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Leveraging Large Language Models to Create Interactive Online
Resources for Digital Systems and Computer Architecture
Education

Abstract

This paper explores the innovative use of Large Language Models (LLMs) to help create interactive
online educational resources for digital system design and computer architecture courses, typically
in electrical and computer engineering undergraduate courses. We present a framework that uses
LLMs and existing online tools such as Google Colab and Gradio to rapidly develop and deploy
interactive simulations, exercises, and automated grading systems to help learners work in the
space with minimal need for up-front teacher development or full-end industrial tools associated
with them. Our approach shows how to reduce the time and effort required for instructors to create
engaging, personalized online learning experiences. We evaluate the effectiveness of this method
through a series of case studies and provide guidelines for instructors to leverage these technologies
in their courses.

1 Introduction

Large Language Models (LLLMs) and their emerging skills provide educators with new capabilities
to improve our teaching and save time. LLMs like ChatGPT have emerged as powerful tools that
can assist in creating educational content and interactive learning experiences [1].

For digital system design and computer architecture, traditional education often relies on expen-
sive hardware, specialized software, and physical laboratory spaces. These requirements can limit
access to hands-on learning experiences, particularly for students in resource-constrained environ-
ments or those engaged in distance learning. Our previous work demonstrated the effectiveness
of using Google Colab and Gradio to create interactive online learning modules for these subjects
[2]. This paper builds upon that foundation, exploring how LLMs can further enhance the creation
and customization of these educational resources. Additionally, we use these modules in various
settings, but these tools have not been formally added to specific courses and evaluated; instead,
this work seeks to expose other educators to the benefit and ease with which these tools can be
created.

Integrating LLMs with platforms like Google Colab and Gradio offers several significant benefits
for educators and learners. First, it dramatically reduces the time and effort required for instructors
to create interactive learning materials. LLMs can quickly generate initial code for simulations,



exercises, and demonstrations, which instructors can refine and customize. Second, this approach
allows for rapid iteration and personalization of learning resources, enabling instructors to tai-
lor content to specific learning outcomes or student needs. The downside of these approaches is
that the LLMs can be used to solve the exercises, but this challenge is outside the scope of this
work.

This work is key to democratizing access to high-quality, interactive learning experiences in digital
system design and computer architecture. Students can access sophisticated simulations and exer-
cises via a web browser, eliminating the need for expensive hardware or software licenses. This is
particularly beneficial for institutions with limited resources, students in remote locations, or those
engaged in self-directed learning. By leveraging cloud computing resources, learners can engage
with computationally intensive simulations that might otherwise be beyond the capabilities of their
devices and the high cost of getting local systems to allow for these experiences.

The main contributions of this paper are:

* A framework for using LLMs to generate interactive simulations and exercises for digital
logic and computer architecture courses.

 Evaluation of ChatGPT’s capabilities in creating Python code for various digital system com-
ponents.

* Guidelines for instructors on effectively using LLMs to develop educational resources.

* Case studies (and shared code) demonstrating the application of our approach for course
settings.

The rest of this paper is organized as follows. Section 2 provides a comprehensive background
on using Jupyter Notebooks, Google Colab, Gradio, and LLMs in educational contexts. Section 3
details our methods for using LLLMs to create the activities on Google Colab and Gradio as interac-
tive learning resources. Section 4 presents several case studies showcasing the application of our
approach in digital systems and computer architecture education. Section 5 discusses the results
of our evaluation, including the effectiveness of LLM-generated code and the impact on student
learning. Finally, Section 6 concludes the paper and outlines directions for future work.

2 Background

Here, we briefly review the tools we advocate for creating educational resources for learners and
briefly reference work performed by others using these tools.

2.1 Jupyter Notebooks in Education

Jupyter Notebooks, most notably used in Al and data science spaces, have become increasingly
popular in educational settings, offering an interactive environment that combines code execution,
rich text, and visualization [3]. They provide a powerful platform for creating and sharing com-
putational narratives, making them particularly useful for teaching programming and data science
concepts [4].

