportunities Freshman research initiatives, summer undergraduate re-

search programs, department research

Faculty Professional Development | Workshop and consultation opportunities, career advance-
ment resources, development grants

Targeted STEM Orientation Department Orientation Sessions and freshman programs

research that centers on enhancing STEM programs and improving STEM participation and com-
pletion for women, minorities, and BIPOC. To our knowledge, this is one of the few quantitative
studies contributing to identifying primary program factors, understanding their impacts, and intro-
ducing machine learning methodologies as a tool to begin addressing barriers to STEM education
enrollment and retention.

The organization of this paper is as follows. In Section II, we provide an overview of posi-
tive institutional activities and their implementation to promote minority undergraduate education.
Based on that, we collect data and conduct data analysis and processing in Sections III and IV. The
machine learning algorithms are studied, explained, and evaluated using our dataset in Sections V
and VI. We finally conclude our presentation in Section VII with future directions.

Background

To address barriers present in undergraduate STEM education, existing positive institutional ac-
tivities and their implementations have been summarized, including STEM Learning and Living
Communities, STEM Honors Programs, Career Preparation and Networking Opportunities, Peer
Mentorship Efforts, STEM Research Opportunities, Faculty Professional Development, and Tar-
geted STEM Oirientation listed in Table 1.

Research Program and Opportunities Perhaps the most widely adopted, though indirect, method
of increasing STEM enrollment would be an institution’s ability to offer research opportunities in
STEM fields. Research work allows students to connect with campus faculty and, more often than
not, a group of like-minded peers to work towards a common goal. Depending on a university’s
status and local relationships, companies directly involved in science/technology industries might
reach out to sponsor or contribute to these research opportunities, giving students the potential to
network with different companies and feel more connected to their academic environment while
working towards the completion of some goal. Although student involvement in research has been
shown to typically lead to higher retention and graduation rates [12][13], it isn’t uncommon for




smaller institutions to lack the resources necessary to offer meaningful research programs for their
student population. A campus working towards offering more research opportunities, regardless
of size, would be working towards elevated STEM numbers by extension.

Faculty Development While research opportunities offer a relationship between faculty and stu-
dents that typically benefits the student the most, development opportunities that benefit university
staff members are another worthwhile activity that have been shown to lead to an increase in STEM
numbers. Universities that offer staff the chance to participate in specialized programs, workshops,
and mentorships typically see their efforts reflected in higher levels of student engagement and a
greater willingness to participate in community efforts [14][15]. Members of the National Cen-
ter for Faculty Development and Diversity (NCFDD) produce staff that utilize highly effective
evidence-based teaching methods, are more likely to emphasize inclusivity and equity within their
classes, are better equipped to interact with and advise students, and are overall more confident
in their ability to teach, all of which contribute positively to student retention. Faculty develop-
ment initiatives allow educators to learn techniques to encourage inclusive classrooms and support
various learning needs [16]. Community outreach efforts and K-12 engagement also contribute
greatly to STEM interest early on and create a pipeline for motivated students to enter STEM
fields. By combining local efforts with faculty growth, institutions can effectively handle some
easily addressable structural and social challenges impacting student success in STEM to improve
attraction, persistence, and retention rates of students.

Career Preparation and Networking They are essential and highly valuable for STEM students [17],
[18]. Career centers can offer students the opportunity to connect with companies and potential

employers for employment and internship opportunities. Implementing these opportunities can

range from offering a career planning class for upper-level students to giving informational sem-

inars highlighting the career opportunities available for each major. Additional efforts can even

be directed to individual demographics such as women in [19]. Regardless of how they are im-

plemented, the most appealing factor of these efforts is that STEM students involved in campus-

sponsored career development programs perform higher academically than those not involved [20].

Networking programs, in particular, present the opportunity to boost retention rates at a relatively

low cost easily.

