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A critical review of approaches to teaching artificial intelligence in 
undergraduate materials engineering 

Abstract 

Software tools utilizing artificial intelligence (AI) through machine learning (ML) are becoming 
increasingly vital in Materials Science and Engineering (MS&E), particularly materials design 
and development. However, these tools are not yet widely integrated into undergraduate 
materials engineering curricula. This paper presents a critical review of existing approaches to 
introducing ML concepts to undergraduate students in materials engineering. Although Python-
based frameworks such as Jupyter Notebooks, Scikit-learn, and Google Colab have been 
developed, their adoption remains relatively limited. Programming complexity and the unclear 
role of materials engineers in these exercises are likely reasons for this limited uptake. We 
propose greater emphasis on materials engineering domain knowledge and structured material 
data to enhance the application of ML in solving materials engineering problems, as required in 
industry. Additionally, there is a shortage of readily accessible, suitable datasets and tools for 
teaching ML to undergraduate MS&E students with minimal computer science (coding) 
background. Hence, more openly available real-world datasets for a range of materials 
engineering problems that could be used across various years of study would be beneficial in 
increasing adoption. The introduction of user-friendly AI software tools which do not require 
coding, would likely facilitate their integration into the classroom. A comparison can be drawn to 
the increased prevalence of finite element modeling software in engineering education over 
recent decades. We aim to engage the community in dialogue to foster ideas and encourage the 
adoption of AI tools in materials design and development within modern materials engineering 
curricula. 

Introduction 

Artificial intelligence (AI) is a broad term that refers to computers performing tasks that 
require cognitive functions. AI has existed since the 1950s, though it has undergone a boom 
in engineering applications, such as Materials Science and Engineering (MS&E), as recent 
significant improvements to computational speeds have made it more powerful [1, 2]. 
Machine learning (ML) generally refers to algorithms (e.g., linear regression, non-linear 
regression, random forest) that turn input data into output data, and in doing so, achieve AI 
goals. ML algorithms typically require tens to hundreds of data points. Deep learning can be 
considered a part of ML, and both fit in the broader term of AI. Deep learning algorithms 
(e.g., neural networks) typically work on thousands of data points and are, as such, used in 
‘big data’ engineering applications. 

AI-powered technologies are becoming more prevalent in daily life and the workforce, 
making it crucial to understand and adapt to using new large language model (LLM) tools, 
such as Chat Generative Pre-Trained Transformer (ChatGPT) in the classroom. Evidence 
suggests student use of ChatGPT can enhance academic performance, boost affective-
motivational states, improve higher-order thinking propensities and reduce mental effort [3].  
This evolving AI landscape encourages those in higher education to reassess goals, teaching 
methods, and assessment strategies. The impact of AI tools is far-reaching and has already 



caused educators to rethink Bloom’s taxonomy (Table 1) to distinguish between distinctive 
human skills in the learning process and the role of generative AI (Gen AI) tools such as 
ChatGPT in the learning process.  

Table 1: Bloom’s Taxonomy comparison of human skills in learning and generative AI skills 
in learning. Adapted from [4] and the Oregon State University [5]. 

 Human Skills How GenAI Can Supplement 
Learning 

Create 

Engage in both creative and cognitive 
processes that leverage human lived 
experiences, social-emotional 
interactions, intuition, reflection, and 
judgment to formulate original 
solutions. 

Support brainstorming processes; 
suggest a range of alternatives, 
enumerate potential drawbacks and 
advantages; describe successful real-
world cases; create a tangible 
deliverable based on human inputs. 

Evaluate 

Engage in metacognitive reflection; 
holistically appraise ethical 
consequences of other courses of 
action; identify significance or situate 
within a full historical disciplinary 
context. 

Identify pros and cons of various 
courses of action; develop and check 
against evaluation rubrics. 

Analyze 

Critically think and reason within the 
cognitive and affective domains; 
justify analysis in depth and with 
clarity. 

Compare and contrast data, infer 
trends and themes in a narrowly 
defined context; compute; predict; 
interpret and relate to real-world 
problems, decisions and choices. 

Apply 

Operate, implement, conduct, 
execute, experiment, and test in the 
real-world; apply human creativity 
and imagination to idea and solution 
development. 

Make use of a process, model, or 
method to solve a quantitative or 
qualitative inquiry; assist students in 
determining where they went wrong 
while solving a problem. 

Understand 

Contextualize answers with 
emotional, moral or ethical 
considerations; select relevant 
information; explain significance. 