Educators have recently explored various ways to leverage Jupyter Notebooks in their courses.
For instance, Davies et. al. [5] demonstrated the effectiveness of interactive digital notebooks for
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bioscience and informatics education. These notebooks allow students to dynamically engage with
course material, promoting active learning and experimentation.

However, the adoption of Jupyter Notebooks in education is not without challenges. Lau et. al. [6]
analyzed 60 different notebook systems, highlighting the complexity of the notebook ecosystem
and the need for a better understanding of their design tradeoffs. To address some of these chal-
lenges, tools like JupyterHub and nbgrader have been developed to facilitate the deployment and
grading of notebook-based assignments [7] [8].

2.2 Google Colab and Cloud-based Learning

Google Colab is a popular platform for cloud-based Jupyter Notebooks, offering free access to
computing resources and easy sharing capabilities, serving over 10 million active users and being
particularly well-suited for machine learning, data analysis, and education [9]. Kim and Henke [10]
explored using Google Colab for teaching data science, emphasizing its accessibility and ease of
use for students. The performance capabilities of Google Colab for deep learning applications are
analyzed by Carneiro et. al. [11], demonstrating its potential for resource-intensive computational
tasks in educational settings.

2.3 Gradio and Interactive Interfaces

Gradio [12] is a Python library that rapidly creates web-based interfaces for machine learning
models and other computational tasks. While Gradio was initially focused on machine learning
applications, educators in various fields have recognized its potential for creating interactive edu-
cational tools. In particular, our previous work [2] was one of the early works demonstrating the
effectiveness of combining Google Colab and Gradio to create interactive online learning modules
for digital systems education. This approach provides a flexible environment for developing and
deploying educational simulations and exercises, addressing some of the limitations of traditional
Jupyter Notebooks.

2.4 Large Language Models in Education

Large Language Models (LLMs) like ChatGPT have shown great potential in various educational
applications, including content generation, question answering, and personalized tutoring [13, 14].
In engineering education, LLMs can assist instructors in quickly and efficiently creating diverse
learning materials and interactive simulations.

Recent studies have explored the use of LLMs in educational settings. For example, Lee and Perret
[15] investigated the preparation of high school teachers to integrate AI methods into STEM class-
rooms, highlighting the potential of tools like Google Colab in this process. LLMs as chatbots are a
technology seeing great promise and hype, but still, it is so early that the possibilities are unknown.
This work illustrates one approach to leveraging their potential benefit to education.



2.5 Technology Adoption for Education

Despite the advantages of these educational technologies, challenges still exist. Chattopadhyay
et. al. [16] identified challenges to using computational notebooks, including setup difficulties and
issues with customization. Additionally, the retention rates in MOOCSs remain a concern, with stud-
ies showing that less than 10% of learners complete their courses [17]. However, these challenges
also present opportunities for innovation. The combination of Jupyter Notebooks, cloud platforms
like Google Colab, interactive tools like Gradio, and the emerging capabilities of LLMs offers a
promising avenue for creating more engaging and effective online learning experiences.

Building upon our previous work [2], this paper explores how LLMs can be leveraged to enhance
the creation of interactive resources for digital systems and computer architecture education, ad-
dressing some of the existing challenges in online education.

3 Methodology

Our approach combines the capabilities of LLMs with Jupyter Notebook libraries, Python graph-
ical libraries, Google Colab, and Gradio to create interactive learning resources. In our previous
work, we provide examples of interactive tools that include:

* MQQT Client/Server approach for creating and distributing assignments with Auto-grading

* Circuit Simulation with different inputs

* Input Value Stimulus and Waveform Viewer for observing and modifying circuit output re-
sponses

* Cache Memory Simulation and Design

* RISC-V Single Cycle and Pipeline

* Interactive Testbench Creation

* Combinational Logic Assignments (e.g., ripple carry structural assignment)

* Sequential Logic Assignments (e.g., traffic light finite state machine)

* Command Line Tool Integration (e.g., Cachegrind, gem5, ABC Berkeley synthesis package)

These examples are hosted on a Jupyter Notebook here https://github.com/lesc-ufv/
GradioColab/examplel and provide instructors with the basic form of creating these ac-
tivities. However, this work aims to allow instructors to quickly create these types of interac-
tions.