Honors Programs Offering an honors program specific to STEM students would give those who
participate the opportunity to immerse themselves in content that directly covers the technical as-
pects of STEM majors in ways that a more generalized honors program wouldn’t typically. In
concept, this would create a pipeline for student participation that directly leads to future research
work or internship participation if such requirements are implemented. The benefits of research
work and the networking that comes from internship efforts would both apply as previously dis-
cussed, and student participants would feel a much greater commitment to their cohort. Overall
benefits are most prevalent for underrepresented groups and female students [21]. Studies on the
topic observed that honors program participation is directly associated with first-year GPA at less
competitive institutions, retention to the third and fourth years, and graduation rates at the com-
pletion of the fourth year. It follows that growing universities looking to increase minority success
across all majors, not just STEM, have reason to believe that honors programs specific to the major
could greatly contribute. It was also reported that fourth-year GPA averages were higher specifi-
cally for black students, first-year satisfaction rates were greater for female students, and third-year




retention was exceptionally high for those students with lower parental education.

STEM Learning Community Learning communities facilitate social networking and the creation
of study groups contributing to an increased sense of belonging within STEM majors by having
students take common classes upon their first semester. The efforts of the Memphistep program at
the University of Memphis aim to see greater retention rates reflected through enrollment numbers
over time, specifically for minority and at-risk students by establishing LLCs for these groups [22].

Additional studies on the MemphiSTEP program indicate that those involved with the pro-
gram’s activities, more specifically those involved with academic preparation and community in-
volvement, displayed noticeably elevated retention and performance rates when directly compared
with peers outside of the program [23]. Outcomes of math bootcamps indicate that the average
GPA rose from 2.53 to 2.73 while retention rates rose from 57% to 80%. Outcomes of the various
networking efforts increase the average GPA from 2.53 to 2.76, with retention going from 57% to
2.76%. Data on year-over-year demographics indicate that at-risk groups benefited the most from
the MemphiSTEP program, with Black Freshmen, in particular, seeing an average GPA increase
from 1.85 to 2.43, with retention going from 44% to over 81%. When considering factors such
as gender, race, academic standing, and prior performance, this outcome supports the idea that
reteretention-oriented programs can have a direct, positive impact on diversity within programs
and overall completion rates intention oriented programs can have a direct, positive impact on di-
versity within programs and overall completion rates of STEM fields. As a whole, MemphiSTEP
and similar LLC efforts showcase how effective the implementation of thorough support systems
can be at improving the experience of STEM students and alleviating some of the most commonly
encountered academic and social challenges. Such implementations validate the idea that STEM
retention rates can ultimately be enhanced at the institutional level depending on what programs a
campus is willing to implement.

Targeted STEM Orientation STEM-based orientation programs can introduce students to the de-
mands and rewards of STEM fields early on, while effective intervention systems can help faculty
advisors identify students who might be struggling [24]. Mentorship programs work to combine
exposure to STEM concepts and implementation of a safety net, benefiting minority groups within
STEM, those who typically have fewer role models to look to. Targeted orientation programs offer
incoming freshman and transfer students the opportunity to engage with both the structure and
material of STEM courses prior to full-time enrollment [25]. At face value, this gives students a
glimpse at some of the content they’ll be studying once prerequisite requirements have been com-
pleted. However, programs that extend throughout the initial year of enrollment have the time to
identify those students who would be considered at risk of dropping out of STEM programs and
implement remediation efforts to prevent the switching of majors [26]. Early adoption of students
within STEM programs has the added benefit of allowing students to interact with future profes-
sors and maximize their interactions with cohort members.

Prior studies on improving underrepresented and minority student graduation rates found that
students who aspire to pursue a graduate-level degree eventually see increases in undergraduate
completion rates by over 30%. Exposing minority students to the potential benefits of university
graduate programs early on can increase the number of students seeking graduate degrees, thereby
increasing retention [27]. Furthermore, underrepresented students who joined a pre-professional
or departmental club were found to increase their rate of graduation by over 150%. A university’s



ability to attract incoming students to STEM clubs and similar programs stands a much better
chance of increasing STEM numbers.

Methods

This study examines the enrollment and completion rate of minority groups in Texas as a repre-
sentative/model state, with the potential for extension to other geographic regions. We first collect
university data and perform exploratory analysis and processing to reveal insights within the data.
Finally, machine learning algorithms are studied to build regression models whose efficacy can be
evaluated and compared to best predict future trends in STEM programs.

