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1 MOTIVATION: MEASURE STUDENT LEARNING 
Evaluating changes in learning and understanding is essential to educational research and 

interventions [1,2]. It serves as a critical parameter to gauge the effectiveness and impact of 
educational programs [3].  This assessment is not just a valuable tool; it is often the most effective 
means available to measure and quantify the influence of an intervention. Various researchers 
across STEM and engineering education have emphasized the significance of qualitatively, 
quantitatively, and objectively measuring changes in learning outcomes [3–13]. Such 
measurement not only adds credibility to educational interventions but also enhances their 
reproducibility and precision, enabling more robust conclusions. To assess the effects of an 
intervention, it is crucial to start by evaluating participants' prior knowledge [2,9,13–17]. This 
initial assessment considers various factors influencing individuals' experience and knowledge, 
encompassing professional expertise [2,18], educational backgrounds [9,19–21], personal factors, 
and social influences. This holistic evaluation of participants' baseline knowledge provides context 
necessary to support scaffolded learning.  

This study compares pre-intervention and post-intervention knowledge to assess the 
educational module’s direct impact, excluding prior knowledge and extraneous influences. Such a 
before-and-after comparison is crucial for determining effectiveness in improving learning 
outcomes. Additionally, our research includes a retention assessment to evaluate the intervention's 
long-term effects on knowledge sustainability and its enduring impact on participants. This 
analysis provides insights into the lasting benefits and applicability of an educational intervention. 

One of the tools used in assessing learning and knowledge integration are mental models 
or mind maps. Mental models are internal representations individuals create to understand and 
predict the world. These cognitive structures, formed through personal experiences and beliefs, 
guide behavior, decision-making, and problem-solving [22]. Mental models simplify complex 
information, aiding adaptation and facilitating team communication [23], especially in design and 
engineering. Mental models serve as cognitive frameworks enabling individuals to navigate their 
surroundings, understand elements, and grasp interactions. They are deeply ingrained in our 
perception of how the world works, especially in physical systems. They represent knowledge 
about system functioning, components, processes, interconnections, and cause-and-effect 
relationships [22,23]. Individuals may hold diverse mental models of the same product or artifact, 
sometimes concurrently. 

Mental models are applied at both individual and team levels. Team mental models 
(TMMs), shared among team members, encompass collective knowledge for task understandings 
and expectations, resulting in enhanced coordination and adaptability. They are categorized into 



task, process, and teamwork mental models. Task mental models focus on specific team tasks, 
such as problem articulation, idea generation, explanations, analyses, and decision-making. 
Analyzing TMMs reveals insights into managing complex design problems by considering team 
composition, processes, tasks, context, and competencies. Table 1 provides a list of studies that 
use mental models in engineering design to measure a parameter of interest in their research. 

Table 1: Mental Models in Engineering Design Research 

Ref. Level Participants Contribution Type of 
Research 

Sample 
Size 

[21] Individuals Elementary 
School Students 

Conceptual understanding 
before and after intervention 

Mixed-
Methods 67 

[18] Individuals Undergraduate 
Students 

Individual differences while 
eliciting Mental Models Qualitative 10 

[24] Individuals Graduate 
Students 

Effect of functional modeling 
intervention on Mental Models 

Empirical and 
Quantitative 30 

[25] Team 
Undergraduate, 
Graduate and 
Professionals 

Capturing the content of a 
team mental model while it is 
constructed (9 teams) 

Mixed-
Methods 36 

[22] Team Professionals 
Mental Model sharedness 
through verbal communication 
(2 teams)  

Mixed-
Methods 10 

[26] Both Undergraduate 
and Graduate 

Impact of team interaction 
structure on individual and 
shared mental models (12 
teams) 

Experimental  36 

Measuring learning is essential for evaluating teaching effectiveness and curriculum 
relevance, allowing educators to identify and address student challenges to meet educational and 
accreditation standards, particularly in fields with specific outcome requirements like engineering. 
It aids in guiding student efforts, clarifying misconceptions, and bridging knowledge gaps. 
Furthermore, it provides employers and stakeholders with critical insights into student 
competencies, informing hiring and investment decisions. A sample of the methods used to 
measure understanding and learning by capturing the mental models is presented in Table 2. Along 
with the methods, the type of participants, the type of research, and a summary of the contributions 
is also included.  

