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Leveraging Accelerometers for Teaching Numerical 
Differentiation and Integration 

 
This paper investigates the innovative use of accelerometers to teach numerical integration and 
differentiation to mechanical engineering students, providing a framework and process for 
effective implementation in a classroom setting. While the fundamental concepts of numerical 
integration and differentiation are typically introduced through theoretical datasets, engaging 
with real-world data presents complexities that extend beyond straightforward calculations. This 
underscores the necessity of equipping students with skills for effective data interpretation and 
processing to achieve accurate and meaningful results. Accelerometers, which measure 
acceleration, serve as a practical and interactive tool for teaching these concepts within an 
engineering context. Their simplicity in data collection makes them ideal for classroom 
experiments, while also enabling students to explore easily relatable concepts such as velocity, 
displacement, and jerk, derived through numerical methods. In this study, students conducted 
experiments by capturing acceleration data from short, linear movements and utilized instructor-
provided code to process the data for displacement estimation. Through this analysis, they were 
introduced to key concepts such as sensor drift and noise. Students then learned to implement 
various data processing techniques, including filtering, smoothing, and detrending. Methods like 
polynomial detrending, low-pass filtering, Power Spectral Density (PSD) thresholding, and 
Savitzky-Golay filtering were applied to effectively address these issues. While no formal 
assessment data were collected, anecdotal feedback and class observations suggest enhanced 
student engagement and comprehension. This study leads us to conclude that accelerometers 
serve as an effective hands-on tool for teaching numerical methods. By engaging students in 
experiments and data analysis, they enhance their understanding of these techniques and acquire 
practical skills relevant to engineering careers. 
 
Keywords: Accelerometers, Engineering Education, Numerical Differentiation, Noise Handling, 
Numerical Integration, Sensor Drift. 
 

Introduction 

Numerical differentiation and integration serve as foundational concepts in mathematics and 
engineering. These concepts play a vital role in analyzing and modeling continuous phenomena, 
enabling accurate predictions and solutions to real-world problems. For example, numerical 
integration is used to estimate velocity and displacement from accelerometer data, which is 
crucial in fields like automotive crash testing. In crash testing, accelerometers capture 
acceleration during an impact. By integrating this data, engineers can calculate velocity and 
displacement to assess vehicle deformation and passenger movement, informing the design of 
airbags, seatbelts, and crumple zones. Additionally, numerical differentiation allows for the 
calculation of higher-order derivatives, including jerk, snap, crackle, pop, and lock (first to fifth 
derivatives of acceleration) [1]. Among these, jerk—the rate of change of acceleration—is 
particularly important in crash safety. High jerk values indicate sudden changes in force, 
correlating with a higher risk of injury. Reducing jerk is critical for improving occupant safety. 
While the theoretical implementation of these techniques is typically straightforward, real-world 



 

 
 

applications involving discrete sensor data introduce errors due to various factors. Addressing 
and understanding these errors are pivotal for attaining precise results in practical applications. 

Incorporating accelerometers while teaching numerical differentiation and integration presents a 
unique opportunity to gain hands-on experience with real-world data and learn to apply numerical 
techniques to address common challenges in sensor data analysis. This approach enhances student 
engagement and prepares them for the challenges of applying numerical methods in practical 
settings.  

Literature Review 

Traditional methods for teaching numerical concepts often fall short when it comes to 
demonstrating their practical relevance, which can result in lower student engagement. Feedback 
from students in numerical methods courses, as noted by Musto [2], indicates that these courses 
are sometimes seen as disconnected from real-world applications and lacking in hands-on 
opportunities. This disconnect highlights the need for updated teaching approaches that better link 
abstract mathematical principles with practical use cases.  
 