Dataset The growing population of minorities attending Texas institutes reflects changes to the
statewide population as a whole and heavily contributes to documenting future trends. Data was
collected and combined based on public, biyearly enrollment, and degree award statistics from
2012 to 2022 from a range of database sources, including the National Science Foundation By the
Numbers site, the IPEDS Engineering Degrees Awarded site, and the Engineering PLUS Metrics
Landscape site for grant, graduation, and enrollment information of 28 institutions respectively. A
total of 168 entries from 28 institutions were included, and 41 different attributes were used for

each entry.
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Figure 1: Example Univesity Enrollment by Ethnicity
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Figure 2: Data Features Mapped to PCA

Ethnicity numbers are based on male and female enrollment for Asian, African American,
Hispanic, Nonresident, Multirace, Unknown, and other demographics ,as shown in Figure 1.
The spreadsheet includes data collected from the institutions including Corpus Cristi, Texarkana,
Kingsville, West Texas,Prairie View, Commerce, and International campuses of the Texas A&M
university system, the Arlington, Dallas, San Antonio, Tyler, Rio Grande Valley, El Paso, and
Permian Basin campuses of the University of Texas school system, as well as Midwestern State,
Tarleton, North Texas, and Houston-Clear Lake universities. Additional institutions include Rice,
Southern Methodist, Baylor, Texas Tech, Houston, Texas Christian, Texas State, Lamar, A&M
College Station, and UT Austin universities.

In addition to enrollment numbers by demographic, data was compiled based on NSF funding
by STEM directorate, including Engineering, Biological Sciences, Computer & Information Sci-
ence & Engineering, STEM Education, Geosciences, Mathematical and Physical Sciences, Office
of the Director, Social, Behavioral, & Economic Sciences, and Tech, Innovation, & Partnerships
for a total of twenty-eight Texas universities. This was done to observe data trends for institutions
with different NSF funding rates so that these trends could be extrapolated to additional institu-
tions and states. Data taken from all universities within the dataset was used as input to construct
prediction models for future enrollment numbers. Data itself was normalized so that the machine
learning algorithms utilized could more efficiently identify trends and relationships between vari-
ables.



Raw Data Analysis and Processing Principal Component Analysis was utilized to reduce the high
dimensionality of the initial dataset down to a handful of abridged dimensions for simplified vi-
sualization of the clustering process. It reduced data features to two principal components that
capture the highest variance within the data itself, as shown in Figure 2. Variance is the measure
of the degree of spread between a data point and its mean value. Negative values for PCA compo-
nents are not correlated with negative variance; instead, they denote how one data entry relates to
another in terms of all features taken together. Data was first normalized using a standard scaler so
that all features were translated onto the same scale with a mean of 0 before a covariance matrix
moved the data to a new coordinate system in which the axes correspond to directions based on
principal components 1 and 2 [28]. PCA1 and PCA2 were selected to capture the most significant
variance in the data and offer a useful visual representation for a better understanding of clustering
results.

Labeling of the data was conducted using a combination of clustering methods in order to iden-
tify additional distinctions between universities within the dataset. Based on the classification of
universities as research institutions in the Carnegie Classifications of Institutions of Higher Edu-
cation, it follows that the Texas schools within the dataset fall into one of three categories based
on the amount of funding they received and the research opportunities they’re able to pursue. We
continued to use three categories when factoring in graduation and enrollment rates for minority
students to keep some level of consistency for the number of clusters to use. Cluster labels were as-
signed using DBSCAN, Agglomerative (AGC), and BIRCH clustering techniques and averaged to
create finalized categories that were then used to train the previously mentioned machine language
models. Additionally, feature selection was made in an effort to reduce any interdependencies that
exist between features with numerical values. Out of the 41 total features present in the dataset, 25
were identified as being the most influential based on the understanding that the model coefficients
of these features produced a score greater than 1. Comparing Figure 3 to Figure 4 shows how
clustering scores could differ based on what features were deemed more influential than others.