Based on the literature reviewed, concept maps are favored for capturing mental models 
and assessing learning, due to their effectiveness in analyzing central concepts, relationships, and 
information flow. Moreover, this approach has been supported both qualitatively and 
quantitatively in previous studies, focusing on creating mathematically precise models for robust 
quantitative analysis. Therefore, concept maps are a reasonable choice for assessing student 
learning or change in knowledge before and after an intervention.  



Table 2: Various methods to capture mental models and assess learni 

Ref Method Participants Research Type Contribution 

[3] 

Revealed Causal 
Mapping (RCM),  UG Qualitative Two methods to accurately 

capture changes in students’ 
knowledge after intervention Structural 

Assessment (SA) UG Quantitative 

[27] Fuzzy Cognitive 
Maps (FCM) General Mixed Methods 

Incorporating stakeholder 
knowledge into environmental 
decision-making processes 

[25] 

Latent Semantic 
Analysis (LSA) 

UG, Grad, 
Prof Quantitative Construction and enactment of 

team mental models in design 
teams Reflective Practice 

Analysis (RPA) 
UG, Grad, 
Prof Qualitative 

[28] Concept maps (Graph 
Centrality) Grad Mixed Methods 

Input of an expert model of 
text, to output of concept map 
summarizing the key ideas and 
relationships in the text 

2 CONCEPT MAPS 
Concept maps use a graph-based structure to illustrate concepts, attributes, and 

relationships, serving as a visual framework for understanding individual or team mental models. 
In concept maps, nodes represent concepts, and edges denote the connections between concepts, 
facilitating the exploration of inter-concept relations. This method is useful for organizing 
knowledge in fields like artificial intelligence and engineering design. Furthermore, concept maps 
are key in developing and enhancing mental models, enriching our comprehension of complex 
information processing within cognitive structures.  

Capturing concept maps at important intervals—before, during, and after an intervention—
to form a comprehensive series of bipartite graphs, allows for the creation of a complete knowledge 
representation of the subject matter. This approach aids in understanding the topic from the 
participants' perspective, facilitating the adjustment of intervention content to address gaps, 
highlight critical aspects, and ensure a logical progression of material presented. Such a strategy 
is crucial in the design of instructional content and curriculum and has an impact on the learning 
trajectories in constantly evolving fields. Table 3 presents a snapshot of the applications of concept 
maps in engineering design, along with a summary of the contribution of cited work. 

 

 

 



Table 3: Concept graph applications in engineering design 

Ref Type Application in Engineering 
Design Contribution 

[29] Research 
Article 

Proposed scheme for numerical 
representation of graph structures Conversion algorithm 

[30] Research 
Article 

Efficient retrieval of assembly 
models with specific functions 

Multi-source semantics information 
and weighted bipartite graph 

[14] 
Applied 
Research with 
Case Study 

Integrating and navigating 
decision-related knowledge  

Representation and navigation of 
decision-related knowledge 

[31] Quantitative Evaluating students' knowledge 
integration 

Traditional counting metrics and 
holistic approach to score and 
evaluate concept maps 

[32] Applied 
Research  

Graph structures and reasoning 
mechanisms to the conceptual 
design process 

Specifying functional requirements 
and the structure of the designed 
object based on use cases and 
function graphs.  

[33] Empirical 
Research Paper 

Customer choice preferences in 
using bipartite network analysis 

Customers' consideration and choice 
behaviors modeling using a two-
stage network-based approach 

Applications of concept maps can be found in various forms throughout the engineering 
design process: 

• Idea Generation: Engineers use concept maps to brainstorm and organize ideas, fostering 
creativity and exploration. 

• System Understanding: They help engineers grasp complex system interrelationships, 
identifying areas for improvement and innovation. 