Incorporating accelerometers into numerical methods instruction provides an effective way to 
address these challenges. Prochazka et al. [3] advocate for integrating sensor data into digital 
signal processing (DSP) courses, highlighting the strong connection between numerical analysis, 
DSP, and sensor technologies. They argue that real-world data from devices like accelerometers 
not only reinforces theoretical knowledge but also equips students with essential data analysis 
skills for modern fields such as robotics and motion tracking. Expanding on this idea, Urban-
Woldron [4] emphasizes the benefits of motion sensors in mathematics education, demonstrating 
how real-time sensor data makes abstract concepts more interactive and accessible. Chan et al. 
[5] further stress the importance of incorporating sensor technology alongside artificial 
intelligence in education (AIED), educational data mining (EDM), and learning analytics (LA) to 
better prepare students for modern industry demands while fostering critical thinking and 
problem-solving skills. Barbosa et al. [6] propose a framework utilizing Python, Raspberry Pi, 
and MEMS sensors to create affordable, user-friendly systems for teaching physics and 
engineering. Their approach enables hands-on projects that seamlessly integrate theoretical 
learning with practical experimentation. Collectively, these studies underscore the value of 
sensor technology in making education more interactive, accessible, and aligned with real-world 
applications.  
 
Ramírez et al. [7] demonstrate how accelerometer data can be used to calculate an object’s speed 
and position through numerical integration techniques such as the Riemann sum and the 
trapezoidal rule. These applications transform abstract mathematical concepts into interactive, 
real-world experiences, significantly enhancing student engagement and understanding. 
Similarly, Herceg et al. [8] showcase practical applications of numerical differentiation and 
integration using sensor data, reinforcing students’ ability to connect theoretical knowledge with 
real-world devices and technologies. Varanis et al. [9] demonstrate the effectiveness of low-cost 
MEMS accelerometers for teaching mechanical vibrations, providing students with hands-on 
experience in data acquisition and analysis. Beyond numerical methods accelerometers have 
been successfully integrated into broader engineering education initiatives, such as Arduino-
based vibration analysis for civil engineering applications [10] and engineering system design 



 

 
 

[11]. These projects illustrate how modern technology bridges the gap between theory and 
practice, preparing students for real-world engineering challenges. 
 
By enabling real-time data collection and analysis, accelerometers enhance experiential learning, 
allowing students to engage with real-world data and apply theoretical concepts in a tangible 
manner. This approach is grounded in John Dewey’s experiential learning principles [12] and 
Kolb’s Experiential Learning Theory [13], both of which emphasize learning through 
experience. Studies show that experiential learning improves comprehension, problem-solving 
skills, and knowledge transfer [14] [15], making accelerometers a valuable tool for reinforcing 
numerical integration and differentiation concepts in engineering education. Overall, integrating 
accelerometer-based learning activities into numerical methods courses directly addresses the 
need for more practical applications in coursework. By incorporating sensor-based tasks, 
students not only strengthen their understanding of core mathematical concepts but also develop 
hands-on skills that are increasingly relevant in engineering and technology fields. The studies 
discussed consistently highlight that hands-on learning, facilitated by real-time sensor data, is a 
powerful strategy for improving both comprehension and engagement in numerical methods 
education. 

Equipment 

The acceleration data was collected during a classroom demonstration using a Steval-MKI178V2 
(LSM6DSL) inertial measurement unit (IMU) sensor board by STMicroelectronics. To enable data 
collection the IMU chip is interfaced with the Steval-MKI109V MEMS DIL24 adapter 
motherboard and then connected to the computer using the USB interface as shown in Figure 1 
(a). The Unico-GUI MEMS evaluation kit software package is used to collect the acceleration 
data. The Unico-GUI allows for data to be logged and saved to a CSV file. The data is then 
processed using Python. Although the LSM6DSL produces 3-axis acceleration and 3-axis angular 
velocity data, only the acceleration data along the X-axis is used for the demonstration. Many other 
options exist on the market in terms of accelerometers, DAQ’s, and processing software. One 
option for educational environments could be to consider the Arduino Nano 33 BLE with an 
embedded 9-axis inertial sensor, which can be purchased for under $30 and provides an economic 
option for large classrooms. 