Universities with cluster label zero (CO) were identified to have cluster scores with absolute
values of components being slightly greater than 0, indicating a group of universities that have
increased enrollment numbers, minority enrollments, or award distributions, as shown in Figure 3.
The features for several institutional awards related to larger minority groups and some of the more
technical funding categories tend to reflect positive values, suggesting these universities provide
moderate support in these areas. Examples of this cluster include schools ranging from UT Dallas
or Tarleton to institutes such as Texas State University or Univerthe sity of Houston. Universities
that fall into this category are most commonly associated with both R1 and R2 research institu-
tions but are limited by the total amount of funding they receive or by relatively lower levels or
overall student enrollment. Alternatively, schools with cluster label one (C1) were identified to
have cluster scores whose absolute value tend to be closer to 0, suggesting universities with lower
to moderate total enrollment, minority enrollment, or funding. The cluster can be characterized
by average values for most of the awards and student body in general. Examples of this cluster
include Midwestern State University and A&M Texarkana. A mix of some R1 and non-research
schools would be included here due to low enrollment or grant totals when compared to cluster
zero schools. The final cluster label two (C2) was saved for schools whose absolute value com-
ponent scores are observably higher than 0 and include all entries associated with A&M College
Station and the University of Texas at Austin. These high scores indicate universities with larger
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Figure 4: AGC without Feature Selection

total enrollment and minority enrollment, and provide more significant award amounts and sup-
port, particularly in funding categories that see decreased award amounts in comparison to other
clusters. This group [29]represents universities with more substantial funding and a more signifi-
cant proportion of both enrolled and graduating minority students.

Machine Learning Algorithms Eight(8) machine learning algorithms were studied and utilized




to create regression models for prediction based on the training and testing data. The models
are Linear regression [30], Convolutional Neural Network (CNN) [31], Adaptive Boosting (Ad-
aBoost) [32], Decision Tree (DT) [33], Random Forest Regressor (RFR) [34], Residual Neural
Network (ResNet) [35], Long Short-Term Memory (LSTM) [36], and Transformer [37].

Linear regression is a statistical approach for modeling the relationship between a dependent
variable and one or more independent variables. It involves fitting a straight line that minimizes the
difference between observed and predicted values. The CNN architecture includes convolutional
layers, pooling layers, and fully connected layers. Convolutional layers use kernels to extract hi-
erarchical features by performing element-wise multiplications over spatial dimensions. CNNs
are good at capturing spatial features, making them powerful for tasks involving spatial depen-
dencies. A Decision Tree is a non-parametric model used within regression tasks by recursively
splitting data into subsets based on feature divides. The overall simplicity of the model typically
makes them effective for documenting non-linear relationships but can fall short due to overfit-
ting. AdaBoost combines multiple weak learners, like decision trees, to create a robust predictor.
The final model aggregates predictions as a weighted sum of weak learners, improving accuracy
iteratively. AdaBoost’s loss function, often weighted MSE, penalizes larger residuals from harder
examples more heavily. ResNet is a deep learning model created with the intention of addressing
the vanishing gradient problem common within deep architectures. ResNet comes equipped with
skip connections meant to bypass layers by adding the input directly to the output of those layers
facilitating for gradient flow during backpropagation. LSTMs are specialized Recurrent Neural
Networks designed to handle long-term dependencies in sequential data. Each LSTM cell includes
input, forget, and output gates that regulate information flow, enabling memory retention over ex-
tended sequences. Sequential inputs are processed with cell states and hidden states that update
at each time step. LSTMs are particularly suited for time-series regression due to their ability to
capture temporal patterns.

Transformers revolutionize sequence modeling by employing a self-attention mechanism to
capture dependencies between elements in a sequence, irrespective of distance. Input elements
are transformed into query, key, and value vectors, with self-attention calculating the relevance of
each element via scaled dot-product attention. Layers stack attention mechanisms and feedforward
layers, often with ReLU or Gaussian Error Linear Unit (GeLLU) activations. For regression, the
final layer uses linear activation for continuous outputs. Transformers can deal with long-range
dependencies, making them ideal for sequential and structured data regression tasks, with loss
functions like MSE guiding parameter optimization. It scales better with increasing data size
and sequence length, while CNNs and LSTMs can struggle with very high-dimensional or long-
range data. Understanding the above distinctions helps in selecting the most appropriate model for
specific data types and task requirements. Table 2 shows the configuration of machine learning
algorithms studied in this paper.