• Requirements Analysis: Concept maps organize project requirements, ensuring all aspects 
are considered. 

• Design Optimization: Engineers use them to analyze and optimize designs, considering 
various parameters, components, and criteria. 

• Communication and Collaboration: Concept maps facilitate conveying complex concepts 
to team members, stakeholders, and clients, aiding collaborative decision-making. 

• Knowledge Management: They capture and organize engineering knowledge, preserving 
best practices and lessons learned for future projects. 

2.1 Types of Concept Maps 
Analogous to the various uses of concept maps, their representation can also be dependent 

on the application. Figure 1 and Figure 2 illustrate how the complexity in concept maps can vary, 
going from a simple representation to a very complex, multi-layered network of information flow. 
Figure 1 shows two concept maps, a) one for the customer of a swimming pool and b) the other 
for a lifeguard at that swimming pool. These diagrams are concept maps representing the activities 
and interactions between users and the designed object, in this case, a swimming pool. [32] 



 
Figure 1: Concept maps for swimming pool customers (left, a) and lifeguards (right, b). 

The activity graph for the customer of the swimming pool in Figure 1 (a) shows a sequence 
of activities that the client is expected to perform, such as entering the building, communicating 
with staff, buying a ticket, undressing, body washing, and swimming. The graph also includes 
edges representing the accessibility between different swimming pool areas, such as the entrance 
area, changing cabins, showers, and the swimming area. A simpler concept graph for the lifeguard 
is shown in Figure 1 (b), with activities such as observing swimmers, giving first aid, and rescuing 
swimmers if necessary. These diagrams are concept maps that visually represent the activities and 
interactions between users and the designed object. They help to identify the functional 
requirements and constraints of the designed object and can be used to support conceptual design. 
A more complex concept map is presented in Figure 2 [14], where the yellow ellipses represent 
the entities in a concept graph, the rectangles indicate the concepts in the concept graph, and the 
arrows indicate the relationships between these concepts.  

 
Figure 2: An example of multi-dimensional or multi-plane concept maps. 



The concept map in Figure 2 contains three dimensions: decision, domain, and human. 
These dimensions are interconnected to facilitate the representation and navigation of decision 
knowledge. The decision dimension contains fundamental concepts representing decision 
knowledge, including “Given”, “Find”, “Satisfy”, and “Minimize.” These concepts provide 
perspectives from which decision-makers can seek knowledge. The domain dimension contains 
concepts specific to a particular domain (e.g. Product, Process, and Service). The human 
dimension contains concepts that help describe the human aspects and stakeholders involved in 
decision-making processes. The two different concept maps shown in Figure 1 and Figure 2 
represent possibility space for using concept maps to represent understanding of a system. 

2.2 Benefits of Concept Maps 
Concept maps measure learning by evaluating concept interrelatedness and depth of 

understanding. When students create concept maps, the structure and connections portrayed offer 
insights into comprehension and knowledge integration. Maps can be analyzed to assess 
interrelatedness, knowledge organization, and evolving understanding. Structured rubrics can 
score concept maps holistically, making them effective for measuring learning. Concept maps 
serve various purposes in education: 

• Knowledge Representation: Maps visually display an individual's knowledge, aiding 
educators in assessing depth and organization. 

• Conceptual Understanding Assessment: They evaluate students' grasp of concepts and 
connections, gauging accuracy and completeness. 

• Misconception Identification: Maps help pinpoint misconceptions or knowledge gaps, 
guiding targeted instruction. 

• Learning Progress Tracking: Maps track learning evolution, comparing maps created at 
different learning stages. 

• Formative Feedback: Educators use maps to provide feedback and identify areas for 
improvement. 

• Metacognitive Reflection: Creating maps prompts metacognition, enhancing self-
awareness of learning processes.  

• Multidisciplinary Knowledge Integration: Maps assess the ability to integrate knowledge 
from various disciplines. 