Data Collection 

The acceleration data is collected in three steps. In step 1, data is gathered while the accelerometer 
is held still. In step 2, the accelerometer is quickly moved 0.15 m along its x-axis. In step 3, the 
accelerometer is held still again for a short duration before stopping data collection. The sample 
data collected using this process is labeled Acceleration_Raw in Figure 1 (b), where steps 1, 
2, and 3 correspond to the time intervals 0–0.75 seconds, 0.75–1.1 seconds, and 1.1–2.0 seconds, 
respectively. 



 

 
 

        

       (a)                                                                            (b) 
Figure 1: (a) Hardware setup, (b) Acceleration vs time plot. 
 
Engaging students in real-time data collection using accelerometers helps them understand the 
practical challenges of working with raw sensor data. This activity reinforces the importance of 
data acquisition techniques, sampling rates, and real-world constraints, laying the foundation for 
all subsequent numerical methods applications. By actively collecting their own data, students 
develop a stronger appreciation for measurement accuracy, variability, and real-time system 
behavior, which enhances their ability to analyze sensor-based systems in diverse engineering 
fields. 

Drift Identification 

When comparing the raw acceleration data (Acceleration_Raw) with the expected 
acceleration in Figure 1 (b), it is evident that the sensor outputs non-zero values even when the 
accelerometer is stationary during Steps 1 and 3. This gradual deviation of the sensor's output from 
the true value over time is known as drift [16]. This phenomenon can significantly affect the 
accuracy and reliability of measurements, especially in applications requiring long-term data 
collection [16] or high precision. Drift can lead to incorrect interpretations of data, resulting in 
erroneous calculations of velocity, displacement [16], and higher-order derivatives like jerk and 
snap. The main causes of drift in accelerometer data include sensor bias [16] which is an inherent 
offset in the sensor output, and internal and external variations in temperature [16][17] known as 
thermal drift.  
 
To address drift, various techniques can be employed, including regular calibration using external 
measurements of position, velocity, and attitude to account for sensor bias [16]. Another effective 
method is sensor fusion, which combines data from multiple sensors to improve accuracy [18]. 
Additionally, modeling and compensating for sensor bias and thermal drift can help reduce the 
impact of drift [19]. While no technique can eliminate accelerometer drift, these methods can 
significantly mitigate its effects. 
 
By analyzing collected accelerometer data, students learn to recognize drift as a systematic error 
that affects long-term accuracy. Understanding drift is crucial for applications ranging from 



 

 
 

robotics to biomedical engineering, where precise motion tracking is essential. This exercise 
strengthens students’ ability to diagnose and correct systematic errors in real-world datasets, 
fostering critical thinking and adaptability when working with noisy signals. 
 
The methods described below provide a straightforward drift compensation technique to correct 
linear trends in accelerometer signals. Additionally, we will explore basic data filtering and 
smoothing methods to correct for noise in sensor data. These techniques can be covered at a high 
level in a single lecture, ensuring that the primary course objectives aligned with ABET standards 
are not disrupted. 

Drift Compensation and Numerical Integration 

Linear detrending is a simple method to remove unreasonable trends in time series data [20]. 
Implementable using the detrend function in Python, it mitigates drift in accelerometer data by 
removing common linear trends. However, it may not effectively address other types of drift. The 
detrended signal is labeled Acceleration_Detrend in Figure 1 (b). 
 
Although the detrend function effectively mitigates linear drift, significant residual drift 
persists, rendering it unsuitable for accurately determining the velocity and displacement of the 
accelerometer. This limitation becomes evident when integrating the detrended acceleration signal 
to calculate velocity and displacement. The integration is performed using the trapezoidal rule, 
facilitated by the cumtrapz function from the SciPy package in Python, and the results are 
depicted in Figure 2. The computed data incorrectly indicates non-zero velocities during Steps 1 
and 3, with a net final displacement close to zero. This process highlights the cumulative nature of 
integration errors and the need for effective correction strategies. Through this activity, students 
gain a deeper understanding of the relationship between acceleration, velocity, and position, 
improving their ability to apply numerical methods to real-world motion analysis problems. 
 