In Table 2, the linear regression model was employed to provide baseline results that could
be compared to more complex models. CNNs and Transformers employ ReLU (ReLU(z) =
max(0,z), where ReLU(x) = z if x >= 0 and ReLU(x) = 0 if x < 0 ) for computa-
tional efficiency and gradient stability, with Transformers occasionally using GeLU (GELU(z) =
5 (1 + erf (\%)) where erf(z) = \% IS e~"* dt) for probabilistic modeling. LSTMs utilize
sigmoid for gating mechanisms (input, forget, output) and tanh for cell state updates, ensuring



Table 2: Model Configurations

Model Configurations

Linear Regression | Solver: Auto, Fit Intercept: True, Normalize: False, Max Iterations: 1000

Adaptive Boosting | Estimators: 50, Learning Rate: 1.0, Loss: Linear, Random State: 10

Decision Tree Criterion: Mean Squared Error, Max Depth: None, Min Samples Split: 2,
Min Samples Leaf: 1

Random Forest Estimators: 100, criterion: Mean Squared Error, Max Depth: None, Min
Samples Split: 2, Min Samples Leaf: 1

CNN Number of Layers: 4, Kernel Size: 3x3, Strides: 1, Activation Function:
ReLU, Optimizer: Adam, Batch Size: 3, Learning Rate: 0.001

LSTM Number of layers: 2, Units per layer: 50, Activation: tanh, Optimizer:
Adam, Batch Size: 32, Learning Rate: 0.001, Return Sequences: False

Transformer Attention Heads: 8, Layers: 6, Feed and Forward Size: 2048, Dropout
Rate: 0.1, Learning Rate: 0.001

ResNet Number of Layers: 64, Activation Function: ReLU, Optimizer: Adam,
Batch Size: 32, Learning Rate: 0.001

bounded state transformations. Loss functions ensure that each model optimizes predictions ac-
cording to the problem’s demands, whether by penalizing large deviations or focusing on specific
data aspects. CNNs, Transformers, and LSTMs use Mean Squared Error (MSE) to penalize large
residuals and Mean Absolute Error (MAE) for robustness against outliers. AdaBoost emphasizes
weighted error minimization to focus on challenging examples. R squared score is used to measure
the proportion of variance in the dependent variable that is explained by the model, and is typically
indicative of how well the model describes changes in the target variable. Root Mean Squared
Error (RMSE) functions similar to MSE and is used to provide results in the same units as the
target variable and provides additional interpretations of model results.

Results and Discussion

The dataset was split into training and testing sets where eighty percent of the dataset was used
for training models with the remaining twenty percent being used to gauge the prediction accuracy
of those models. The same train/test split was used with all models in order to directly compare
metrics seen in Figure 5. A validation split was not utilized for the initial dataset due to its overall
small size and limited entries. Future efforts could build upon what was accomplished here by
adding additional entries to the dataset by incorporating university data from other states and in-
cluding a validation set of data.

Dataset features were used to train models with the goal of predicting values for the percentage
of minority students enrolled at Texas institutions in addition to the ratio of minority graduations
to total enrollment numbers. Training based on individual cluster groups, as well as the dataset as
a whole, was conducted in order to document more nuanced comparisons.

