
Paper ID #44570

Visual Studio Code in Introductory Computer Science Course: An Experience
Report

Dr. Jialiang Tan, Lehigh University

Dr. Jialiang Tan is a Teaching Assistant Professor in the Department of Computer Science and Engineering
at Lehigh University. Her research lies in high-performance computing, program/software analysis, and
CS education research.

Dr. Yu Chen, Independent Researcher

Dr. Yu Chen obtained his Ph.D. from the Department of Computer Science at William and Mary in 2023.
His research lies in machine learning systems, with a focus on building profiling tools and performing
system-algorithm co-design to optimize machine learning applications

Dr. Shuyin Jiao, North Carolina State University

Dr. Shuyin Jiao is an Assistant Teaching Professor in the Department of Computer Science at North
Carolina State University. With a primary emphasis on computing education in college, she specializes
in teaching introductory programming courses and critical path computer science courses. Her scholarly
pursuits are centered on computing education and program analysis, with a dedication to fostering a
dynamic and innovative learning environment in the field of computer science education.

©American Society for Engineering Education, 2024



Visual Studio Code in Introductory Computer Science Course:

An Experience Report

Jialiang Tan, Department of Computer Science and Engineering, Lehigh University

Yu Chen1, Independent Researcher

Shuyin Jiao, Department of Computer Science, North Carolina State University

Abstract

Involving integrated development environments (IDEs) in introductory-level (CS1)
programming courses is critical. However, it is difficult for instructors to find a suitable
IDE that is beginner-friendly and offers robust functionality. In this paper, we share our
experience of implementing Visual Studio Code (VS Code) in a CS1 programming
course. We describe our motivation for selecting VS Code and our approach to
introducing it to engineering students. To assist students with diverse programming
backgrounds, we provide comprehensive guidance with hierarchical indexing. By
seamlessly integrating VS Code, known as a rich text editor, with a selection of
extensions, our aim is to streamline the learning process for students by enabling it to
function as an IDE. We perform an experimental evaluation of students' programming
experience of using VS Code and validate the VS Code together with guidance as a
promising solution for CS1 programming courses.

1. Introduction

Integrated Development Environments (IDEs) play an important role in learning a programming
language. IDEs offer programmers extensive development abilities. They understand language
syntax and provide features such as build automation, code linting, testing, and debugging,
which accelerate and simplify the coding process. Through the help of IDEs, students benefit
from efficient programming, testing, and debugging. Students can further develop better coding
habits and flatten the learning curve of a new language. As a result, more and more instructors
start involving IDEs in introductory-level courses such as PyCharm [43], Eclipse [42], and
others, to enhance student's coding experiences. In addition to traditional IDEs, many advanced
code editors like VS Code and Atom [3], can form an IDE-like environment through the

1 This work was done when Yu was a Ph.D. student at William and Mary.



integration of various extensions. For simplicity, we refer to both traditional IDEs and advanced
code editors as IDEs in this paper.

However, not all IDEs are suitable for introductory-level programming courses, making the
selection of an appropriate IDE challenging for instructors. Professional IDEs [11, 12, 39] offer
integrated programming environments and many powerful features, but they often lack support
for educational purposes. Using them effectively may require advanced knowledge and a
significant time investment. For students new to programming, mastering these IDEs while
learning a new programming language can be challenging, as they must spend considerable time
on software installation and environment setup. On the other hand, education-focused code
editors are easy to install and use but are rarely utilized in professional software development
cycles. This creates a significant gap for students transitioning from college to industry [33, 34],
potentially impacting their future careers.

Thus, there is an urgent need for an appropriate IDE for introductory-level programming classes,
which not only provides sufficient education-related features but is also widely used among
professional software engineers. We aim to use an IDE that meets four criteria: 1) cross-platform
support, allowing students to install and use it identically on different operating systems and
hardware; 2) ease to use, enabling students to code effectively with a simple and concise
interface; 3) extensive functionalities, including code compilation, project organization, and
support for multiple languages; 4) mainstream adoption among professional software engineers,
bridging the gap between classes and future careers.

We have identified Microsoft Visual Studio Code (VS Code) as the preferred option. By
integrating VS Code with a selection of extensions, it becomes an IDE that incorporates all four
aforementioned features. Additionally, VS Code has been widely adopted in many advanced
courses in our department, including operating systems, compiler constructions, computer
networks, and others. However, it has not received significant attention to CS1 courses.
Furthermore, based on our study of 20 computer science departments, none of them specify VS
Code as the default IDE in introductory programming courses. Moreover, there is a lack of
comprehensive guidance on VS Code for educators and students. Given that students come from
diverse backgrounds, with varying majors, learning speeds, and familiarity with different
operating systems, comprehensive guidance is essential to facilitate the efforts of both students
and educators.