Our LLM-based approach involves the following steps:

1. Prompt Engineering: Develop effective prompts for LLMs to generate code for interactive
components and exercises.

2. Code Generation: Use LLMs to generate initial code for simulations and exercises.

3. Refinement and Integration: Refine the generated code and integrate it with Gradio for inter-
active interfaces.

4. Deployment: Deploy the interactive resources on Google Colab for student access.

For example, to model a simple flip-flop, the prompt is:



Please create an interactive FlipFlop Type D, where the user has a clock and data check-box
switches, and an output color LED. Using svgwrite and iwidgets in Google Colab.

Using claude.ai [18] the response is:

Response - Claude 3.5

This Python script:

import svgwrite
from IPython.display import display , HIML
import ipywidgets as widgets
from IPython.display import clear_output
class DFlipFlop:
def __init__(self):
self.state = 0 # Output Q
self.prev_clock = 0

def update(self, clock, data):
# Update state on rising edge of clock
if clock == 1 and self.prev_clock ==
self.state = data
self.prev_clock = clock
return self.state
SNIPPETS
# Connect widgets
clock_widget.observe (update_display , “value’)
data_widget.observe (update_display , ’value’)
# Initial display
update_display ()
# Create layout
widgets_box = widgets .HBox([ clock_widget , data_widget])
display (widgets_box)
display (output_widget)

This code creates an interactive D Flip-Flop with the following features:

Two checkbox widgets for Clock and Data inputs An SVG visualization showing:

The D Flip-Flop symbol Input lines with colored indicators for Clock and Data states An output LED that changes
color based on the Q output

The D Flip-Flop logic updates on the rising edge of the clock

To use this code:

First, install the required packages if you haven’t already:

- pip install svgwrite ipywidgets

Then, copy and run the code above in a Colab cell.

The D Flip-Flop will update according to these rules: - The output (Q) only changes when there’s a rising edge on
the clock (transition from O to 1) - When the clock rises, Q takes the value of the Data input - The output holds its
state when the clock is low or high (no change on falling edge)

You can interact with it by: - Toggling the Data checkbox to set the input value - Toggling the Clock checkbox to
trigger updates - Watching the output LED change color based on the state (green for 1, red for 0)
.

J

Figure 1 shows the interactive flip-flop simulation. The code from the prompt includes source
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Figure 1: An interactive Flip Flop Type D simulation.

code in Python and has installation instructions. In other words, creating a simple demonstration
is simple with a little learning effort with the LLM, Colab, and the additional technology.

4 Case Studies

This section provides specific examples of the resources we have created to help teach computer
architecture and digital system design using Verilog HDL. In each case, we provide details of the
LLM prompt and show what is generated by the LLM. However, similar to the above, we don’t
include the LLLM response details and link to our cases later so that educators can leverage our
examples to help them create their own.

4.1 Decoder Simulation

In this case, we illustrate a 3:8 decoder combinational circuit to show a simple simulation of a
digital logic component using the “svgwrite” library. We used the following prompt to generate a
decoder simulation:

”Write Python code to draw an SVG box for a decoder with 3-bit input (A2, A1, A0) to 8-bit
(one-hot) output (00, O1, ..., O7), using widgets to set A2, Al, AO that draw which output
is active in Google Colab.”

3-to-8 Decoder

A2=1 00
A2 1 Al =0 o1

A0 =1 02
03
04
05
06
o7

Al 0

A0 1

Figure 2: An interactive 3:8 decoder simulation.

The LLM generated Python code that creates an interactive SVG visualization of a 3-to-8 decoder
using Ipython library “iwidgets” as shown in Figure 2. This allows the learner to interact with the
component to observe how the inputs impact the outputs.