When relying solely on the detrend method to correct drift, accelerometers are primarily suitable 
for measuring short and rapid displacement events [16]. This limitation arises because the detrend 
method may not sufficiently correct for more complex forms of drift and long-term inaccuracies, 
which can accumulate over extended periods or during slower movements.  
 
 

 
       (a)                (b) 

Figure 2: (a) velocity vs time plot, (b) displacement vs time plot. 



 

 
 

Data Segmentation 

The short and rapid displacement event in this case occurs during step 2. This step is approximated 
to occur during the time interval when the largest amplitude sinusoid crosses zero at both the 
beginning and the end of its cycle. The isolated acceleration data is shown in Figure 3 (a). Figure 
3 (b) and (c) shows the corresponding velocity and displacement obtained through integration. The 
resulting velocity and displacement profiles closely resemble expected data profiles with a final 
displacement of 0.143 m.  

  
(b)                                   (c) 

Figure 3: Numerical integration on segmented data, (a) acceleration vs time plot, (b) velocity vs 
time plot, (c) displacement vs time plot.  

Breaking down large datasets into meaningful segments allows students to analyze trends, isolate 
anomalies, and improve data processing accuracy. This activity enhances their ability to work 
with real-time data streams, a skill essential for applications in predictive maintenance, structural 
health monitoring, and machine learning. By learning how to partition data effectively, students 
develop problem-solving strategies that translate to large-scale engineering and data science 
challenges. 
 

Noise Identification 

In addition to drift, the signal contains noise, which in the time domain appears as rapid 
fluctuations or ripples in the acceleration data. Eliminating this noise can sometimes improve 
results. However, in some cases, when data is integrated, the effect of removing noise can be 
minimal due to the noise's oscillatory nature, which tends to average out over time. This averaging 
reduces the noise's impact on the final integrated value, as the fluctuations above and below the 
mean cancel each other out. 
 
Besides visualizing noise in the time domain, it is beneficial to analyze noise in the frequency 
domain as well, facilitating the identification of frequency-specific noise components. This is 
achieved by computing the Discrete Fourier Transform (DFT) of the signal using an algorithm like 
the Fast Fourier Transform (FFT) to convert the time-domain signal into the frequency domain. In 



 

 
 

Python, this can be accomplished with the fft.fft function from the NumPy package, which 
computes the signal DFT coefficients at each frequency. Calculating the magnitude of the DFT 
coefficients and plotting against the frequency axis yields the amplitude spectrum. The amplitude 
spectrum provides a measure of the magnitude of each frequency component. The amplitude 
spectrum for the segmented acceleration signal is shown in Figure 4. 
 

 

Figure 4: Amplitude spectrum plot. 

High Frequency and White Noise 

Two common types of noise present in the signal can be white noise or high frequency noise. 
White noise, in the time domain, appears as random, uncorrelated fluctuations. In the amplitude 
spectrum, white noise will show as flat or uniform distribution across frequencies [21][22]. High-
frequency noise appears in the time domain as rapid, short-duration fluctuations superimposed on 
the signal. In the amplitude spectrum, this noise is characterized by significant magnitude in the 
higher frequency ranges, typically tapering off at lower frequencies and often extending beyond 
the range of useful signal frequencies. This type of noise can interfere with the signal's valuable 
high-frequency components, potentially masking important information. In accelerometer data, 
high-frequency noise may result from mechanical vibrations, sensor resonance, or electronic 
interference. White noise is primarily caused by thermal fluctuations in the sensor’s internal 
components and inherent electronic noise from analog-to-digital conversion. The amplitude 
spectrum in Figure 4 shows signal frequencies extending up to 203 Hz, with white noise 
predominantly present above approximately 35 Hz. 