Accurately describe a concept in 
different words; recognize a related 
example; translate to another 
language. 

Remember 

Recall information in situations 
where technology is not readily 
accessible. 

Retrieve factual information; list 
possible answers; define a term; 
construct a basic chronology or 
timeline. 

 

In addition to generative AI tools such as ChatGPT, undergraduate engineering students can 
now expect to encounter discipline-specific AI and ML tools in their studies and careers. In 
the context of MS&E, the use of domain-specific AI and ML tools has led to remarkable 
advancements in process-structure-property predictions, material design, and material 
discovery [2, 6]. ML models frequently take input (or training data) and can make predictions 
and find correlations within the data (Figure 1). These predictions and correlations can be 
used to optimize new materials for a specific application. In MS&E, AI and ML are often 



leveraged in a sequential learning loop that aims to lower the cost of material development 
and accelerate the time to market of new materials or products (Figure 2), whilst improving 
the performance of materials for given engineering applications, often making it more 
sustainable. Hence, current undergraduate students studying MS&E should now expect to 
encounter these tools in their careers [7]. 

 
Figure 1: ML models help to predict properties, correlate properties and optimize properties in the 
materials design. 

      
(a)                                                            (b) 

Figure 2: (a) Overview of sequential learning in materials design, and (b) AI-guided materials 
discovery saving time compared with the traditional design of experiment approach. 

A wide range of MS&E and related industries are now applying AI and ML tools in the 
design and discovery of new materials and chemicals. For example, AI and ML tools have 
been used in materials development in applications such as batteries [8], ceramics [9], metal 
alloys [10-12], packaging [13], consumer electronics [14], adhesives [15], coatings [16], 
building materials [17], automotive [18], and aerospace [19]. The AI and ML software tools 
being used in these industries are often implemented by individuals with varying levels of 
programming skills [20, 21]. This highlights the growing recognition that AI and ML tools 
should be usable by those without deep expertise in the advanced mathematics and computer 
science required to develop these tools. MS&E graduates, for example, might encounter 
these technologies in their careers, much like they would encounter tools based on physics 
simulations, such as finite element modeling software. Therefore, there is a growing need to 
meaningfully incorporate AI and ML topics and tools into undergraduate MS&E curricula. 



Similarly, AI and ML tools have been adopted in many areas where programming skills are 
typically not expected, such as in medicine [22] and business [23]. Moreover, initiatives like 
Artificial Intelligence for K-12 (AI4K12) aim to build AI literacy before students reach 
higher education [24].  

In this work, we investigate the current approaches being used to teach AI and ML concepts to 
MS&E undergraduate students. We separate the variety of different approaches into two broad 
categories (Figure 3): 

1. A computer-science-driven approach that places an emphasis on programming 
competency to develop and apply ML tools to materials engineering problems. 

2. An engineering design-driven approach that places an emphasis primarily on the 
application of ML tools to an engineering problem. 

 
Figure 3: Overview of the two broad approaches to AI and ML teaching in the context of MS&E. 
Adapted from [25]. 

In subsequent sections, we outline the two broad approaches and discuss their advantages and 
disadvantages. We also assess the broad challenges associated with introducing AI and ML to 
undergraduate MS&E students, regardless of approach.  

Computer-Science (Programming)-Driven Approaches 

Computer-science-driven approaches to teaching AI/ML in engineering generally involve 
building a strong foundation in a programming language so that ML algorithms can be later 
implemented in solving a materials problem. This approach relies on establishing a base literacy 
in computer programming and data science topics. Python has been a popular choice as a 
programming language for this type of activity given its widespread use in science and 



engineering, as well as the numerous beginner-level open-source resources for learning the 
language [26].  