MSE, RMSE, and R? (R Squared) are metrics used to evaluate the performance of ML algo-
rithms and optimize models. R? can be used to evaluate how well a model captures the variability



Table 3: Minority Enrollment with Clusters in terms of MSE

Model COo C1 C2 Mixed
Baseline 81.927 198.814 7.910 229.909
Adaptive Boosting 10.511 25.638 16.460 50.488
Decision Tree 6.740 72.764 120.009 88.754
Random Forest 16.259 33.366 4.526 24.443
CNN 14.379 78.031 30.801 52.199
LSTM 0.074 0.098 0.070 0.085
Transformer 0.017 0.138 0.338 0.063
ResNet 0.078 0.087 0.422 0.041
Table 4: Minority Degree Completion with Clusters in term of MSE

Model COo C1 C2 Mixed
Baseline 0.00190 0.00110 7.07600 0.00150
Adaptive Boosting 0.00030 0.00023 0.00011 0.00094
Decision Tree 0.00230 0.00094 1.65400 0.00180
Random Forest 0.00060 0.00017 0.00017 0.00093
CNN 0.00050 0.00037 4.72200 0.00046
LSTM 0.42400 0.15900 0.14400 0.05700
Transformer 0.42000 0.95300 0.01030 0.54960
ResNet 0.50600 0.17800 0.20700 0.21300

of a target variable, with coefficients falling between 0 and 1 with a score closer to 1 indicating a
higher accuracy model. MSE is the difference between predicted values and actual values between
the training and testing sets with values closer to zero indicating more accurate predictions. RMSE
functions are similar to MSE but express errors in the same units as the target variable, meaning
that the error result is more interpretable. Like with MSE, values for RMSE closer to zero indicate
more accurate predictions. Mean Absolute Error measures the average magnitude of error between
predicted and actual values, regardless of whether the error is itself positive or negative. Values
closer to zero [38] indicate a greater prediction accuracy.

Table 3 shows the average MSE scores across clusters with the ratio of minority enrollment to
the total of enrollment as Target. In this case, the utilization of trained learning models typically
produced more accurate predictions than the use of the baseline model alone. This holds true
for Cluster Zero (CO0), Cluster One (C1), and the Total Dataset groupings with learning models
producing mean squared errors that were noticeably lower than baseline numbers. Deep learning
models were particularly effective for predictions with CO and C1 with the use of the Total Dataset
producing less accurate results despite still being relatively high. Cluster Two (C2), however,
saw inaccurate predictions based on all metrics for three of the seven models, with the remaining
two models producing output that was functionally similar to baseline results. The reduced size
of C2 likely contributed to difficulties in developing accurate models leading to RandomForest
and LSTM seeing higher accuracy due to their architectures. Overall the Transformer was most
effective for CO, the ResNet was most effective for C1 and the entire dataset, and the LSTM was



Table 5: Minority Enrollment

Models R*1 | R*2: | MSEl MSE2 | RMSEI | RMSE2 | MAE1 | MAE2
Baseline 0.578 | 0.247 | 129.640 | 93.683 | 10.282 | 6.679 8.027 | 5.045
Adaptive Boosting | 0.780 | 0.444 | 25.714 | 17.502 | 4.862 2.863 4.153 | 2.365
Decision Tree 0.634 | 0.395 | 70.417 | 33.875 | 7.563 3.850 5714 | 2.618
Random Forest 0.903 | 0.461 | 19.566 | 12.379 | 4.176 2.448 3.286 | 1.915
CNN 0.619 | 0.392 | 40.989 | 24.702 | 6.231 3.476 5.186 | 2.734
LSTM 0.857 | 0.451 | 0.080 0.041 | 0.280 0.143 0.354 | 0.160
Transformer 0.608 | 0.436 | 0.136 0.041 | 0.327 0.132 0.256 | 0.094
ResNet 0.517 | 0.439 | 0.159 0.039 | 0.351 0.125 0.296 | 0.099

Note: Notes: 221 and R?2 are the total and weighted average of 2, MSE1 and MSE?2 are the total and weighted
average of MSE, RMSE1 and RMSE?2 are the total and weighted average of RMSE, MAE1 and MAE2: are the
total and weighted average of MAE.