Overall, concept maps or concept graphs can be valuable tools for measuring learning by 
providing a visual representation of students' knowledge, facilitating assessment of conceptual 
understanding, and supporting the identification of learning progress and areas for improvement. 
Concept maps have also been used to create journey maps and mental models that capture data at 
multiple levels, that are detailed/complex and in their dependencies or interconnectedness.  

Prior research examines concept maps and the application of graph centrality as a 
comprehensive metric for evaluating the development of students' mental model structures during 
the process of writing summaries [28]. The research introduces a model-based methodology for 
assessing summaries, wherein a concept map is derived from the summary, and various indices 
are generated from this concept map, spanning multiple dimensions of mental models. Graph 
centrality is employed as a global metric to capture overarching changes in a student's knowledge 
structure across these diverse dimensions. The potential of graph centrality is investigated in terms 
of characterizing the interconnected chain and network structures within a student's concept map. 



Concept maps and the utilization of graph centrality are found to offer valuable resources for 
measuring learning outcomes. They provide a visual representation of students' knowledge, 
enabling the assessment of conceptual comprehension and facilitating the identification of learning 
progress and areas needing improvement. Based on the review of concept maps in engineering 
education, the research objects are discussed next. 

3 RESEARCH OBJECTIVES 
The objective of this research is to evaluate the use of concept maps as a tool for 

systematically measuring learning in an engineering design environment. Since concept maps are 
a largely intuitive tool, students can be asked to create concept maps before and after any lecture 
or learning activity. This research specifically addresses the evaluation aspect of measuring 
learning through concept maps. It is expected that graph-based complexity metrics and a 
systematic vocabulary comparison approach can be used to objectively evaluate the change in 
concept map complexity. More complex concept maps suggest a richer understanding of the 
phenomena being represented. Moreover, the systematic approach allows for the educators to not 
only provide a more unbiased assessment, but also lessen the workload of manually evaluating 
each concept map. Instead, this approach will highlight points of interest and allow for deeper 
investigation of individual student learning. Assessing changes in learning and understanding is a 
fundamental aspect of educational research. This assessment not only validates the impact of 
instructional interventions but also enhances their credibility and precision. By evaluating prior 
knowledge, measuring post-intervention knowledge, and examining long-term retention, 
educators gain a comprehensive and insightful understanding of educational programs' 
effectiveness and enduring value. The pilot study presented in this paper provides a face validity 
for the approach and identifies areas of improvement. 

4 EXPERIMENT: ENGINEERING DESIGN LEARNING INTERVENTION 
A controlled user study was designed and conducted to explore whether before-after 

concept graph generation could be used to capture the changes in mental models, or learning, from 
an in-class, activity-based intervention. This structure of pre- and post- testing to evaluate the 
impact of an educational intervention has been used in prior engineering design research to see 
how a lecture on requirements influences student performance in generating requirements for a 
design prompt [34].  Further, a third concept graph was collected from participants approximately 
one month later to capture the retention from the initial intervention. This pilot study is intended 
to explore the potential for using concept map analysis as a means for assessing learning about 
engineering design. 

4.1 Participants And Experimental Setup 
Fifteen participants selected for this study are pre-service teachers participating in a STEM 

based grant and scholarship program at the University of Texas at Dallas. They participants are 
between 22 and 30 years old, with fourteen identifying as female and one identifying as male. All 
are in their final year in the teacher training program. All sessions for this study were held in the 
same classroom, one with which the participants are familiar, having taken various courses in the 
room. It is set up with reconfigurable tables that can accommodate six people at each table and a 
projector/whiteboard at the front of the room. The participants are receiving scholarships as part 
of the program, but the actual activities are not graded. 



4.2 Experimental Context and Procedure 
The program includes monthly activities in which the pre-service teachers are introduced 

to engineering and design. In Spring 2023, a four-month sequence was guided by mechanical 
engineering faculty in which the pre-service teachers were taught the general engineering design 
process and several design tools applied to the design and build of small wind tunnels that could 
be used in their respective classrooms during student teaching. The wind tunnel design and build 
activity has been used multiple times with elementary students, high school students, and 
undergraduate engineering students [35,36]. 