The Python language also enables the use of Scikit-learn [27], also known as sklearn, an open-
source ML and data modeling library. Moreover, Python codes can now be implemented inside 
of Jupyter notebooks. This approach allows for Python codes to be written, viewed and executed 
through a cloud-based digital notebook which can be supplemented with explanatory text and 
images to enhance students’ understanding of code (Figure 4). Jupyter notebooks can often be 
run without edits to the code, however, they typically include designated points where changes 
can be made to investigate different aspects of ML models that could be changed. These digital 
notebooks have been popular for introducing learners to a variety of introductory computer 
science topics across a range of MS&E topics and case studies (published examples summarized 
in Table 2). They have also been used in the classroom in adjacent fields such as chemical 
engineering [28]. There are numerous published exercises designed to introduce students to the 
main steps in the data science and ML workflows, i.e. starting with initial data cleaning, data 
organization, and data querying and moving to analyzing material property predictions via 
various models (regression, random forest and neural networks), often including effective 
visualizations of ML model predictions (Figure 5) that could subsequently be used in materials 
design. Many of these Jupyter Notebooks are published on open-source repositories such as 
nanoHUB and GitHub. Moreover, students can go through the training Jupyter Notebook 
modules on a Google Collaboratory (Colab) cloud-based environment from their laptop or 
personal computer. The main advantage of this approach is that students can run modern AI 
techniques interactively, whilst avoiding the need to separately configure software packages and 
dependencies locally on their computers, since they can run notebooks shared by the instructor. 
This accessibility makes the approach particularly appropriate for the classroom [29]. 

 
Figure 4: Screenshot of a page of the learning module in a Jupyter Notebook showing 
interactive links, editable python code and data visualization [30].  



 
Figure 5: Visualization of material property predictions from an ML model [31]. 

Table 2: Published examples of computer-science-driven approaches to teaching AI/ML 
topics. 

Computer Science and/or AI/ML 
Topics 

Programming 
Language, 

Library, and 
Environment 

MS&E Topic Ref. (s) 

Plotting, curve fitting, functions and 
correlations, annotations and clustering. 

Python, 
Jupyter 
Notebooks. 

Materials characterization 
laboratory (X-ray emission, 
X-ray diffraction, X-ray 
spectroscopy, scanning 
electron microscopy, 
transmission microscopy). 

[30] 

Data management, introduction to ML. Python, 
Jupyter 
Notebooks. 

Data-driven design of 
dielectric materials. 

[32] 

Introduction to ML models, ML 
frameworks, ensemble learning 
techniques in ML, performance metrics 
in ML. 

Python, Scikit-
learn. 

Prediction of bulk modulus a 
perovskite material. 

[33] 



Data cleaning and organization, data 
splitting, classic ML models, neural 
network ML modeling, visualizing ML 
results.  

Python, scikit-
learn, PyTorch, 
Jupyter 
Notebooks. 

Prediction of heat capacity for 
solid inorganic compounds. 

[34] 

Data inspection (importing, cleaning and 
evaluating data), feature generation, 
feature engineering, setup for ML model 
evaluation, fitting and evaluating default 
ML model, hyper parameter 
optimization, ML predictions and 
visualizing ML results. 

Python, Scikit-
learn. 

Predicting materials for 
single-junction solar cells. 
Predicting wide band gap 
semi-conductors. 
 

[31], 
[35] 

Querying a dataset, obtaining 
features/descriptors from Matminer, 
processing and organizing data, 
generating ML models, active learning. 

Python, 
Jupyter 
Notebooks. 

Workflow to optimize the 
number of experimental 
samples required to reach the 
maximum bulk modulus from 
composition. 

[35] 

Querying a dataset, obtaining 
features/descriptors from Matminer 
processing and organizing data, 
regression models (neural network, 
random forest), active learning. 

Python, 
TensorFlow, 
Jupyter 
Notebooks. 

Predicting ionic conductivity 
of LLZO type garnets using 
compositional descriptors. 

[35], 
[36] 

 

Querying databases, organizing and 
plotting data, ML regression models 
(linear, neural network, neural network 
classification). 

Python, 
TensorFlow, 
Jupyter 
Notebooks. 

Predicting material properties 
like Young's modulus from a 
set of descriptors. Predicting 
the crystal structures of 
elemental metals through a 
classification exercise. 

[35], 
[37], 
[38] 

Image analysis, ML models (neural 
networks and convolutional neural 
networks). 

Python, 
TensorFlow, 
GIMP (image 
editor) 

Analyzing x-ray tomographic 
data 

[39] 

Quantum computing, high performance 
computing and ML models (neural 
networks). 

Python, 
Jupyter 
Notebooks. 

Quantum molecular dynamics 
(QMD), reactive molecular 
dynamics (RMD) in materials 
design. 