Table 6: Minority Degree Completeion

Models R?1 | R?2: | MSEl | MSE2 | RMSE1 | RMSE2 | MAE1 | MAE2
Baseline 0.347 | 0.136 | 0.001 | 0.001 | 0.031 0.019 0.024 | 0.015
Adaptive Boosting | 0.772 | 0.366 | 0.001 | 0.001 | 0.019 0.012 0.014 | 0.009
Decision Tree 0.194 | 0.091 | 0.061 | 0.022 | 0.034 0.020 0.026 | 0.015
Random Forest 0.726 | 0.370 | 0.169 | 0.059 | 0.020 0.011 0.015 | 0.009
CNN 0.770 | 0.388 | 0.179 | 0.062 | 0.019 0.010 0.015 | 0.008
LSTM 0.749 | 0.411 | 0.237 | 0.092 | 0.418 0.182 0.349 | 0.147
Transformer 0.404 | 0.138 | 0.522 | 0.324 | 0.611 0.381 0458 | 0.277
ResNet 0.661 | 0.369 | 0.279 | 0.130 | 0.503 0.248 0.429 | 0.201

most effective for C2.

In the case where the prediction target was based on the ratio between minority graduations
and total enrollment, trained models seemed to be less effective in comparison to the alternative
target, as shown in Table 4. While predictions continued to outperform the baseline model, model
metrics seemed to vary more widely than in previous cases. Baseline models were able to produce
fairly accurate predictions across all clusters save for C2. Adaptive Boosting, Decision Tree, and
Random Forest alternatively were able to produce MSE scores that would be considered highly
accurate in comparison to all clusters. Despite being more accurate than baseline predictions with
the alternate target, the deep learning models utilized seemed to struggle in this instance with
predictions ranging across cluster groups. The outliers within C2 across models justify the idea
that the small number of data within the cluster benefits from the use of a linear regression model
similar to the type used for baseline predictions. Methods that produced output similar to baseline
seemed to excel for this reason. As a whole predictions made using the entire dataset produced
better results than those made using individual clusters.

Table 5 and 6 show the performance of models in terms of R?, MSE, RMSE, and MAE.
Random Forest, LSTM, and CNN are still showing better performance compared to other mod-
els. When comparing factors that contribute to differences in STEM enrollment numbers across



universities, it’s worth noting the discrepancies between minority-serving institutions (MSIs) and
non-MSIs that tend to directly influence student outcomes. While MSIs are responsible for serv-
ing a higher proportion of underrepresented students compared to their counterparts, they tend to
receive lower funding amounts across all categories. Such a difference limits an institution’s abil-
ity to provide extensive research opportunities, advanced campus facilities, and support programs
crucial to fostering STEM success in regards to minority populations. Institutes that receive higher
levels of funding typically see the use of more effective tools for attracting and retaining students
to STEM programs through the use of tailored scholarships and mentorship efforts. While there
are certainly outliers within the Texas university dataset we observed, UT Austin and A&M Col-
lege Station for example, the dataset as a whole details the need for target funding policies for
universities with high minority enrollment numbers.

Regional comparisons of enrollment trends and funding reflect the idea that geography and
location can be impactful to STEM education and long-term success [39][40]. A state such as
Texas demonstrates a range of funding distributions that do not directly align with demographic
needs based on population diversity. A great example of this concept would be urban institutions
tending to receive higher rates of NSF funding in comparison to rural or more isolated campuses,
even when these campuses are responsible for serving a larger overall proportion of minority pop-
ulations in comparison to more prominent universities [41]. Imbalances like this compound upon
rural institutes and create additional challenges for schools already struggling to compete with
more notable STEM programs. Efforts to address regional funding differences could improve mi-
nority access to quality STEM educational opportunities and improve enrollment rates at smaller
institutions.

It is worth noting the direct impact funded grants have on long-term engineering enrollment
and graduation rates, especially for those institutions that effectively utilize these resources year
after year[42][43]. With prominent programs using these grants to implement additional research
opportunities, create more nuanced learning communities, and fund faculty development, it follows
that such universities would see higher STEM engagement and program completions. Programs
receiving smaller, inconsistent funding amounts tend to see greater fluctuations in their enrollments
and completions as reflected in the dataset numbers, reflecting the idea that sustained investment
is an important component of improving a STEM program’s metrics[44]. Changes in funding over
time produce direct results on enrollment and graduation trends, with increased funding producing
greater minority enrollment growth and graduation rates over time and decreased funding produc-
ing having the opposite effect. The cumulative effect of funding fluctuations means that institutions
able to operate within periods of sustained funding yield more stable improvements to STEM met-
rics as a whole [45].