In the Fall 2023 semester, an expanded cohort of participants were introduced to 
engineering design methods and tools. The participants were taught about design representations 
in the first session (September). This included an introduction to concept maps, which served to 
normalize participant understanding of concept maps. One month later, in the next session in 
October, the first part of the study was conducted. Participants were asked to create a concept 
graph of engineering design. They were asked to think about how to define engineering design, 
how to think about engineering design, and what is involved in engineering design. The 
participants were given five minutes to complete the activity on a blank piece of letter-sized paper. 
These were collected and the session continued with an introduction of requirements and 
stakeholders. This served as the intervention for this study which included three parts: a discussion 
of requirements and analogous terms, a design activity targeting stakeholders and requirements, 
and a discussion of the relationship between stakeholders and requirements.  

The intervention included a high-level discussion on the words typically used in 
engineering to talk about requirements (desiderata, objectives, goals, wishes, wants, needs, 
constraints, demands, criteria). A design prompt was provided to the students to address as a team 
(Figure 3). This prompt was designed to be relevant to the participants as they were all studying 
to be elementary education teachers and they were being challenged to engage their future students 
in more STEM related activities. 

Franklin Elementary (3rd grade) teachers want to teach the students about the concept of 
friction.  Specifically, they want to have a “tool” to allow students to test friction with different 
types of materials.  The students should be able to bring their own material and use it on the 
“tool”.  To simplify the concept of the tool, only sliding friction will be tested. 
 
The goal is to design this tool: 

• The first step is to identify the stakeholders (post-it notes) 
• The second step is to define the requirements (post-it notes) 
• The third step is to connect the stakeholders and the requirements (post-it notes) 

Figure 3: Prompt used to explore stakeholders and requirements. 

This activity was followed by discussion about whether all the stakeholders were related 
to at least one requirement and whether the requirements were connected to at least one 
stakeholder. The graphs were shared with other teams to see how they were different, capturing 
and focusing on different aspects of the problem as understood by the pre-service teachers. Next, 
the teams reconstructed these bi-partite graphs into a relationship table. Differences between the 
bi-partite graph and the relationship table were discussed from a representation point of view. 



Following the intervention, participants were again asked to spend five minutes creating a 
second concept graph of engineering design using the same instructions. The pre- and post- 
intervention concept maps were collected for analysis. In the third session held one month later, a 
third concept graph was collected using the same participants and instructions as the first two 
graphs. This third graph was collected before any intervention and is used to capture what was 
retained by the participants. 

4.3 Data Collection and Analysis 
Data collected in this study was entirely from the participant concept graphs. These were 

analyzed using a graph complexity approach and based on the vocabulary used to describe the 
nodes. The concept graphs generated by participants were compared in a within -subject fashion 
using these two metrics.  

4.3.1 Topology-based analysis 
The concept maps collected from participants were converted into bipartite graphs to 

support graph complexity analysis. Each node in the concept map is coded as an entity, and each 
connection between the nodes is coded as a relation. For this analysis, the directionality of relation 
was not considered. Similarly, all relations were assumed to have the same weight. An example of 
a bipartite graph with a corresponding concept map is shown in Figure 4. 

 
Figure 4: Bipartite graph generated from a concept map 

A graph complexity analysis was used to compute twenty-nine complexity metrics for each 
graph [37,38]. The procedure for calculating the graph complexity metrics is omitted here for 
brevity; however, the metrics are intended to be a numeric representation of the topological 
information present in the graph. These metrics are divided into four classes: size, interconnection, 
centrality, and decomposition. The size metrics relate to the number of elements present in the 
graph and the number of relations between those elements. The interconnection metrics measure 
how the different nodes in the graph are connected to each other. The centrality measures provide 
insight into the clustering and symmetry within the graph. Finally, the decomposition metrics 
evaluate the solvability and reducibility of the graph. Computational details can be found in prior 
work focusing on the graph complexity metrics [37,38]. 



