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Work-in-Progress: Fine-Tuning Large Language Models for Automated 
Feedback in Complex Engineering Problem-Solving 

 
Abstract 
 
This paper presents work in progress (WIP) toward using artificial intelligence (AI), specifically 
through Large Language Models (LLM), to support rapid quality feedback mechanisms within 
engineering educational settings. It describes applying to LLMs to improve the feedback 
processes by providing information directly to students, graders, or course instructors teaching 
courses focused on complex engineering problem-solving. We detail how fine-tuning an LLM 
with a small dataset from diverse problem scenarios achieves classification accuracies close to 
approximately 80%, even in new problems not included in the fine-tuning process. Traditionally, 
open-source LLMs, like BERT, have been fine-tuned in large datasets for specific domain tasks. 
Our results suggest this may not be as critical in achieving good performances as previously 
thought. Our findings demonstrated the potential for applying AI-supported personalized 
feedback through high-level prompts incentivizing students to critically self-assess their 
problem-solving process and communication. However, this study also highlights the need for 
further research into how semantic diversity and synthetic data augmentation can optimize 
training datasets and impact model performance. 
 
Keywords: Automated formative feedback, Complex problem-solving, Engineering Design, 
Large Language Models 
 
Introduction 
 
Complex problem-solving skills (CPS) are key to meeting the demands of engineering graduates’ 
future roles [1]. Developing these skills requires frequent practice in a variety of authentic and 
open-ended complex problems [2, 3]. Despite its critical role in education, assessing CPS 
effectively remains a significant challenge. Jonassen highlights the assessment of problem-
solving skills as a notably weak area in instruction, emphasizing that evaluations should go 
beyond the student’s ability to recall conceptual or procedural knowledge and focus on problem 
understanding, students’ problem-solving performance, cognitive abilities and domain-specific 
knowledge [2]. Furthermore, providing timely, personalized feedback on the student’s 
understanding or problem-solving performance in complex, open-ended and ill-structured 
problems in large classes poses significant challenges. Given that student work in these courses 
often includes the evaluation of extended reports, large teams of teaching assistants are usually 
recruited to minimize the response time. However, achieving consistency in the quality and 
quantity of feedback is difficult, even in the presence of multiple calibration strategies. 
 
Recent advances in natural language processing (NLP) technologies, through the use of artificial 
intelligence (AI) agents and Large Language Models (LLM), have already provided significant 
advantages in the holistic assessment of high-order features such as argumentation, use of 
evidence or scientific thinking [4-6]. With the evolution of Automated Feedback Systems (AFS) 
[7-9] and, more recently, the release of Open AI’s ChatGPT, LLMs have become commonplace 
in higher education among students and instructors [10, 11]. The emergence of LLMs in higher 
and secondary education has triggered an influx of publications on the opportunities and 



challenges of incorporating these technologies in instruction and evaluation [10, 12, 13]. 
However, the unique nature of engineering design problems, characterized by their complexity 
and the validity of multiple solutions, presents distinct challenges to generating targeted 
elaborated feedback. In addition, to maximize student engagement and learning from the 
exposure to this complex problem, novelty is introduced by changing the scenario and problem 
to be solved each term. The novelty introduced by crafting a new problem every term can reduce 
pattern detection accuracy, thereby impacting the pertinence of the automated generated 
feedback. 
 
This contribution is part of a larger study on the impact of AI-generated feedback on open-ended 
student work. The study explored a fine-tuned LLM classification method for generating on-
demand automated feedback on students’ written drafts before their final submission. The 
generated feedback prompts are designed to provide students insights into the engineering design 
process’ clarity and completeness of their discourse on the engineering design process, 
prioritizing critical self-evaluation over direct corrections. This study explicitly examines how 
models fine-tuned with sentences derived from problem scenarios from previous terms can be 
used to classify students' responses to a novel scenario in the upcoming term, especially when 
dealing with limited datasets for fine-tuning. 
 