”Give the state diagram in graphviz
python
fsm.node ('2"," Zero’)

fsm.edge ("2’ ,’2’,"in=0")

That has one binary input ”in” and rput: | o1
one output “out”. Create an inter- e
active simulator to show step-by-step

Previous

the highlighted state, show an input ‘
sequence as a field in the widget,

o o o o o Current State: D, Index: 3
highlight the current bit in the input, 011

use a “"Next” button in the widget to
go to the next state, and one to get the
previous state.”

(a) Prompt Description (b) An interactive state diagram simulator

4.2 Finite State Machine

This finite state machine (FSM) example features a state diagram created using the Python Graphviz
library. The code was generated with the help of Microsoft’s Copilot LLM. Figure 3a shows the
prompt used to specify the state diagram. The LLM successfully creates a simulator that highlights
the current state in red, provides an input field for entering a bit sequence, and indicates the cur-
rent position within the sequence. The simulation, controlled by the Next and Previous buttons, is
illustrated in Figure 3b.

A prompt should provide clear and precise instructions [19], using delimiters such as quotation
marks or braces to separate the instructions from examples or excerpts to be improved. One popular
strategy in this vane is the “Chain-of-Thought” (CoT) prompting approach [20], where the request
prompt solves a complex problem but is broken down into a sequence of smaller steps, where the
LLM provides reasoning that explains each step of the solution.

Input String:
1011101

1/0 Output String:
0/0 1 1/1 5
(N 0/0 1/0
Step

14 0/0 1/0
Input String: | 1011101

Set I
FSM Table: et

Address State Input Next State Output
000 00 0 00 0
001 00 01
010 o1 00
011 01
100 10
101 10
110 1
11 1

10
00
1n

rlo|rlo/ kel
|| o|o|o|ele

00
01

Figure 4: An interactive state machine simulator: Diagram and Table.



By applying a short sequence of interactions, creating a state machine simulator that simultane-
ously displays the state diagram and its implementation as a table is possible. The simulator allows
for configurable inputs and supports step-by-step execution, with the current state highlighted dur-
ing the process as shown in Figure 4.

4.3 RISC-V Emulator

LLMs are able to create an interactive RISC-V assembly emulator with a few interactive prompts.
For example, we start with the following prompt to generate a RISC-V emulator:

“Please create a Python RISC-V Assembly simulator for a subset with a text editor window,
a sample program, use a sub-set of RISC-V instructions: Iw, sw, add, addi, and, or, beq,
bne, sub, for example. The user could initialize the memory, and show the memory and the
register bank after the execution or even step by step. Using iwidget.”

Code: | # Sample program with labels
addi x3, x0, 1@
addi x2, x0, 5
LOOP: beq x2, x3, END
addi x3, x3, -1
beq x0, x@, LOOP
END: add x4, x1, x2

Memory [e, 6, 0, 0, @, @, @, B, @, 8] Registers: | [8, ®, 5, 18, @, 6, @, 0, B, B, B, O,

Step Reset
Executed instruction: beq x2, x3, END

Figure 5: An interactive RISC-V emulator.

This example was generated with the free Chatgpt 4.0 mini OpenAl. The response included 169
lines of Python code. However, there is an error when handling commas in the instruction parser.
Next, we follow up with the LLLM, asking it to add labels to branch instructions, and within three
progressing prompts, we can create a functional RISC-V emulator as shown in Figure 5.

This emulator simulates a RISC-V code step-by-step, showing the memory and register banking
values. The students can edit the Python code to add more instructions and create a more sophis-
ticated emulator. Similarly, students can take the code into the prompt and work with an LLM to
make the sophisticated emulator.