[40] 

 

Another unpublished example of AI/ML integration into undergraduate curriculum is the 
Computer Vision (CV) lab offered as part of MASC 110L: Materials Science at University of 
Southern California. The CV lab introduces students to a practical use case of ML techniques in 
MS&E. Using a brass surface image obtained in another lab module, students are exposed to an 
end-to-end ML workflow designed to achieve automated grain segmentation. The lab consists of 
three primary steps: 1. selecting a region of interest and removing unnecessary color channels, 2. 
annotating the image to enable the ML model to learn the grain location and shape as well as 
differentiate grain boundaries from twin boundaries (Figure 6), and 3. fine-tune a pre-trained CV 
model (Mask R-CNN) using the image data previously prepared. The lab is designed for students 



without prior experience of ML nor programming; thus, all hands-on activities maximally utilize 
graphical user interfaces, online web-based apps and Jupyter Notebooks on Google Colab. In 
their lab reports, students evaluate the accuracy of model predictions (Figure 7) and assess the 
effects of several hyperparameters such as model sizes and training epochs to demonstrate their 
understanding of the subject and procedures they went through in the lab. To date, over 250 
students have completed the CV lab. Students’ responses are generally positive, acknowledging 
the importance of integrating modern ML/AI technologies into MS&E education. Having 
previously performed manual grain size analysis students are primed to appreciate the utility of 
computational approaches to handle large data sets in a more efficient way.  

 
Figure 6: (left): Screenshot of brass surface image obtained in metal microstructure lab. (right): An 
example of image annotation process. Purple lines are drawn along grain boundaries to capture the 
shape and location of grains.   

 
Figure 7: (left) Training performance: the loss vs. number of epochs. (right): test dataset and 
corresponding model predictions highlighting metal grains in white and other regions in black.  

In addition to the published open-source learning exercises summarized in Table 2, educators 
also have access to an increasing number of AI/ML tools and datasets that have been published 
alongside  materials design and development research studies (e.g., [11, 41-46]). While these 
resources are frequently beyond the level of an undergraduate classroom, the tools have enabled 
undergraduate capstone engineering students to gain in-depth experience with AI/ML software 
tools and by implementing them in novel ways, leading to innovative applied research and 



valuable research experiences for undergraduates. A recent example of this is undergraduate 
research published by Beaver et al. [47]. 

Design-Driven Approaches 

The design-driven approach to teaching AI and materials engineering centers on the use of 
pre‐existing software tools employed in industry to solve materials design and discovery 
problems. This approach is focused on a specific materials design challenge and focuses on 
the role of the materials engineer in solving the problem with AI tools. In contrast to the 
computer-science-driven approach, no immediate computer programming knowledge is 
needed to begin tackling the problem. Instead, the design problem and a ‘no-code’ AI 
software tool can be used as a ‘launchpad’ for learning about computer science topics. This 
approach may be advantageous when computer science and programming are not well 
ingrained in an MS&E curriculum. 

The cloud-based, enterprise-level Citrine Platform is one example of a user-friendly “no-
code” AI tool with a graphical user interface (GUI) that is accessible via any web browser. 
The Citrine Platform provides the capability to assess complex materials data, build ML 
models, and design experiments, all without coding. The software has been successfully 
applied to a variety of problems in the development of materials and chemicals development 
including superconductors, thermoelectrics, metal alloys, and organic conductors [48-51]. 

The workflow of the Citrine Platform GUI is based on a “branch” workflow. The platform 
allows students to tweak ML parameters and see the effects of these changes in real time, 
making it an ideal tool for enhancing classroom interactivity and developing an intuition for 
how the ML “black box” functions, without in-depth programming knowledge. The Citrine 
Platform’s unique ML-driven DoE capability provides a real-world application of ML to 
industry, enabling students to understand and identify the characteristics of successful AI-
driven product development projects. The ability for students to learn and perform an end-to-
end data science workflow without writing a single line of code, all within the context of 
materials design, has the potential to enhance their educational experience and improve their 
employability in a rapidly advancing field.  

The Citrine Platform has been used to help expose second- and third-year undergraduate 
MS&E students to AI and ML through an iterative activity that involves development and 
curation of a material and process property dataset of 3D printed plastics [25]. The process is 
shown in Figure 8. Students began by collecting and organizing plastic filament data from 
published literature and from an existing dataset provided by the instructor. The output of 
this data curation step is a structured data table that has been organized in a predefined 
format (Table 3). After data structuring and curation, the data can then be ingested to train an 
ML model. Next, the ML model is used to perform Design of Experiments (DoE), generating 
new possible experiments (material and 3D printing process combinations) based on a 
specified design space. Students apply their MS&E domain knowledge when defining the 
design space of the new possible experiments and when they prioritize candidates for further 
exploration. The newly generated data can be fed back into the AI model. Survey results 



indicated that, through this case study, students reported an increased understanding of what 
ML is and how it can be applied to real-world engineering problems [25]. 