This paper presents the first experience report on the use of VS Code in an introductory (CS1)
Python course. We have created the first comprehensive guidance for VS Code, tailored for both
students and educators by gathering plugins (i.e., VS Code extensions) for Python education and
incorporating various user experiences. The guidance is highly modularized to cater to students



with different levels of programming experience. Students who are experienced programmers
can jump to the sections they need to learn and skip those they already know, students who are
beginner programmers can follow the guidance step-by-step, while those encountering errors can
learn how to identify and resolve them. With the help of the guidance, students quickly acquire
the necessary knowledge of the programming environment in the class, and transform VS Code
into a desired IDE that perfectly complements programming development. We have successfully
integrated VS Code and our guidance into the introductory-level Python course in our
department. To evaluate the effectiveness of our efforts, we conducted a survey. The results
indicate that students highly value the use of VS Code and our guidance. Students with industry
internship experiences particularly acknowledge the usefulness of learning Python with VS Code
over other education-oriented IDEs, as it is widely used in the industry [40].

Contributions. We make the following four contributions:

● We point out the importance of selecting a proper IDE for introductory-level courses.
● We identify Visual Studio Code, integrated with extensions, as a desired IDE. We

investigate it from four aspects and analyze its practicality for introductory-level Python
courses.

● We propose the first comprehensive guidance with hierarchical indexing, to guide
students with diverse backgrounds.

● We report our experiences of using VS Code in an introductory-level programming
course, demonstrating its effectiveness as a satisfactory IDE for the introductory-level
Python course. We also validate the value and necessity of the guidance.

Organization. Section 2 reviews the background and related work. Section 3 shows our
investigation of VS Code. Section 4 describes the guidance and support we offer to students.
Section 5 shows some experimental studies. Section 6 provides the discussion. Section 7 presents
conclusions and future work.

2. Background and Related Work

2.1. Python in Education

Python has become the most prominent language in college, it tops the list of the most-taught
programming languages, especially in introductory computer science courses, it is mainly due to
three facts: Python is beginner friendly, it has a simplified syntax with an emphasis on natural
language while most programming languages have complex rules, thus it is perfect for beginners
to learn and practice [9, 13, 23, 29]. Python is a powerful tool, it is applied in many areas like
machine learning and big data, especially effective and essential in scientific computing and data



analysis [1, 5, 6, 19, 20, 22, 31, 35]. Students with diverse backgrounds use Python for different
purposes, e.g. analyzing the market in finance, simulating protein structure in biology. Students
who pursue a formal education in computer science or computer science-related majors are
extremely likely to continue using Python throughout their careers. Python is popular, according
to the PYPL index [25] and Stackoverflow Developer Survey 2021 [30], Python is the most
popular and the fastest-growing programming language (10.4%) in the world as of June 2022.

2.2. Pedagogical Approaches

Programming language plays an important role in computing education. Many systematic studies
explore the teaching in introductory-level programming classes [14, 21, 27, 28]. Through our
observation, a tremendous amount of research has been done on how the programming
environment can improve students' coding experience in recent years, especially the
programming environment for Java and Python, which are the most taught entry-level
programming languages in college. The selection of the programming environment is typically
decided by instructors. Pedagogical tools and Intelligent Tutoring Systems (ITS) [8, 18, 32, 37,
38] have been designed specifically for programming novices. Also, some works report the study
of using industry-level programming environments such as Jupyter Notebooks [2, 4, 10, 36] or
Eclipse extension [26], their experience shows how a great IDE improves students' engagement
and performance.

2.3. IDEs in Education

Integrated Development Environments (IDEs) refer to software applications that combine all
tools needed for a software development project, including an editor, compiler, and debugger.
They consolidate different aspects of software development and significantly improve
programmers' productivity.

Many types of programming environments exist in the market. Roughly there are two kinds:
plain-text/code editor and IDE. Text/code editors, such as NotePad++ or Sublime Text, are easy
to install and require minimal configuration but are not directly related to programming. On the
other hand, a full-featured IDE combines all the necessary tools for development and testing in
one package. However, IDEs require more disk space, memory, or a faster processor, and some
may come at a cost due to expensive licenses. Despite these differences, the boundary between
the two is not always clear, as users can enhance a text/code editor's functionality by installing
plug-ins or extensions. The trade-offs between the time spent on installation/configuration and
the power of the functionalities should be considered.

It is important to introduce IDEs in programming courses, especially in introductory-level
courses. A great IDE benefits students from two perspectives. Firstly, it assists students in



writing correct code. Through our teaching experience, we have observed that students with little
or no programming experience often encounter common errors repeatedly. Secondly, it helps
students establish good coding habits. Beginners tend to prioritize correctness over quality,
resulting in messy code format, meaningless variable names, overly lengthy function, etc. Many
IDEs offer features such as code formatting, variable name suggestions, and function length
warning, which help students produce clean and professional code that adheres to industry
standards. Given the learning curve associated with IDEs, comprehensive guidance and support
are essential.