Participant concept graphs are compared topologically using the graph complexity metrics. 
Three complexity vectors are generated for each participant: 𝑪𝑪𝑏𝑏, 𝑪𝑪𝑎𝑎, 𝑪𝑪𝑟𝑟 corresponding to the 
complexity metrics for before, after, and retention, respectively. These vectors can be compared 
in terms of element-wise change in complexity, class-based differences, and Euclidian distance 
between the vectors. The element wise change in complexity will show how each complexity 
metric has changed for each individual participant. This will subsequently allow for class-based 
comparisons where changes in the size, interconnection, centrality, and decomposition of each 
participant can be evaluated. For positive learning, the size, interconnection, and decomposition 
metrics are expected to increase. The centrality metrics are not expected to change notably in this 
study because of the nature of the prompt. The Euclidian distance measures the difference between 
the complexity vectors as plotted in a 29-dimensional space. This distance comparison will provide 
insight into how the before, after, and retention concept graphs relate to each other. This within-
subject analysis of the data will show whether the effects of the intervention are consistent for all 
participants. It should be noted that for this pilot study, only the element-wise comparison is 
presented in this paper. 

4.3.2 Vocabulary-based analysis 
In addition to the topology, terms used by participants in their concept maps are also 

analyzed. To support a systematic comparison of the terms, all the terms used by participants in 
all three iterations of the concept map are collected. The complete list of terms and phrases is 
processed to remove any duplicate instances and to consolidate similar or highly synonymous 
terms. This was done primarily using two concepts from natural language processing: stemming 
and lemmatization. 

Stemming reduces a root word to its stem word to normalize sentences for a better 
understanding [34]. For example, in the dataset, the words ‘testing’ and ‘tests’ would be merged 
into the common stem ‘test’. Stemming operates on a word without any contextual knowledge and 
acts independently on each word. As such, a disadvantage of stemming is that it introduces 
increased polysemy, where a word has multiple meanings [35]. Lemmatization assembles the 
inflected parts of a word into a single element, or it’s vocabulary form or lemma [34]. It is like 
stemming but connects multiple words with the same meaning to one word. For example, the 
words ‘better’ and ‘good’ would be consolidated into ‘good’. Lemmatization is a better approach 
to generate a primary list from the dataset; however, it is most effective with single words rather 
than phrases, and more computationally demanding.  

Next, the stemmed and lemmatized list of words was reviewed to identify any synonyms. 
This was done using a similarity DSM approach, where an 𝑛𝑛 × 𝑛𝑛 matrix is generated with 𝑛𝑛 being 
list of words. In this matrix, each row or column compares one word in the list to the entire list. 
As such, the primary diagonal is ignored since these cells refer to comparing a word to itself. Next, 
the remaining cells are populated by comparing words corresponding to the row and column. Any 
word pairs that are not similar or the same are populated with zeros. The rest are populated with 
ones. The matrix is then reviewed to consolidate all similar terms. After processing the terms, a 
list of 93 unique terms was found. Corresponding to this list, a vocabulary vector is created for 
each concept graph. Elements of this vector are either “0” or “1” depending on whether the term 
is present in the concept graph. An example of the vocabulary vector is presented in Table 4. 



Table 4: Excerpt from vocabulary coding 

Terms P1 P2 P3 
blueprint 0 0 0 

brainstorm 0 1 0 
clarity 0 0 0 
code 0 0 0 

collaboration 1 0 1 
communication 0 0 1 

computer 0 0 0 
concept 0 0 1 
consult 0 1 0 

consumer 0 0 0 
cost 0 0 0 

create 1 0 0 

It should be noted that some synonyms were not removed from this list because the context 
of some words was based on the sub-concept of a node. Other terms were pruned based on the 
root, for example: the words “creating”, “creation” and “creating new ideas” were all eliminated, 
and the word “create” was retained. For future studies, a Delphi approach may also be used to 
further trim the list of terms. 