4.4 Cache Emulator

A cache emulator serves as an example to demonstrate the ability of LLMs to create interactive
interfaces and emulators for topics commonly covered in computer architecture courses. The fol-
lowing prompt can be used to generate a configurable direct-mapped cache emulator:



“Please create a cache emulator for direct mapping using ipywidgets in Python for Google
Colab. The emulator should allow the user to specify the cache size as a power of two,
selected from a dropdown menu, with an additional dropdown to choose the unit (B, KB,
or MB). The user should also provide the memory size, which must be a power of two,
with units selected from KB or MB, and the block size, which must also be a power of two.
Include a button to create the cache and display the calculated tag, line, and block address
sizes in bits. Additionally, include a text area where users can input a series of memory
addresses, separated by commas, to read from. Provide a button to submit a single memory
address and display the resulting cache contents, including the tag and data. Assume that
the main memory 1 contains data corresponding to its address.”

This example was generated using the free version of ChatGPT 4.0 by OpenAl. The code consists
of 166 lines. Figure 6 illustrates the interface where students can specify cache parameters and pro-
vide a sequence of address accesses. The emulator demonstrates how the addresses are processed,
tracks hit/miss occurrences, and displays the final cache state in binary, decimal, or hexadecimal
format.

Cache Size: 128 B v Toggle Format
o . o Address: 3 -> Miss
Memory Sze: RS Address: 8 -> Miss
[ Address: 9 -> Hit
Block Size: | 48 v Address: 129 -> Miss
Create Cache Line ﬁ| Data
Cache created! 0 1 ]@8o, 81,82 83
[Tag = 3 bits, Line = 5 bits, Block = 2 bits] ’2 0 |8, 9.A. B
Addresses: 3, 8 , 9, 12¢

nit Addres

Figure 6: An interactive direct mapping cache emulator.

5 Results and Discussion

Our case studies for LLM-generated interactive code for digital system components reveal several
key findings:

* Speed of Development: LLMs significantly reduce the time required to create initial proto-
types of interactive simulations.

* Code Quality: The generated code was generally good quality, requiring minimal refinement
for most basic components.

* Limitations: More complex systems, such as multi-cache protocols, required additional hu-
man intervention and expertise to implement correctly.



Note, however, that at the undergraduate level, in digital systems and computer architecture, most
of the systems and ideas being learned are toys themselves, and the LLM’s capability to create
visualizations of these simplistic systems is adequate.

We also observed that the effectiveness of using LLMs for this purpose depends heavily on the
quality of the prompts. Clear, specific prompts that include desired functionality and output format
yielded the best results, and using CoT prompts significantly improves the quality of the results.
Still, just as in the education of engineering undergraduates (who are using these LLLM tools), one
of the key ideas is that the LLM as a co-pilot needs to be reviewed by humans, and blindly trusting
the tool tends to lead to error.

Based on our experiences, we propose the following guidelines for instructors looking to leverage
LLMs in creating educational resources:

1. Start with Simple Components: Begin by generating code for basic digital components to
familiarize yourself with the LLM’s capabilities.

2. Treat prompting like you treated coding. The Integrated Developer Interface with the LLM
should be similar to the Jupyter Notebook, where each prompt is a text file, and the response
should be copied into a text file such that the process becomes iterative. The native cloud
and the LLM chats (the IDE of sorts) are best maintained locally.

3. Iterate on Prompts: Refine your prompts based on the initial outputs to achieve desired
results.

4. Verify and Test: Always verify the correctness of generated code and test thoroughly before
deploying to students.

5. Combine with Existing Tools: Integrate LLM-generated code with established tools like
Gradio for enhanced interactivity.

6. Encourage Critical Thinking: Use LLM-generated resources as a starting point for students
to modify and expand upon.

6 Conclusion and Future Work

This paper demonstrates the potential of using LLMs in conjunction with Google Colab and Gra-
dio to create interactive online resources for digital systems and computer architecture education.
Our approach significantly reduces the time and effort required for instructors to develop engag-
ing learning materials while maintaining educational quality. Our examples are maintained at:
https://github.com/lesc-ufv/GradioColab/examplel for other educators to ac-
cess and iterate on.

Future work will focus on expanding the range of components and systems that can be effectively
generated using LLMs and developing more sophisticated prompt engineering techniques.
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