3. Visual Studio Code Investigation

Visual Studio (VS) Code is known as a rich code editor developed and supported by Microsoft, it
is free for private or commercial use. One of its core features is its extension support, allowing
users to add languages, debuggers, and tools to enhance their development experience. By
integrating relevant extensions, VS Code can transform into a desired IDE with powerful
functionality. In addition to the standard extensions released by Microsoft, the VS Code
Extension Marketplace [17] offers a wide range of extensions contributed by third-party
organizations and individual developers. We analyze its practicality for introductory-level Python
courses based on four aspects: accessibility, ease of use, functionality, and popularity.

Accessibility. VS Code provides cross-platform support, it runs on various operating systems,
i.e. macOS, Windows, Linux, and on most available hardware with an identical user interface.
VS Code has a small download (< 200 MB) and a disk footprint (< 500 MB), it is lightweight,
and perfectly fits every student with different devices.

VS Code supports multi-languages, with extension support for almost every major programming
language. Switching between different languages is effortless. Although our class is for Python
beginners, students can continue coding with VS Code in later programming classes.

Easy-to-use. VS Code has a compact but simple user interface, as shown in Figure 1. The main
editor, located in the center, is where students write their code assignments. Below the editor is
the panel, which can display various views such as a debug console or a built-in terminal. The
terminal always starts from the root of a certain workspace. On the left side is the sidebar, which
contains different views; Figure 1 shows the Explorer view, which helps in locating files. The
ability to maintain a single window for coding and debugging enhances programming efficiency.

In addition to its concise user interface, VS Code offers many features to enhance development.
One important feature is the workspace configuration setting. A VS Code workspace is the root
folder of the current project, allowing users to configure settings that apply specifically to that



workspace. This is particularly useful for students who often need different settings (such as
interpreter version, dependent libraries, and programming languages) for different projects.
While students may initially find these configuration settings daunting, especially when setting
up or resetting the environment for a new project, working with VS Code workspaces
significantly simplifies this process. It enables users to configure settings within the context of
the current workspace, effectively overriding any global user settings.

Fig.1. The basic layout of VS Code user interface [7] that we introduced to students. The editor is the area to edit
files, students can open multiple editors at the same time side by side vertically or horizontally. The panel below the
editor is for output or debug information, errors, and warnings, or an integrated terminal. The side bar contains
different views like the Explorer or Extension Marketplace, to assist students while working on the projects or
downloading extensions.

Furthermore, VS Code supports remote development. The Remote SSH extension allows opening
a remote folder on any remote machine, virtual machine, or container running SSH server.
Another useful feature favored by many developers is the Command Palette, Figure 2 shows an
example, where users would have access to all of the functionalities of VS Code, including
commands of your installed extensions.

Functionality. In addition to its basic features as a source code editor, VS Code offers extensions
to enhance its functionality. With over 30,000 extensions available in the Marketplace, users can
select their preferred extensions and customize their installation to improve their programming



experience. For example, in our Python course, we recommend that students install the Python
extension developed by Microsoft. This extension provides strong support for the Python
language and includes powerful features such as IntelliSense [15], code formatting, debugging,
variable explorer, and more. which offers strong support for the Python language. IntelliSense is
a particularly useful feature that provides suggestions as you type. It offers intelligent code
completion based on the language semantics and the source code you've written. Figure 3 shows
an example, where IntelliSense suggests using variable msg in the print function.

Fig.2. The red box indicated the Command Palette of VS Code. Students can access all functionality of VS Code
and install extensions through the Command Palette.

Fig.3. An example of code completion supported by VS Code, where IntelliSense suggests using the variable msg in
print function.

Popularity. VS Code is widely favored among real-world developers. According to the Stack
Overflow 2021 Developer survey [30], it ranks as the most popular developer environment tool,



with 71.06% of over 80,000 respondents reporting its use. In the latest Stack Overflow
Developer Survey [40], it continues to be the preferred developer environment tool among all
developers, with the number increasing to 73.71% of over 90,000 respondents. Due to the great
user amount, bugs/issues are fixed/solved in time. VS Code updates frequently, from Mar 2023
to Mar 2024, VS Code development team made 33 releases in total, updating with big change
almost every month2. Thanks to its large user base, bugs and issues in VS Code are promptly
addressed. The software receives frequent updates, with the VS Code development team
releasing a total of 33 updates from March 2023 to March 2024, introducing a new version each
month with new features and important bug fixes.