The vocabulary vectors can be compared using various measures such as cosine distance, 
city-block distance, or hamming distance. Since elements of the vector are binary, Euclidean 
distance measures should be avoided. In this study, hamming distance is used because it provides 
a representation of the number of changes necessary to transform one vector into another. 
Hamming distance is commonly used in error detection where the information is stored in bits (0’s 
and 1’s). In this case, the hamming distance provides a measure of how many bits needs to be 
flipped to match the two sets of information. For the vocabulary vectors, this means the number 
of terms that need to be removed and added. A higher hamming distance will correspond to more 
changes in the vocabulary, which is expected to correlate with the amount of learning. A more 
context dependent analysis of the vocabulary vectors could include flagging terms that are highly 
relevant to the interventions and tracking the change in those terms.  

5 RESULTS 
This research explored the effectiveness of an educational intervention by measuring 

immediate learning outcomes and retention over time among participants who were part of a cohort 
being trained in new concepts for classroom application. Emulating a "train-the-trainer" model, 
the aim was to enlighten participants about the nature of engineering design, its pedagogical 
approaches in higher education, and its professional applications. Participants were briefed on the 
study's scope, making the short-session learning process well-suited for the researchers to observe 
and quantify the dynamics of learning assessment. This section provides a snapshot of analyzed 
participant learning presented in a methodical manner which highlights the researchers learning. 



While the experiment included fifteen participants, consistent data was collected from only 
eleven participants. As such, the subsequent analysis and discussion are based on those 11 
participants. Among the eleven participants, a variety of concept map complexity was observed. 
Samples of participant generated concept maps are presented in Figure 5 through Figure 8. Concept 
maps shown in Figure 5 and Figure 6 are relatively simple, with branching nodes from a single 
central node and no interconnections between the outer nodes. It is important to highlight that 
simpler concept maps were not exclusive to the "pre-intervention" phase; they were also observed 
in post-intervention and retention activities. This indicates that exposure to concept maps during 
the intervention did not necessarily motivate or equip participants to create more complex concept 
maps afterwards. Note that Figure 5 and Figure 6 do not show the concept maps from the same 
participant; they are intended to show the low complexity in both iterations.  

 
 

Figure 5:Simple concept map (before) Figure 6: Simple concept map (after) 

Similarly, more complex concept maps were also observed in all three iterations of concept 
map generation. These concept maps typically included more than one level of branches emanating 
out of the central node and/or interconnections between the outer nodes. Figure 7 shows a complex 
concept map generated by a participant before the intervention where multiple nodes branching 
out of engineering design produce additional branches themselves. Alternatively, Figure 8 shows 
a concept map generated by a different participant (after the intervention) where many of the nodes 
branching out of the central node are connected to each other. 

 
 

Figure 7:Complex concept map (before) Figure 8: Complex concept map (after) 



The before, after, and retention sets of concept graphs are topologically analyzed using the 
complexity metrics. Between the three sessions (before, after, and retention), three pairs of change 
in complexity metrics are calculated: from before to after, from before to retention, and from after 
to retention. Since the complexity metrics themselves have varying ranges, a percent change is 
calculated to support aggregation of complexity metrics. A summary of change in complexity 
metrics is presented in Table 5, where the “Average” column refers to the average change in 
complexity metrics for all participants. In this case, it is not only the average of 11 participants, 
but also of 29 complexity metrics, resulting in an average of 319 values. Similarly, the “Standard 
Deviation” column shows the average for all participants. This is calculated by first computing the 
standard deviation of complexity change (n=29) for each participant. Next, an average of these 
eleven participants is computed to arrive at the number presented in Table 5. The “Minimum” and 
“Maximum” columns show the smallest and largest change observed for any participant and 
complexity metric. 

