
Paper ID #45362

GIFTS: Natural Language Processing with MATLAB

Michael Shteynberg, Northeastern University
Dr. Andrew L Gillen, Northeastern University

Andrew L. Gillen is an Assistant Teaching Professor at Northeastern University in the First Year Engineering
Program and an affiliate faculty member to Civil and Environmental Engineering. He earned his Ph.D. in
Engineering Education from Virginia Tech and B.S. in Civil Engineering from Northeastern University.

Dr. Kaylla Cantilina, Northeastern University

Kaylla Cantilina is an Assistant Teaching Professor in the First Year Engineering program at Northeastern
University. While her teaching is centered around supporting student holistic growth, culturally sustaining
pedagogies, and intertwining sociotechnical content in engineering education, her research is motivated
by design as a means for social justice, and making engineering more accessible and supportive for
minoritized students. She has a deep interdisciplinary background with degrees in industrial design,
political science, industrial operations engineering, and design science, and earned her Ph.D. from the
University of Michigan.

©American Society for Engineering Education, 2025

GIFTS: Natural Language Processing with MATLAB

Motivation and Objectives

Natural Language Processing (NLP) is a sub-branch of artificial intelligence that uses machine
learning. It allows machines to understand, analyze, and generate responses that are easy for
humans to understand. NLP already facilitates the interactions between our students and all sorts
of artificial intelligence like chatbots (ChatGPT), smart assistants (Siri), and more. Calls for
more integration of artificial intelligence into education grow louder by the day. For instance, a
special committee was established in the US to make recommendations, including around AI in
education [1]. Outside of academia, regular interaction with AI tools is becoming commonplace
in industry. Scholars have already outlined a plethora of opportunities and concerns around
applying this technology in the engineering classroom [2]. However, if we are to train the next
generation of engineers, providing a background in NLP could help students better understand
the potential and limitations of these powerful tools [3] . Since many first-year engineering
programs teach MATLAB, python, or similar programming languages, it is a natural home for
exploring the topic of NLP with students to lift the veil of mystery around the technology and
provide practical applications of their coding knowledge.

This lesson can be used to guide students through implementing Natural Language Processing in
MATLAB. At the end of the lesson, students should be able to (a) articulate the major steps
needed to create a simple NLP program and the associated terminology as well as (b) apply these
steps to an example using real-world data.

Practical Implementation Details

The following lists the student procedures for each step of the lesson. This could be guided
step-by-step with the instructor, or assigned as a stand-alone module for students to complete
outside of class in an introductory course in which MATLAB is taught. The corresponding code
that goes with these instructions can be found in the Appendix of this paper. We suggest that
students follow along in the example code while working through each step.

Step 1: Opening MATLAB and Installing Add-Ons

MATLAB is a computational tool for scientists and engineers. It can be used to work with and
visualize large data sets. While it has its own programming language, it is more human readable
than the more fundamental languages. MATLAB is a proprietary software but there are open
source versions available such as Octave. Students do not need prior experience with MATLAB
for this module, but should have prior classroom experience with the general syntax.

The student procedure for Step 1 entails: (1) opening MATLAB, (2) creating a new script file, (3)
selecting the Home tab, (4) navigating to the Environment Block and selecting Add-Ons, (5) in
the search bar, typing “Text Analytics Toolbox,” (5) selecting and installing this add-on.

Step 2: Loading in Desired Text

In order to practice natural language processing, the students need to be provided or identify text
to use. In the example code shown in the appendix below, the text used is the Happy Birthday
song stored in “textData.”

Step 3: Tokenization

Using “tokenizedDocument” splits the sentence in “textData” from Step 2 into individual words
– this is called tokenization.

Step 4: Remove Stop Words

“RemoveStopWords” is a simple function that removes words like "a", "and", "to", and "the"
from the tokenized sentence in Step 3.

Step 5: Lemmatization

“NormalizeWords” lemmatizes each word to its base form. When the style is set to lemma,
NormalizeWords completes this step by checking each word with a dictionary-like list and
replacing it with its base form. For example, "running" becomes "run" or "better" becomes
"good."