The high popularity of VS Code is one of the main reasons why we introduce it to our Python
class. Students often encounter challenges when switching between different IDEs, so using VS
Code allows them to maintain consistency across various programming language classes and in
their future careers.

4. Guidance and Support

To accelerate the learning process of VS Code for students with diverse backgrounds, we are
introducing comprehensive guidance in our Python class. The guidance is divided into separate
tutorials, with the following subsections detailing each tutorial.

Download and installation of VS Code. In this tutorial, students are guided to the download
page and instructed on how to choose the correct version based on their operating system. We
introduce the workspace immediately after installation because it is the fundamental unit for
project manipulation. We provide examples of how to start a project in VS Code and how to
organize files within a project.

Download and installation of Python. In our past teaching experience, students encountered
challenges with multiple versions of Python, including: 1. confusion between Python 2 and
Python 3, 2. installing the incorrect version, and 3. having both Python 2 and Python 3 installed
on a single device without knowing how to switch between them.

In the tutorial, we require students to use Python 3 and emphasize the differences between
Python 2 and Python 3. Before installation, students are instructed to check if they have any
versions of Python pre-installed. If they don't have Python installed or have Python 2 installed,
they are directed to the newest Python 3 download link. If they already have any version of

2 https://github.com/microsoft/vscode/releases



Python 3 installed, there is no need to reinstall it. For students with multiple versions of Python
installed, we provide a detailed guide on switching Python versions in the next tutorial.

Set up Python environment. Next, students install the Python extension and configure the
Python environment in VS Code. Based on our teaching experience, students often struggle with
programming environment settings. Therefore, we focus extensively on explaining where and
how to configure these settings.

Following this, students are directed to the extension marketplace to locate and install the Python
extension developed by Microsoft. This extension is compatible with any operating system and
Python version, and includes the Jupyter extension in its installation bundle. The Python
extension enhances the coding experience with features like code completion and IntelliSense
(based on the currently selected Python interpreter). We offer step-by-step guidance,
accompanied by figures, on how to select a Python interpreter from the Command Palette.
Additionally, we provide instructions on changing the programming language mode for students
interested in working with other programming languages in subsequent classes.

Run Python examples. Once the Python environment is set up, VS Code becomes a lightweight
Python IDE. In this tutorial, we guide students through writing and running their first simple
Python program from scratch. We also explain how Python extensions improve coding. As part
of the tutorial, we require students to generate expected outputs for example programs, which
ensures that they have identical settings for the Python environment.

Install and run Jupyter extension. We utilize VS Code's Jupyter extension to run in-class
coding exercises to enhance student engagement [2, 24]. With the Jupyter extension, students
open and run .ipynb files on VS Code just like Python files. This extension offers basic notebook
support for language kernels and enables the use of any Python environment to be used as a
Jupyter kernel. In this tutorial, we provide students with guidance on installing the Jupyter
extension, creating new Jupyter files, and managing and running the code cells.

Install and use scientific packages. Python Packages are highly effective for addressing
complex problems in scientific computing, data visualization, data manipulation, and many other
fields. In this tutorial, we instruct students on how to install and import Python libraries, e.g.,
Numpy, Pandas, Matplotlib, and SciPy. Then students are tasked with learning and utilizing
basic APIs, with the example codes provided for reference. To successfully complete this
tutorial, students are required to plot a specific figure using Matplotlib functions.



4.1. Improvements for Guidance

To enhance the guidance provided to students, we have implemented the following
optimizations:

● Operating system specific guidance: While both VS Code and Python are well-supported
across platforms, we recognize that minor differences among operating systems can
impact the learning experience (especially for Python environment setup). Therefore, we
offer two versions of guidance tailored for MacOS and Windows users, respectively.

● Multiple access points: We understand that students have different preferences for
accessing guidance. Hence, we offer two ways to access the guidance: PDF download
and website. While the traditional approach involves uploading guidance as PDFs to the
course learning management system, we have also created a website version for
improved representation. Additionally, in light of COVID-19, which has limited
in-person instruction, we provide video guidance to enhance student engagement.

● Continuous improvement: We actively collect feedback from students and use it to
regularly update and improve the guidance material, ensuring that it remains relevant and
effective.

4.2. Hierarchical Indexing

We provide detailed tutorials with step-by-step instructions to help students set up their
programming environment effortlessly. However, students' preferences for tutorials vary based
on their programming backgrounds. Tutorials with a flat structure may not meet the needs of all
students. For example, those who prefer video tutorials may not want to follow the video's pace
from the beginning. A common approach is to start with a verbal demonstration and only refer to
the video when encountering problems. However, it can be challenging to find the relevant
timestamp in the video based on text instructions if the tutorials are linearly structured.
Moreover, students with some programming knowledge may require more concise instructions.
For instance, they may have already installed Python and VS Code but need guidance on setting
up the Python environment in VS Code, which flat structured tutorials may not provide. On the
other hand, students who are familiar with environment setup may find it difficult to extract key
messages from flat-structured tutorials.