 
Figure 8: An overview of material and process optimization exercise for 3D printed plastic. The 
closed-loop nature of the exercise allows students to thoroughly investigate the application of ML 
to MS&E and its potential benefits and shortcomings [25].  

Table 3: Structured data template for use with the Citrine Platform.  

 

Another commercially available ML tool utilized in materials engineering is the Materials Image 
Processing and Automated Reconstruction (MIPAR) Image Analysis Software [52]. MIPAR 
utilizes deep learning, typically via custom algorithm development for the end user by MIPAR 
engineers, to perform complex image analysis tasks. The user interface is a drag-and-drop format 
with simple and intuitive navigation and features like side-by-side image viewing. Figure 9 
shows a screenshot of the user interface and an example of the analysis and quantification tools 
available in the MIPAR software. MIPAR has been implemented in academic research and 
industry for materials applications including microstructure analysis [53, 54], defect analysis 
[55], and particle size classification. It is also used in fields outside of MS&E e.g., life sciences, 



drone and surveying, biomedical, environmental engineering [56], and manufacturing 
applications. At The Ohio State University, MIPAR has been integrated into the undergraduate 
curriculum via MSE 2331: Structure and Characterization Lab. MSE 2331 exposes students to 
visual characterization techniques like optical and scanning electron microscopy, as well as 
image analysis methods [57]. In the course, students are first trained to perform manual image 
segmentation using ImageJ. They are then introduced to MIPAR and shown how to create an 
algorithm to automate segmentation and improve both the speed and reliability of the process. In 
the first five years that MIPAR was included in the course, over 400 students used the tool, and 
faculty indicated that its use led to a more enjoyable and educational experience than manual 
analysis alone. Specifically, professors cited the benefit of reduced analysis time, which enabled 
more complex and in-depth laboratory experiments to be performed within the limited class time. 

Design-driven approaches to incorporating AI and ML into the curriculum—such as those 
described above—have the added benefit of training students on tools they may encounter in the 
workforce, given that the use of the Citrine Platform, MIPAR, and similar tools in industry is 
only increasing. 

 
Figure 9. Example of the analysis and quantification tools available in MIPAR, in this case grain size 
determination with the generation of a color map of grain area and a histogram of grain size 
distribution [58]. 

Challenges to teaching AI/ML in MS&E 

The multi-disciplinary nature of AI/ML and curriculum integration 

Meaningfully integrating AI and ML into MS&E curricula is fundamentally challenging 
because instructors and students must possess a variety of skills to successfully implement 
AI/ML tools for solving real-world problems. Strong foundational domain knowledge is 
necessary to properly frame a problem for an AI tool to solve. This knowledge is critical for 
establishing the design space and search space for an ML algorithm. In addition, data science 
expertise is needed to structure data effectively for use with an AI tool and to create compelling 
data visualizations of ML model results. Programming skills are required to write software in 



languages such as Python—or at least a basic understanding of programming to interpret how 
pre-existing code implements an ML algorithm in a Jupyter Notebook. Finally, critical thinking 
skills are essential across all these steps to ensure a meaningful and useful application of AI/ML 
to materials engineering problems. 

Incorporating all these aspects into an already time-restricted curriculum is a significant 
challenge for materials engineering educators. It typically entails considerable time commitment 
from instructors to upskill on these topics. However, regular hands-on workshops on AI and ML 
topics for MS&E researchers—such as those held at Materials Research Society (MRS) meetings 
[59], may help educators acquire the necessary skills. 

To overcome these issues, it has been suggested that small AI/ML modules be incorporated into 
existing courses. This approach, however, may pose additional challenges, such as the need for 
training on specific software tools or programming languages. Adopting no-code cloud 
computing tools, such as the Citrine Platform or MIPAR, and emphasizing the specific roles of 
the materials engineer in applying these tools i.e., how their domain-specific knowledge is 
leveraged, may further alleviate these challenges. 

‘Black Box’ AI tools and algorithm selection 

The input/output nature of ML tools makes them susceptible to the “garbage in, garbage out” 
phenomenon, where the quality of the output is directly related to the quality of the input (Figure 
10). This issue is particularly concerning when students apply pre-existing AI and ML tools 
without understanding the underlying algorithm. The goal of training material scientists and 
engineers is often not only to predict how a material behaves but also to understand why it 
behaves that way, that is, to elucidate the underlying physical material phenomena. One 
challenge with many AI tools is that they frequently do not provide insight into these underlying 
phenomena. Moreover, “black box” methods in MS&E can produce incorrect answers or 
predictions. However, these tools may still be useful if [60]: 

1. The cost (economic, societal, ethical) of wrong answers is low. 
2. The wrong answer inspires some new ideas or approach to the problem. 