Table 5: Statistical summary of change in complexitymetrics 

Comparison Average Standard 
Deviation Minimum Maximum 

Before to After 187% 236% -74% 5500% 
Before to Retention 33% 99% -100% 1540% 
After to Retention -30% 51% -100% 252% 

Data presented in Table 5 suggests that the largest increase in concept map complexity can 
be observed when participants create the concept maps after the intervention. The negative change 
shown for the “After to Retention” comparison suggests that many, if not most, students 
demonstrated a loss of richness in their concept maps generated a month after the intervention. 
However, when compared to the concept maps generated before the intervention, those generated 
in the retention session are still more complex on average. This suggests that some of the 
knowledge gained during the intervention was retained by the participants. This aligns with the 
expectations given general understanding of learning and retention. The complexity changes 
reported in Table 5 provide a general sense of participant learning with respect to the intervention. 
For a deeper understanding of the phenomena, classes of the complexity metric can be analyzed 
independently; however, that analysis is not presented here. The purpose of this paper is not to 
discuss the details of learning induced by the requirement generation intervention, rather to 
showcase the usability of graph-based analysis to measure learning.  

In addition to topological analysis, the vocabulary used by the participants is also 
compared. In this case, the vocabulary vectors generated for each participant in each session are 
compared using a hamming distance measure. The hamming distance for each participant in each 
comparison is presented in Table 6. Unlike the comparison of graph complexity, results from 
vocabulary comparison are less clear. The vocabulary used in the “after” and “retention” sessions 
is more similar to each other than those in the “before” session. However, the differences are small 
in magnitude, suggesting that most of the words used did not change. Further analysis of the 
vocabulary should include a qualitative comparison of the terms and evaluate their relationship 
with the intervention. Like the detailed topological analysis, a secondary vocabulary analysis is 



not presented here. Both remain part of future work, where more data will be collected and the 
focus of the research is the effects of an intervention, not simply demonstrating the use of this tool.  

Table 6: Vocabulary comparison through hamming distance 

Participants Before-After Before-Retention After-Retention 
P01 0.118 0.118 0.108 
P02 0.172 0.172 0.086 
P03 0.086 0.097 0.097 
P04 0.140 0.108 0.075 
P05 0.183 0.108 0.161 
P06 0.140 0.151 0.118 
P07 0.054 0.108 0.097 
P08 0.151 0.118 0.118 
P09 0.151 0.161 0.118 
P10 0.151 0.161 0.204 
P11 0.129 0.151 0.108 

6 DISCUSSION AND FUTURE WORK 
The pilot study presented in this paper is a precursor to a larger controlled experiment 

which will include different participants in multiple different activities. As such, no conclusions 
are provided, instead a discussion of some observations and plans for future work are presented.  

Data collected and analyzed in the pilot study suggests that graph-based complexity 
analysis is a promising approach to measure learning in engineering design. The objective 
measurements presented in this work show a trend of change in knowledge from before the 
intervention to after, and ultimately a partial relapse in the retention session. In addition to the 
systematic evaluations of the concept graphs, the following observations are notable. 

• Many of the participants had “requirements” in their concept maps created in the “after” 
session. Most of them retained that element in the concept maps generated a month later.  

• Most of the concept maps generated in the retention session included mode nodes and 
connection compared to those generated before the intervention. 

• There were some terms that were interesting to note: Mistakes, Layers, Stockholders, 
Blueprint, ‘Efficient and the best’, “Across Fields”, “Pencils and Erasers”, “Design 
Beauty”, “Crafting”, “Tables”, “Handy”, “Tracker (Airtag)”, and “Purethought”. For an 
educator, seeing these novel or strange terms can be a starting point for asking questions, 
and trying to understand how students think these terms fit into the overall understanding 
of the concept. It provides an opportunity for impromptu formative assessment. 

• Some of the written words were difficult to decipher. This may be attributed to a lack of 
time for drawing and writing, or a desire to finish quickly. This suggests that participants 
should either be asked to type their responses, or engaged in a post-activity interview where 
they can not only clarify what they have written, but also explain their reasoning. 



The next pilot study will be conducted with more robust data collection. Specifically, the 
participant pool will be divided into two groups, where one group will be asked to generate concept 
maps, while the other group will write a short reflection. Moreover, faculty collaborators will be 
engaged to deploy the learning measurement tool in a classroom environment where students 
learning can be measured on a weekly basis. This will enable the observation and analysis of 
knowledge growth over time.  
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