We have implemented hierarchical indexing in our tutorials to cater to diverse student
requirements. This indexing comprises three levels:

● High-level indexing: At the beginning of each tutorial, we provide an abstract that
includes all key messages such as software names, download links, software versions,
etc.



● Medium-level indexing: Each tutorial is segmented into several parts, each with its own
summary and subtitles. We list these subtitles and provide links to the corresponding
positions in the tutorial. This allows students to easily locate the information they need.

● Low-level indexing: We have created mappings between the verbal and video
demonstrations. Specifically, verbal demonstrations for each step within a subtitle are
linked to the corresponding video timestamps. This enables students to switch between
verbal and video demonstrations when they encounter problems, facilitating a more
effective learning experience.

5. Evaluation and Student Responses

In this section, we evaluate two objectives:

● Validate VS Code integrating with relevant extensions, is a suitable IDE for the
introductory-level Python programming courses

● Validate the value and necessity of VS Code's Guidance

5.1. Course Description

We introduce VS Code and VS Code guidance to a CS1 Python programming course in Fall
2022 and Spring 2023 semesters, the course enrollment is 141 and 93, respectively. This CS1
course is restricted for non-CS students, with an emphasis on basic programming skills and
engineering applications. Students learn how to solve problems through writing Python
programs, particular elements include: the development of Python programs from specifications;
documentation and coding style; use of data types, control structures and data structures;
abstractions and verification.

The course employs a flipped classroom format. In the first week’ lab, students set up their
coding environment on their computers following the VS Code Guidance. Lab instructors are
available to offer additional assistance if necessary. Each week, students begin by conceptual
learning the topics covered in the week through online videos and self-check quizzes. They then
participate in a 100-minute class exercises session and a 165-minute lab exercises session to
engage in active learning activities. Following class, students work on weekly homework
assignments and project tasks to reinforce their understanding and skills. Students are required to
run the in-class coding exercises via the Jupyter Notebook extension installed in VS Code and
complete the programming tasks (homework assignments, lab exercises, and projects) in VS
Code independently.



5.2. VS Code and VS Code Guidance Evaluation

We designed a survey of 21 questions to gather students' feedback on both VS Code and the VS
Code Guidance at the end of the semester. The survey first collects information about students'
backgrounds, then asks them to rate VS Code and the guidance based on their programming
experience throughout the semester. We received a total of 82 valid responses, with 42 responses
from the Fall 2022 and 40 responses from the Spring 2023.

First, we collected students' background information. In Fall 2022 and Spring 2023, 79% and
83% of students were freshmen and sophomores, respectively. Additionally, 86% and 88% of
students, respectively, had not taken any Python-related programming courses in the past, and
74% and 75% of them had less than one year of coding experience.

Next, students were asked to rate the performance of both VS Code and the VS Code Guidance
throughout the semester. They rated VS Code based on the following four aspects, with the
degree of satisfaction ranging from 1 to 5, where 1 indicates strong dissatisfaction and 5
indicates strong satisfaction:

● Visual appeal: Students rated their satisfaction with VS Code's user interface and editor
layout.

● Extension ecosystem: Students rated the ease of searching for, installing, and uninstalling
extensions.

● Debugging experience: Students rated the effectiveness of VS Code's built-in debugger in
accelerating their edit, compile, and debug loop, as well as the helpfulness of
recommended debugger extensions.

● Editing experience: Students rated the overall editing experience of VS Code, including
the usefulness and beginner-friendliness of basic editing features (such as keyboard
shortcuts and Command Palette), as well as the effectiveness of IntelliSense (code editing
features such as code completion, parameter info, and content assist).

Based on the responses, in the Fall 2022 semester, 61% of students did not have experience with
IDEs or coding platforms in the past, while 39% had used some other IDEs. In the Spring 2023
semester, 70% of students did not have experience with IDEs or coding platforms in the past,
while 30% had used some other IDEs such as Matlab, RStudio, etc.

As shown in Table 1, the average ratings for visual appeal, extension ecosystem, debugging
experience, and editing experience were 4.17, 3.81, 4.02, and 4.05, respectively, in Fall 2022,
and 4.28, 3.71, 3.7, and 4.73, respectively, in Spring 2023. We released a VS Code extension that
periodically recommends and installs themes for students, which significantly improved their



editing experience3. Regarding students' overall satisfaction with the VS Code guidance, it was
4.2 in Fall 2022 and 4.0 in Spring 2023.

Table.1. The averaged answers of students' satisfaction (82 students in total) over four aspects: visual appeal,
extension ecosystem, debugging experience, and editing experience. The degree of satisfaction lies between 1 to 5,
in which 1 is strongly dissatisfied and 5 is strongly satisfied.