Step 6: Sentiment Analysis

Students need to define the “positive” and “negative” words they want to use. This can be any
list of words. They now need to convert the “tokens” variable into a string so it is easier to work
with in future steps. The “ismember” function looks at all the words in the “tokenArray” string
and compares it to the words they put in the positive/negative words list. It then sums this and
counts the number of words that match. Now they need to subtract the number of negative words
from the number of positive words and store it in sentimentScore. If the number is positive, the
sentiment is positive and vice versa (if the number is 0, this either indicates a neutral sentiment
or not having any positive/negative words. Lastly, they can display the sentiment score they
calculated using the display command.

Step 7: Bag of Words

“BagOfWords” or “term-frequency counter” is a model that counts the number of times a word
appears in a text regardless of order. Topkwords(bag,k) is another function that takes the top
words from the “bagOfWords” model. Here we use 5 as k to look for the top 5 words used.
Again we use display to show the top 5 words used in the text stored in “tokens.”

Step 8: Classifying Text

This is setting up another way to classify text as positive or negative. Students can write any
series of positive/negative statements in the data section. We recommend putting 9 statements.

“Labels” is defined as an array where 1 represents a positive statement and 0 represents a
negative statement. Same as before, this tokenizes the statements made in “data.”
Using “BagOfWords” counts the frequency of each word in the text of “tokenizedData.” “Full”
converts the sparse matrix “bag.Counts” into a full/dense matrix. “Fitctree” is a function that
uses a decision tree classifier to classify the text given from “fullCounts” as positive or negative

In “newTextData,” students can input any new text. “TokenizedDocument” again tokenizes the
new text inputted. “Encode” takes the new text from “newTokens” and converts it into a bag of
words model using the previously defined “bag” model. “Full” again turns the newly encoded
data into a full matrix

“Predict” uses mdl which is a trained decision tree model on the new text and makes predictions
based on the text. In this case the predictions will be 1 if it is a positive statement and 0 if it is a
negative statement. Lastly, students can display the predictions made by the trained decision tree
model.

Step 9: Visualizing NLP

“Figure” creates a figure to visualize different things in Matlab. “Wordcloud” creates a word
cloud from tokens (word cloud is a visualization that depicts the frequency of words by making
more frequent words bigger). “Title” sets the title to whatever text is in the quotes.

Assessment Methods

The following provides a full problem that students can undertake to analyze the sentiment of
datasets found online.

Table 1. Steps and Description of Tasks to Analyze Online Dataset Sentiments

Steps Task Descriptions

Collect Data Find 5 – 10 datasets from public websites. These can be any type of review
like movies, books, restaurants, etc. For example, Rotten Tomatoes,
Goodreads, and Yelp.

Prepare the
Reviews

Use the techniques from the module to prepare the reviews you gathered:
○ tokenizedDocument(textData);
○ removeStopWords(tokens);
○ normalizeWords(tokens, 'Style', 'lemma');

Calculating
Sentiment

1. Create a list of predefined positive and negative words that you believe
would fit in the reviews you gathered.

2. Use “sum” to calculate the number of positive vs. negative words.
3. Finally calculate the sentiment score of the datasets gathered.
4. Display the sentiment score.

Calculate
Frequency

1. Use “bagOfWords” to calculate the frequency of different words used
in the reviews you found.

2. Display the frequency counter.

Visualization Create a word cloud that displays the words found in the reviews and how
often they appear.

References

[1] National Artificial Intelligence Advisory Committee. (2024). Retrieved October 30, 2024,

from https://ai.gov/naiac/
[2] Menekse, M. (2023), Envisioning the future of learning and teaching engineering in the

artificial intelligence era: Opportunities and challenges. J Eng Educ, 112: 578-582.
https://doi.org/10.1002/jee.20539

[3] Qadir, J. (2023). Engineering education in the era of ChatGPT: Promises and pitfalls of
generative AI for education. In 2023 IEEE Global Engineering Education Conference
(EDUCON) (pp. 1-9). Kuwait, Kuwait.
https://doi.org/10.1109/EDUCON54358.2023.10125121