The ability to identify and classify noise types enhances students’ ability to troubleshoot real-
world measurement issues. By analyzing frequency components, they gain an intuitive 
understanding of how noise masks useful data and affects signal processing outcomes. This 
knowledge is essential for designing robust engineering systems that function reliably in noisy 
environments, such as industrial automation and mobile robotics 



 

 
 

Noise Filtering 

Handling noise in data is crucial for enhancing signal quality and extracting meaningful 
information. Three common noise removal techniques are low-pass filtering, Power Spectral 
Density (PSD) thresholding, and using the Savitzky-Golay filter. For simplicity, our analysis of 
these filtering techniques will be limited to visual inspection. 
 
Noise filtering techniques enable students to enhance signal quality by reducing unwanted 
distortions while preserving critical data features. Through hands-on experimentation, they gain 
insights into the trade-offs between signal smoothing and data distortion, reinforcing their 
understanding of numerical methods and error propagation. Applying low-pass filters introduces 
frequency-domain processing concepts, helping students grasp convolution and transfer 
functions, which are fundamental in sensor fusion, communication systems and real-time data 
analysis. Power Spectral Density (PSD) thresholding connects frequency-domain analysis with 
practical filter design, equipping students with skills applicable to structural monitoring and 
speech recognition, and diagnostics. The Savitzky-Golay filter further refines their ability to 
balance noise reduction with signal preservation, strengthening their knowledge of polynomial 
approximation and convolution techniques essential in fields of spectroscopy, image processing, 
and high-precision sensor data analysis, where accurate signal retention is critical. By exploring 
these methods, students develop problem-solving skills that are transferable across various 
engineering and scientific disciplines. 
 
Low Pass Filter 
A low-pass filter attenuates frequencies above a specified cutoff frequency while allowing lower 
frequencies to pass through. This makes it effective for dealing with both white and high-
frequency noise if the useful signal frequencies are primarily in the low-frequency region. In this 
case, a Butterworth low-pass filter will be implemented to smooth out fluctuations caused by 
white noise above 35 Hz. The filter can be applied in Python using the signal.butter 
function. Figure 5 (a) shows the filtered acceleration signal after implementing the low-pass 
filter.  
 
 

 
(a)              (b)        (c) 

Figure 5: Filtered acceleration using: (a) low-pass filter, (b) PSD thresholding, (c) Savitzky-
Golay filter. The unfiltered data is plotted as a solid blue line while the filtered data is plotted as 
a dashed black line. 



 

 
 

Filtering using Power Spectral Density (PSD) Thresholding 
The Power Spectral Density (PSD) examines how power is distributed across frequencies, offering 
insights into how a signal's energy is distributed across its frequency spectrum. Figure 6 displays 
the PSD of the segmented acceleration signal. Notably, at 0 Hz, the power measures 3941.3 
(m/sec²)²/Hz. PSD thresholding involves setting a threshold, Pthreshold, to selectively remove or 
preserve frequency components based on their power. This technique proves valuable in scenarios 
where signal noise or useful components span multiple frequencies, enabling targeted attenuation 
of noise frequencies according to a specified Pthreshold. Figure 5 (b) illustrates the filtered 
acceleration signal following the implementation of a Pthreshold of 1 (m/s2)2/ Hz.  

 

Figure 6: Power Spectral Density (PSD) plot. 

Savitzky-Golay Filter 
The Savitzky-Golay (SG) filter smooths data by fitting successive subsets of adjacent points, with 
a low-degree polynomial using linear least squares [23], effectively reducing noise while 
preserving signal features. It is typically used to smooth a noisy signal whose frequency range 
without noise is large [24]. Key to its effectiveness is selecting the appropriate window length and 
polynomial order. Usually, the window length must be an odd number [25][26] and should be large 
enough to smooth noise but small enough to retain important data features [26][27], often starting 
with 5-11 points. The polynomial order should match the signal's complexity; lower orders (2-3) 
work for general smoothing, while higher orders (4 or above) capture more complex structures but 
risk fitting noise. To select these parameters, start with small values, visually inspect the results, 
and incrementally adjust until the desired balance of noise reduction and feature preservation is 
achieved. Note that the SG filter performance near the edges of the data can degrade [25] due to 
incomplete data points for polynomial fitting. To minimize edge effects, consider padding the data 
or using alternative methods near data boundaries. Figure 5 (c) shows the filtered acceleration 
signal using a window length of 15 points fitted using a 2nd order polynomial. 