Among the total 82 students, 74% students consider VS Code easy to install and use with the
help of VS Code Guidance, and 76% of students consider VS Code to be a good IDE for coding.
There are 13 students reported having issues or trouble with the VS Code guidance throughout
the semester, and we have collected and addressed these issues in the updated VS Code
guidance.

5.3. Class Averages

We also compared the class averages of students' final grades from Spring 2022 with Fall 2022
and Spring 2023. The results are shown in Table 2. In Spring 2022, the class average total score
was 82.86%, while it was 85.10% in Fall 2022 and 84.34% in Spring 2023.

While the comparison in Table 2 indicates that the class averages of Fall 2022 and Spring 2023
are higher than those of Spring 2022, we cannot solely attribute the average increase to VS Code
or the VS Code guidance. In Spring 2022, we used the traditional classroom, and students were
required to use Spyder integrated within Anaconda. We adopted a flipped classroom approach
and utilized VS Code in Fall 2022 and Spring 2023. Based on students' experiences, we observed
that both using VS Code and the VS Code guidance had positive effects on completing coding
assignments.

Table 2. The class average of total score in the Spring 2022, Fall 2022, and Spring 2023 semesters.

3 We have collected students' feedback, but the data will not be provided in this paper since it has
been discussed in other papers.

Semester Visual Appeal Extension Debugging Editing

Fall 22 4.17 3.81 4.02 4.05

Spring 23 4.28 3.71 3.7 4.73

Semester Spring 22 Fall 22 Spring 23

Class Average 82.86% 85.10% 84.34%



5.4. Student Comments

At the end of the student survey, students were invited to comment on their experience with VS
Code and the VS Code guidance throughout the semester. One student described their overall
experience as:

I can view Python files and text files alike without even making a new window
using VS Code. The interface is visually appealing. The VS Code tutorial is
straightforward. Instructions are easy to follow. That's all a tutorial really needs,
in my opinion.

Some students prefer the dark mode in VS Code. One student claimed that it improves their
coding experience:

I like VS Code uses color coordination to make different code types and functions
stand out. I also like that by default the background is black it makes it easier to
read. 90% of the time it's very easy to find mistakes within codes. Overall the
tutorial is easy to follow.

We have observed that many students prefer dark mode over bright mode, possibly because dark
mode or dark themes make syntax highlighting stand out more. With a light background, the
code text is mostly darker colors, whereas it is more colorful with a dark background.
Additionally, changing themes in VS Code is quite easy compared to pedagogical IDEs. Students
highly appreciate the theme extensions in VS Code. One student claimed:

I like the way VS Code installs extensions. I especially love theme extensions in
the Marketplace, whenever I am bored with codes I change my theme, and it just
becomes a totally new software!

From the feedback, we have gathered many constructive suggestions. Some students have
complained about the complexity of commands on the terminal. While it's true that we may
include plenty of terminal instructions at the beginning of class, the instructor believes that these
instructions/commands are necessary for this class. To address this issue, we have divided the
command study into different labs and have added detailed explanations for every instruction.

Another student considered the VS Code guidance useful but suggested that we could involve
more helper extensions in class:

Tutorials are thorough, straight to the point. But in my opinion, VS Code lacks
collaborative elements, especially in the lab. I feel that collaboration via a shared
document would be beneficial because, without it, one user mostly does the code
by themselves.



The Live Share extension [41] enables students to share screens and collaborate with classmates,
TAs, and instructors on the same code without the need to synchronize code or configure the
same development tools, settings, or environment. This ability to work together and
independently provides a collaboration experience that closely resembles in-person collaboration
[16]. We plan to enable Live Share for classroom lectures (in read-only mode) and remote office
hours in Fall 2024. The use of Live Share in pair programming is still under evaluation and
consideration.

To summarize, students' overall experience with VS Code and the VS Code guidance is positive
and encouraging. This indicates that both VS Code and the guidance are valuable and promising
for the CS1 course.

5.5. Issues with Jupyter Notebook in VS Code

We have observed two issues with running Jupyter Notebook files in VS Code: 1. More than 10
students (using both Mac and Windows devices), reported that when running a cell or all cells in
a Jupyter Notebook file, it loads for a long time but does not show any content; 2. Some students
reported that when running a cell or all cells in a Jupyter Notebook file, VS Code crashes. While
restarting or upgrading VS Code solved the issue for 2 students, for most cases we can not fix
these as running cells bloat device memory. To address these issues, we have switched to using
the Jupyter Notebook web-based platform instead of the Jupyter Notebook extension in VS
Code.