Relevant MathWorks Documentation

MathWorks. (2024). Machine Learning in MATLAB. Retrieved October 30, 2024, from

https://www.mathworks.com/help/stats/machine-learning-in-matlab.html
MathWorks. (2024). Text Analytics Toolbox. Retrieved October 30, 2024, from

https://www.mathworks.com/products/text-analytics.html
MathWorks. (2024). Decision Trees. Retrieved October 30, 2024, from

https://www.mathworks.com/help/stats/decision-trees.html
MathWorks. (2024). Predict. Retrieved October 30, 2024, from

https://www.mathworks.com/help/stats/linearmodel.predict.html
MathWorks. (2024). Wordcloud. Retrieved October 30, 2024, from

https://www.mathworks.com/help/matlab/ref/wordcloud.html
MathWorks. (2024). Encode. Retrieved October 30, 2024, from

https://www.mathworks.com/help/comm/ref/encode.html
MathWorks. (2024). Full. Retrieved October 30, 2024, from

https://www.mathworks.com/help/matlab/ref/full.html
MathWorks. (2024). Fitctree. Retrieved October 30, 2024, from

https://www.mathworks.com/help/stats/fitctree.html
MathWorks. (2024). Topkwords. Retrieved October 30, 2024, from

https://www.mathworks.com/help/textanalytics/ref/bagofwords.topkwords.html
MathWorks. (2024). BagOfWords. Retrieved October 30, 2024, from

https://www.mathworks.com/help/textanalytics/ref/bagofwords.html
MathWorks. (2024). IsMember. Retrieved October 30, 2024, from

https://www.mathworks.com/help/matlab/ref/ismember.html
MathWorks. (2024). NormalizeWords. Retrieved October 30, 2024, from

https://www.mathworks.com/help/textanalytics/ref/normalizewords.html
MathWorks. (2024). Visualize Text Data Using Word Clouds. Retrieved October 30, 2024, from

https://www.mathworks.com/help/textanalytics/ug/visualize-text-data-using-word-clouds.
html

Appendix

Corresponding MATLAB Code:

textData = ["Happy Birthday to you, Happy Birthday to you, Happy Birthday dear name, Happy
Birthday to you!"];

tokens = tokenizedDocument(textData);

tokens = removeStopWords(tokens);

stemmedTokens = normalizeWords(tokens, 'Style', 'lemma');

positiveWords = ["happy", "birthday", "party", "presents", "balloons"];
negativeWords = ["bad", "terrible", "awful", "hate", "annoying"];

tokenArray = string(tokens);

positiveCount = sum(ismember(tokenArray, positiveWords));
negativeCount = sum(ismember(tokenArray, negativeWords));

sentimentScore = positiveCount - negativeCount;

disp('Sentiment Score:');
disp(sentimentScore);

wordCounts = bagOfWords(tokens);
topWords = topkwords(wordCounts, 5);

disp('Top Words:');
disp(topWords);

data = ["I love Birthdays", "Presents are amazing", "I hate surprise parties", "Unwrapping
presents is annoying",...
 "Candles are fantastic", "I dislike having to write 'thank you' notes", "Setting up is
challenging", "The party is great",...
 "I enjoy celebrating with friends"];

labels = [1 1 0 0 1 0 0 1 1];

tokenizedData = tokenizedDocument(data);

bag = bagOfWords(tokenizedData);

fullCounts = full(bag.Counts);

mdl = fitctree(fullCounts, labels);

newTextData = ["Birthdays make me feel happy and excited"];
newTokens = tokenizedDocument(newTextData);

newBag = encode(bag, newTokens);

fullNewCounts = full(newBag);

predictions = predict(mdl, fullNewCounts);

disp('Prediction for New Text Data:');
disp(predictions);

figure;
wordcloud(tokens);
title('Word Cloud');

	
	Step 2: Loading in Desired Text
	Step 3: Tokenization
	Step 4: Remove Stop Words
	
	Step 5: Lemmatization
	
	Step 6: Sentiment Analysis
	Step 8: Classifying Text
	Step 9: Visualizing NLP
	
	
	References
	
	
	Relevant MathWorks Documentation