Since the raw data has little high-frequency noise and is mainly composed of low-frequency 
components, all three filtering techniques produce nearly identical results. 



 

 
 

Calculating Velocity and Displacement using Filtered Data 

Figure 7 and  Figure 8 show the velocity and displacement derived from the filtered acceleration 
signals. Since the raw data has little high-frequency noise, the filtered acceleration signals and 
thus the velocity and displacement plots, obtained from all three filtering techniques produce 
nearly identical results. 
 

 
           (a)              (b)                                  (c) 

Figure 7: Velocity from acceleration signal that was filtered using, (a) low-pass filter, (b) PSD 
thresholding, (c) Savitzky-Golay filter. 

 

 
         (a)                        (b)                     (c) 

Figure 8: Displacement from acceleration signal that was filtered using, (a) low-pass filter, (b) 
PSD thresholding, (c) Savitzky-Golay filter. 

The results indicate that noise filtering had little effect on their values. This effect is particularly 
noticeable with white noise, where the mean tends towards zero over time. In contrast, correlated 
noise may not fully average out, potentially amplifying specific components during integration. 
Moreover, a high signal-to-noise ratio (SNR), where the signal amplitude greatly exceeds the 
noise, enhances the effectiveness of noise averaging through integration. Conversely, if the noise 
amplitude is comparable to the signal, it can significantly influence the integrated result. 

Numerical Differentiation and Jerk Calculation 

To compute jerk, acceleration is differentiated using central difference, facilitated by the 
gradient function from the NumPy package in Python. Figure 9 illustrates jerk calculated from 



 

 
 

unfiltered and filtered acceleration signals. The jerk values computed from the filtered acceleration 
signals exhibit noise, which arises because derivatives amplify residual noise inherent in the 
filtered acceleration signals. This amplification arises because noise typically includes high-
frequency components, which become more pronounced when differentiated.  

 

Figure 9: Jerk from acceleration signal that was filtered using, (a) no filter, (b) low-pass filter, (c) 
PSD thresholding, (d) Savitzky-Golay filter. 

Adjusting Filter Parameters 

Fine-tuning filter coefficients through visual inspection, can help further reduce the residual noise 
in the filtered acceleration signals. For example, setting the low-pass filter cut-off to 15 Hz, the 
PSD threshold to 10 Hz, and configuring the Savitzky-Golay filter with a window size of 33 and 
a polynomial order of 3, can effectively minimize noise. Figure 10 illustrates that the jerk 
calculated using these adjusted filter coefficients applied to the acceleration signal exhibits reduced 
noise levels. 

 
             (a)                (b)              (c) 

Figure 10: Jerk from acceleration signal that was filtered using modified filter parameters, (a) 
low-pass filter, (b) PSD thresholding, (c) Savitzky-Golay filter. 

By tuning filter parameters and observing their impact on data quality, students develop intuition 
for signal processing trade-offs. This activity deepens their understanding of numerical stability, 
error minimization, and real-time system constraints. The ability to fine-tune algorithms is 
essential for applications in adaptive control, real-time monitoring, and embedded systems. 



 

 
 

Calculating Higher Order Derivatives using Savitzky-Golay Filter 

To compute the second derivative of acceleration, one can filter the jerk signal again and then 
apply central differencing. This approach can be extended to compute even higher-order 
derivatives. Alternatively, utilizing the derivative feature of the Savitzky-Golay filter [25] offers 
simultaneous data smoothing and derivative calculation and eliminates the need to repeatedly filter 
the signal before calculating subsequent derivatives. The derivative order can be specified as 0 for 
smoothing, 1 for the first derivative, 2 for the second derivative, and so forth. Figure 11 illustrates 
the first and second derivatives of the acceleration signal representing jerk, and snap, respectively, 
computed using the Savitzky-Golay filter's derivative capability using default filtering settings. 