6. Discussions

Discussions on education-related concerns. VS Code offers advanced features like code
auto-completion and function signature hints, which raises debates regarding their use in
introductory-level programming courses. Some argue that these supplementary features may lead
to a blind dependence on IDEs, potentially hindering students' understanding of the code.
However, in practice, our teaching plan covers all necessary programming knowledge and
concepts. We believe that features like auto-completion and function signature hints can actually
help students learn faster and more efficiently. Moreover, these features can be customized or
completely disabled in VS Code if required, allowing instructors to tailor the IDE to their
teaching approach.

Discussions on some limitations. We acknowledge some limitations in this study. We only
evaluated an introductory Python course, as Python is the introductory programming language
offered by our department. However, VS Code supports multiple programming languages, such
as Matlab, Java, and C/C++. It is straightforward to adapt our guidance to courses with other



programming languages. In the future, we plan to partner with instructors in our department to
report more experiences with VS Code in various programming courses.

7. Conclusions and Future Work

This paper describes the experiences with introducing Visual Studio Code in an introductory
(CS1) Python programming course at a large engineering university. We investigate the
effectiveness of VS Code as a desired IDE for CS1 programming courses and develop
comprehensive guidance to assist students with varying programming backgrounds. We perform
evaluations among students and validate the practicality of VS Code and assess the quality of our
VS Code guidance. We continuously update and improve the guidance based on collected
feedback. We are practicing VS Code and our VS Code guidance in additional CS1 programming
courses that cover languages beyond Python.

Our future work is two-fold. First, we will continue exploring useful VS Code extensions
available in the marketplace that benefit education. Second, we will develop our own extensions
to further support education-related activities. Specifically, we aim to create extensions that
enhance student engagement during programming assignments.



REFERENCES

[1]. Abadi, Martın, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado et al. "TensorFlow: Large-scale machine learning on heterogeneous systems,
software available from tensorflow. org (2015)." https://www. tensorflow. org (2015).

[2]. Al-Gahmi, Abdulmalek, Yong Zhang, and Hugo Valle. "Jupyter in the Classroom: An
Experience Report." Proceedings of the 53rd ACM Technical Symposium on Computer Science
Education-Volume 1. 2022.

[3] Atom. 2022. Atom Homepage. http://atom.io/.

[4] Barba, Lorena A., Lecia J. Barker, Douglas S. Blank, Jed Brown, Allen B. Downey, Timothy
George, Lindsey J. Heagy et al. "Teaching and learning with Jupyter." Recuperado:
https://jupyter4edu. github. io/jupyter-edu-book (2019): 1-77.

[5] Chen, Yu, Zhenming Liu, Bin Ren, and Xin Jin. "On efficient constructions of checkpoints."
arXiv preprint arXiv:2009.13003 (2020).

[6] Chen, Yu, Ivy B. Peng, Zhen Peng, Xu Liu, and Bin Ren. "Atmem: Adaptive data placement
in graph applications on heterogeneous memories." In Proceedings of the 18th ACM/IEEE
International Symposium on Code Generation and Optimization, pp. 293-304. 2020.

[7] Visual Studio Code. 2022. User Interface.
https://code.visualstudio.com/docs/getstarted/userinterface.

[8] Tyne Crow, Andrew Luxton-Reilly, and Burkhard Wuensche. 2018. Intelligent tutoring
systems for programming education: a systematic review. In Proceedings of the 20th
Australasian Computing Education Conference. 53–62.

[9] Cutting, Vineesh, and Nehemiah Stephen. "A Review on using Python as a Preferred
Programming Language for Beginners." (2021).

[10] DePratti, Roland. "Using Jupyter notebooks in a big data programming course." Journal of
Computing Sciences in Colleges 34, no. 6 (2019): 157-159.

[11] Eclipse Foundation. 2022. Eclipse Homepage. https://www.eclipse.org/ide/.

[12] JetBrains. 2022. Essential tools for software developers and teams.
http://www.jetbrain.com/.

[13] Khoirom, Selina, Moirangthem Sonia, Borishphia Laikhuram, Jaeson Laishram, and
Tekcham Davidson Singh. "Comparative analysis of Python and Java for beginners." Int. Res. J.
Eng. Technol 7, no. 8 (2020): 4384-4407.

http://www.jetbrain.com/


[14] Rodrigo Pessoa Medeiros, Geber Lisboa Ramalho, and Taciana Pontual Falcão. 2018. A
systematic literature review on teaching and learning introductory programming in higher
education. IEEE Transactions on Education 62, 2 (2018), 77–90.

[15] Microsoft. 2022. IntelliSense. https://code.visualstudio.com/docs/editor/intellisense.

[16] Visual Studio Code. Collaborate with Live Share.
https://code.visualstudio.com/learn/collaboration/live-share

[17] Microsoft. 2022. VS Code Marketplace. https://marketplace.visualstudio.com/.