Related Work and Research Questions 
 
Complexity in engineering workplace problems commonly originates from having unclear or 
multiple solution paths, high uncertainty, multidisciplinary requirements, conflicting goals, non-
engineering constraints, and numerous criteria evaluations of solutions. Complex problems are 
often associated with open-ended problems since they can have multiple solutions or with ill-
structured problems because they could have been vaguely defined or have unclear goals and 
unstated constraints [14-18]. However, complexity in problem-solving extends beyond the open-
endedness or ill-structured nature of problems. Jonassen and Hung [15] argue that complexity 
depends on the breadth of knowledge required to solve the problem, the attainment level of 
domain knowledge, the intricacy of problem-solution procedures, and the relational complexity, 
which involves processing multiple relationships simultaneously.  
 
In this context, the breadth of knowledge required to solve the problem and attain domain 
acquaintance will depend on each student’s particular cognitive skills and domain knowledge. 
So, in addition to contemplating multiple valid solutions, feedback had to be constructed on the 
student’s individual progress, as recommended by Hattie and Timperley [19]. Furthermore, 
recent studies on formative feedback indicate that the most effective way to improve learning is 
through elaborated feedback that incorporates details on how to improve on the task and the 
process and develop self-regulated learning strategies [20-26]. Effective feedback has different 
effects depending on the operating level. According to Hattie and Timperley’s [19] feedback 
framework, “These include the level of task performance, the level of process of understanding 
how to do a task, the regulatory or metacognitive process level, and/or the self or personal level 
(unrelated to the specifics of the task)” [19 p.86]. Another critical criterion of feedback 
effectiveness is the student’s action upon the received feedback [26, 27]. Computer-based 
learning environments offer an advantage by ensuring students have enough time to act on the 
recommendation [9, 21, 22]. The latter is particularly critical in large enrollment courses where 



instances for personalized feedback from instructors or graders are scarce, and developing self-
regulating skills on CPS and written communication is essential to designing an effective 
feedback process [25].  
 
Advancements in AI, mainly through large pre-trained language models, have revolutionized 
NLP tasks [28, 29]. Based on a “transformer” architecture, Bidirectional Encoder 
Representations from Transformers (BERT) and OpenAI’s Generative Pre-Trained Transformer 
(GPT) are prominent examples of these models [30, 31]. A fundamental mechanism behind the 
success of LLM is self-attention, which allows the models to recognize relationships between 
words regardless of their order in the textual sequence, thereby improving the ability of the 
models to deal with long-term dependencies [32]. Pre-trained LLMs are originally trained in 
massive text corpus prior to being fine-tuned on a specific task. This approach has been proven 
effective for improving performance on various NLP tasks, such as sentence classification, 
question answering and named entity recognition [33]. While early automated feedback systems 
relied on domain-expert rules and were limited in addressing the diversity of open-ended 
assignments [34-36], data-driven approaches, though promising in highly semantically diverse 
responses, often face challenges due to the lack of extensive training datasets [4, 37, 38].  
 
AFS based on LLMs holds the potential for a more effective and efficient solution. Applications 
range from personalized hints for programming assignments [39] to reflective writing [40], 
including feedback on the appropriateness of the topic of a data science project proposal and the 
description clarity of goals, benefits, novelty and overall clarity of the report [41]. Despite the 
promising results from studies like Dai, et al. [41], the study also highlights potential limitations 
in the reliability of LLM-generated feedback compared to instructors’ assessments of student 
performance. Among the evaluation metrics used in their study, the authors assess the alignment 
between ChatGPT-generated feedback and instructor feedback regarding student performance. 
As outlined by Hattie and Timperley [19], feedback should aim to reduce the gap between 
current and desired understanding. This goal can be attained in the feedback process when the 
instructors affirm the student’s effort or indicate if there are areas for further improvement. If the 
automated feedback generator is unable to give feedback that accurately indicates how students 
perform, the generated feedback can inadvertently mislead the student and could negatively 
affect the student’s learning.  
 
According to Dai, et al. [41], affirmative automated feedback provided by ChatGPT was present 
in most reports (between 85 and 95%, depending on the assessed dimension). In contrast, for the 
same reports, a minority received positive instructor feedback (4 and 20%, respectively). Among 
several possible explanations, the authors highlight the absence of specific ChatGPT training on 
the measurement of assignment quality or the use of an indication of golden feedback. As 
discussed by the authors, this pattern of predominantly affirmative feedback from automated 
systems indicates that feedback generated directly from a language model API like ChatGPT 
may not align perfectly with human instructors’ assessments. This discrepancy could stem from 
various factors, including the model’s training and the instructors’ unintended focus on areas for 
student improvement over providing positive reinforcement. Without human intervention or 
specific fine-tuning, the feedback might focus on the process or task levels, missing more 
relevant feedback at a self-regulation level. Such feedback is essential as it reinforces the 



application of generic problem-solving processes used in engineering design, a key component to 
developing complex problem-solving skills [17, 18]. 
 