When looking at individual demographic groups, targeted interventions could be used to ad-
dress barriers unique to specific groups[46]. Where a historically underrepresented group, such as
African American women would stand to benefit the most from mentorship programs or support
networks meant to encourage inclusion, another group, such as Hispanic students, might stand
to gain more from a learning community that highlights their cultural origins. Depending on the
university, focusing on the necessities of specific demographics might accomplish more for STEM
growth than looking to boost metrics for all groups [47].

Where the models used within this study are concerned, optimizing hyperparameters for each



Table 7: Hyperparameter Tuning

Cases R2 Score | MSE RMSE | MAE No. Filt. | Size (Filt.) | Layers
Best Case 0.889 41.690 | 6.457 4.948 128 5 3
Default 0.761 53.656 | 7.286 5.418 64 3 4
Worst Case 0.676 120.437 | 10.974 | 8.011 16 7 3

model would, in theory, produce results that are slightly more accurate when compared to the
default configurations used within this paper. The primary example seen in table 7 shows how
much of an impact changing the number of filters, size of filters, and number of layers can have on
the resulting metric scores of the CNN model. From the limited optimization testing conducted,
the R2 score and MSE were seen to improve by over 0.1 and 10 points, respectively, in the best
case, as shown in Table 7. It’s also worth noting how detrimental improper tuning can be to metric
scores as well. As a whole, the number of filters used and the size of each filter seemed to be more
influential than changing the number of layers used.

Conclusion

In order to better interpret STEM program growth over time, it’s necessary for future research ef-
forts to explore additional metrics for gauging STEM program success as well as employ alterna-
tive models for prediction analysis. Using metrics that go beyond enrollment and graduation rate,
such as academic resilience, student engagement, and career trajectory post-graduation, would,
in theory, paint a clearer picture of a program’s effectiveness and provide additional variables for
more accurate predictive models. The utilization of more advanced machine learning models or
additional models could lead to predictions that are more accurate on average and provide deea
per nuance of complex relationships between factors influencing STEM outcomes. The use of
additional universities from states outside of Texas, the expansion of the dataset to include years
beyond the range used within this dataset, and the inclusion of additional grant statistics could all
lead to the development of more accurate models as well. The use of anecdotal evidence could
also be utilized alongside quantitative metrics to more clearly define the state of an institution.

Cultural shifts within STEM departments have the potential to positively address disparities
within engineering education. STEM programs as a whole must transition away from placing high
regard on academic difficulty as a barrier to entry towards a culture that values holistic student de-
velopment and mentorship opportunities. Creating environments that uphold diverse perspectives,
encourage collaboration across student groups, and make historically underrepresented groups feel
a greater sense of belonging starts with providing faculty the opportunities to develop and under-
stand the reasons for change. A cultural change in the way a program considers what it can do
to benefit its students stands to improve retention and success rates for minority students within
STEM programs.

As the implementation of these findings go, translating growth of STEM programs for many
universities involves making use of emerging technologies to better utilize limited resources. Where
programs such as MemphiSTEP allowed for extensive mentorship and collaborative programs at
universities that had adequate resources, smaller institutions could potentially struggle to produce



similar benefits, especially those found in more ethnically diverse states like Texas. Technology-
driven solutions such as virtual reality lab sessions or Al-driven tutoring opportunities could be
used to bridge the gap between smaller and larger universities and provide higher-quality edu-
cation. Additional efforts could also be directed at combining STEM pursuits with additional
departments, such as social sciences or humanities, to create new opportunities for collaboration
across programs and potentially attract additional students to STEM. Future work should also be
aimed at addressing and identifying the most scalable components of successful STEM programs.
While it is currently possible to identify the contributing factors to a successful STEM education,
translating those factors so that they apply to a wider number of universities is another task al-
together that’s equally important. By building upon continued efforts, future directions can drive
meaningful progress toward equity in STEM education. Such efforts will ensure that STEM fields
accurately reflect the overall diversity of the population as a whole, as well as create innovation
and excellence for every student engaging in STEM curriculum.
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