[18] Samy S Abu Naser. 2008. Developing an intelligent tutoring system for students learning to
program in C++. Information Technology Journal, Scialert 7, 7 (2008), 1055–1060.

[19] Oliphant, Travis E. Guide to numpy. Vol. 1. USA: Trelgol Publishing, 2006.

[20]   Paszke, Adam, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. "Automatic
differentiation in pytorch." (2017).

[21] Arnold Pears, Stephen Seidman, Lauri Malmi, Linda Mannila, Elizabeth Adams, Jens
Bennedsen, Marie Devlin, and James Paterson. 2007. A survey of literature on the teaching of
introductory programming. Working group reports on ITiCSE on Innovation and technology in
computer science education (2007), 204–223.

[22] Pedregosa, Fabian, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel et al. "Scikit-learn: Machine learning in Python." the
Journal of machine Learning research 12 (2011): 2825-2830.

[23] Pellet, Jean-Philippe, Amaury Dame, and Gabriel Parriaux. "How beginner-friendly is a
programming language? A short analysis based on Java and Python examples." (2019).

[24] Perez, Fernando, and Brian E. Granger. "Project Jupyter: Computational narratives as the
engine of collaborative data science." Retrieved September 11.207 (2015): 108.

[25] PYPL. 2022. PopularitY of Programming Language. http://pypl.github.io/PYPL.html.

[26] Charles Reis and Robert Cartwright. 2004. Taming a professional IDE for the classroom. In
Proceedings of the 35th SIGCSE technical symposium on Computer science education. 156–160.

[27] Norsaremah Salleh, Emilia Mendes, and John Grundy. 2010. Empirical studies of pair
programming for CS/SE teaching in higher education: A systematic literature review. IEEE
Transactions on Software Engineering 37, 4 (2010), 509–525.



[28] Carsten Schulte and Jens Bennedsen. 2006. What do teachers teach in introductory
programming?. In Proceedings of the second international workshop on Computing education
research. 17–28.

[29] Srinath, K. R. "Python–the fastest growing programming language." International Research
Journal of Engineering and Technology 4, no. 12 (2017): 354-357.

[30] Stackoverflow. 2021. 2021 Developer Survey.
https://insights.stackoverflow.com/survey/2021#section-most-popular-technologies-integrated-de
velopment-environment.

[31] Tan, Jialiang, Yu Chen, Zhenming Liu, Bin Ren, Shuaiwen Leon Song, Xipeng Shen, and
Xu Liu. "Toward efficient interactions between Python and native libraries." In Proceedings of
the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, pp. 1117-1128. 2021.

[32] Python Tutor. 2021. Learn Python, JavaScript, C, C++, and Java. https://pythontutor.com/.

[33] Valstar, Sander, Sophia Krause-Levy, Alexandra Macedo, William G. Griswold, and Leo
Porter. "Faculty views on the goals of an undergraduate CS education and the academia-industry
gap." In Proceedings of the 51st ACM Technical Symposium on Computer Science Education, pp.
577-583. 2020.

[34] Valstar, Sander, Caroline Sih, Sophia Krause-Levy, Leo Porter, and William G. Griswold.
"A quantitative study of faculty views on the goals of an undergraduate CS program and
preparing students for industry." In Proceedings of the 2020 ACM Conference on International
Computing Education Research, pp. 113-123. 2020.

[35] Van Der Walt, Stefan, S. Chris Colbert, and Gael Varoquaux. "The NumPy array: a structure
for efficient numerical computation." Computing in science & engineering 13, no. 2 (2011):
22-30.

[36] Van Dusen, Eric. "Jupyter for teaching data science." Proceedings of the 51st ACM
Technical Symposium on Computer Science Education. 2020.

[37] Kelsey Van Haaster and Dianne Hagan. 2004. Teaching and Learning with BlueJ: an
Evaluation of a Pedagogical Tool. Issues in Informing Science & Information Technology 1
(2004).

[38] Kurt VanLehn. 2011. The relative effectiveness of human tutoring, intelligent tutoring
systems, and other tutoring systems. Educational psychologist 46, 4 (2011), 197–221.

[39] vim. 2022. Vim The Editor. https://www.vim.org/



[40] Stackoverflow. 2023. 2023 Developer Survey.
https://survey.stackoverflow.co/2023/#most-popular-technologies-new-collab-tools

[41] Microsoft Marketplace. Live share extension pack download page. URL:
https://marketplace.visualstudio.com/items?itemName=MS-vsliveshare.vsliveshare

[42] Eclipse Foundation, Eclipse IDE homepage, URL: https://eclipseide.org/

[43] PyCharm homepage, JetBrains, URL: https://www.jetbrains.com/pycharm/features/