Thus, black box AI and ML tools can still be valuable in classroom exercises related to materials 
design and discovery, even though they cannot be used to uncover the underlying physical 
mechanisms in a material. 

 
Figure 10: The input/output nature of ML models means that they are susceptible to garbage in 
garbage out and they do not provide significant insight into underlying physical material 
phenomena.  



Datasets for real-world materials engineering problems 

Finding and adapting relevant materials data for classroom use remains a challenge. Data for ML 
models can come from a variety of sources, including experimental data, external databases, 
published literature, and physics-based simulations. Both data quality and quantity are crucial for 
drawing reliable conclusions, which presents several challenges when applying ML tools to 
materials engineering problems in the classroom. There are several existing materials data 
repositories (Table 4) that could potentially be used in classroom applications of AI/ML tools. 
Moreover, an increasing number of materials datasets are being published in AI/ML research 
related to materials, and these could potentially be adapted for classroom use; however, they are 
frequently at a level that is beyond the comprehension of undergraduate MS&E students. 

Table 4: Comparison of materials data repositories with material property information [34]. 

Name Structure 
information 

Mechanical 
properties 

Thermal 
properties 

Electronic 
properties 

Data 
license 

Materials Project Y Y Y Y CC BY 4.0 

Open Quantum Materials 
Database Y N Y Y CC BY 4.0 

AFLOW for Materials 
Discovery Y Y Y Y Unknown 

Novel Materials 
Discovery (NOMAD) Y Y Y Y CC BY 4.0 

Open Materials Database Y N Y Y CC BY 4.0 

Citrine Informatics Y Y Y Y CC BY 

Materials Platform for 
Data Science Y Y Y Y CC BY 4.0 

AiiDA/Materials Cloud Y Y Y Y Varies 

NREL MatDB Y N Y Y Own license 

NIST TRC Alloy Data N N Y N Free 

NIST TRC ThermoData N N Y N NIST SRD 

NIST JARVIS-DFT/-ML 
Database Y Y Y Y Public 

domain 

MatWeb N Y Y N Paid 

Total Materia N Y Y N Paid 

Ansys Granta 
(MaterialUniverse) N Y Y N Paid 

MATDAT N Y Y N Paid 



Conclusions and Outlook 

The recent surge in AI and ML within MS&E represents a new frontier for many instructors. 
Teaching these topics to undergraduate students poses several challenges, regardless of the 
approach taken. Key obstacles include the interdisciplinary nature of AI/ML, the integration of 
these topics into existing curricula, the “black box” nature of AI tools, and the need for relevant 
and accessible data sources. However, introducing AI and ML concepts through practical, real-
world case studies can help students understand how these tools are applied in MS&E and 
prepare them for their future careers. Recent research progress in AI and ML within MS&E also 
provides avenues for open-source data and ML code that could potentially be used in 
undergraduate education. 

For instructors adopting a computer-science–driven approach, numerous high-quality, open-
source resources are available to facilitate teaching. Platforms such as Jupyter Notebooks and 
interactive environments like Google Colab make these resources both accessible and engaging 
for undergraduates. Additionally, repositories such as GitHub and nanoHUB allow students to 
experience the power of collaborative, open-source science and engineering. In contrast, the 
design-driven approach using existing software tools offers an alternative for students to explore 
AI and ML without a heavy emphasis on programming or computer science. By utilizing “no-
code” tools, students with little or no coding experience can still grasp the role of AI and ML in 
solving engineering problems. Because AI and ML tools are still emerging in the classroom, 
there is currently a lack of comprehensive data comparing the effectiveness of computer-science–
driven versus design-driven approaches. 

Regardless of the approach, it is crucial to emphasize the importance of domain knowledge and 
structured data in addressing real-world MS&E problems. These skills are fundamental for 
students as they apply AI tools in their careers. Modern pedagogical approaches, such as 
universal design for learning (UDL) methods [61], may offer new opportunities for integrating 
AI/ML topics in the classroom. For example, the classroom integration of materials engineering 
podcasts [62], other modern MS&E software tools [63], and the gamification of materials 
science [64], may all offer future outlets for incorporating AI and ML into the classroom. 
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