 
    (a)                             (b) 

Figure 11: Higher order derivatives of acceleration calculated using the Savitzky-Golay filter, (a) 
jerk vs time plot, (b) snap vs time plot.  

Final Word on Filter Selection and Implementation Criteria 

The choice of technique for filtering noise should be based on the noise's frequency characteristics. 
Low-pass filters are effective for high-frequency noise, while PSD filtering and Savitzky-Golay 
filters can handle noise with more complex frequency distributions. It's important to consider how 
each technique affects signal integrity, as low-pass filters can alter high-frequency components, 
whereas Savitzky-Golay filters aim to preserve signal features. Additionally, evaluate the 
computational requirements of each technique, especially for real-time applications. 

In-Class Activity Overview, Challenges, and Recommendations for Educators 

The accelerometer-based numerical differentiation and integration activity was conducted during 
a 120-minute session in a junior-level Numerical Methods course, divided into three parts: (1) an 
introduction to accelerometers, (2) hands-on data collection, and (3) numerical analysis using 
Python. Students had prior knowledge of numerical differentiation, integration methods, and 
Python programming but no experience with accelerometers or signal processing. 

The session began with a brief lecture on accelerometer theory, followed by students working in 
pairs to set up their sensors and use the STMicroelectronics UNICO application for data 
collection. They were asked to predict the pattern of acceleration signals during quick 
movements along the x-axis, fostering an intuitive understanding of motion and sensor data. 
Although some struggled to visualize the expected patterns, this task highlighted the 
complexities of motion and sensor calibration. 



 

 
 

Over the next 60 minutes, students collected motion data and modified a provided starter code 
template for data processing along with the instructor. Several students faced challenges 
capturing sinusoidal motion and encountered data clipping issues due to incorrect sensor 
calibration settings, prompting discussions on proper calibration techniques. During the code 
implementation phase, an overview of various noise and drift correction techniques was 
provided. To introduce the concept of the Fast Fourier Transform (FFT) and Power Spectral 
Density (PSD), simpler sinusoidal signals were used as examples. Each noise correction 
technique was first applied to these simplified signals before moving on to more complex real-
world accelerometer data. During the final 45 minutes, students independently re-collected 
signals and applied noise filtering techniques. They answered key questions on frequency 
content, noise types, and appropriate filtering methods, demonstrating their understanding of 
signal processing concepts. 

While most students successfully completed the activity, the session felt rushed. Some groups 
struggled with accurate data collection and continued working outside class. Extending the 
session by an hour would allow students to refine their work, absorb concepts more effectively, 
and receive more individualized support, enhancing engagement and learning outcomes. 

Conclusion 

This study showcases the innovative integration of accelerometers in teaching numerical 
differentiation and integration concepts, emphasizing practical applications and providing a hands-
on, interactive learning experience. This approach enhances student engagement and 
comprehension by allowing them to analyze real-world data. Students encounter critical challenges 
such as sensor drift, noise, and data smoothing, thereby developing essential problem-solving skills 
relevant to fields like robotics, aerospace engineering, and biomechanics. The investigation 
highlights the significant impact of sensor drift and noise on data analysis. Techniques such as 
detrending, low-pass filtering, Power Spectral Density (PSD) filtering, and Savitzky-Golay 
filtering were employed to address these issues. The effectiveness of these methods was 
demonstrated in accurately calculating velocity, displacement, and higher-order derivatives like 
jerk. The study underscores the importance of proper noise handling and drift correction for 
achieving precise results when using sensor data to predictive analysis. Overall, incorporating 
accelerometer data into numerical methods education equips students with valuable analytical 
skills and technical proficiency, preparing them for future careers in various engineering 
disciplines. 
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