Given these challenges, the project aims to assess the efficacy of LLM-based automated quality 
feedback on the student’s individual progress in complex problem-solving tasks at a self-
regulated level. The feedback mechanism, based on a set of measurements obtained from the 
LLM classification of the student sentences, aims to identify missing elements of the engineering 
design process. The classes and classification probability of the different sentences in the 
student’s work are translated into a 5-point completeness/conciseness and clarity scoring matrix. 
Feedback prompts are selected for the student based on the scoring of all sentences classified to 
each dimension.  
 
In this context, the present contribution focuses on the impact of a small fine-tuning dataset on 
the accuracy of identifying the presence and absence of dimensions within problem definition in 
a design process from a new scenario in the upcoming term. Specifically, the research questions 
this contribution aims to answer are the following: 
 

RQ1: To what extent do the limited annotated datasets impact the classification accuracy 
for abstract dimensions of problem definition in the context of complex engineering 
design problem-solving? 
RQ2: How does fine-tuning using different problem scenarios impact the classification 
accuracy underlying the feedback mechanism? 
RQ3: Could automatically generated sentences compensate for the scarcity of annotated 
data? 

 
Methods 
 
Context and Course Description: 

The study was set in the context of a first-year engineering design course at a medium-sized, 
research-intensive Canadian university, part of the faculty-wide Engineering Design and Practice 
Sequence. This sequence prepares students for real-world, open-ended design problems [42]. 
Part of the student summative evaluations includes team reports at different stages of the design 
process, such as Scoping and Preliminary Design Concept, Full Design Proposal, or Final 
Design, following Dym et al.[17] framework. Our analysis focuses on the Problem Definition 
sections of these reports, which include identifying the problem goal, stakeholders, safety 
considerations, functions, attributes, and constraints, among other possibilities that can be added 
as the students progress in their project design.  
 
Feedback Mechanism and Model Fine-tuning: 

A multi-class classification approach using a fine-tuned LLM is the base for the feedback-
triggering mechanism. This method involves classifying student sentences into pre-defined 
classes [43, 44] that reflect specific dimensions of the engineering design generic problem-
solving process [17, 18]. An example of the dimensions included in the testing done for the 
Problem Definition stage, presented in this contribution, is included in Figure 1.  
 
 



 
Figure 1 illustrates the models and dimensions adopted for the problem-definition stage of a 
generic problem-solving process. 
 
The fine-tuning process is based on the “further in-domain pre-training” strategy described by 
Sun, et al. [45], using sentences from 32 reports taken randomly from a pool of approximately 
140 reports each term. The selected reports are from two terms equivalent to two different 
problem scenarios: model and construction of a scale prototype of a Hyperloop vehicle [46] run 
in the 2019 academic year and create a working prototype of an assistive robotic arm, done in the 
2022 academic year. After ethics approval, text was extracted from PDF and Word documents, 
followed by minor preprocessing and splitting using the spaCy library1. 
Annotation and Dataset Preparation: 

Manual annotation was initially performed by one of the authors, and ambiguous cases were 
discussed with the course instructor. Human annotation is a time and resource-consuming task 
that can limit the size of the fine-tuning dataset. To expedite annotation validation, we employed 
GPT version 4.0 for comparison, addressing discrepancies between human and GPT-4 
classifications. The use of GPT for intercoder agreement validation is supported by recent 
research showing that generative language models can outperform trained annotators [47]. 
 
Given the labour-intensive nature of manual annotation, we explored alternative strategies to 
expand the dataset generation and mitigate the instabilities associated with small datasets for 
fine-tuning in text classification [45]. One such strategy was to generate a synthetic dataset: 36 
instructor-devised sentences were augmented to 450 sentences using ChatGPT. Additionally, we 
experimented with fine-tuning the model directly using the instructor’s exemplar to further 
assess the fine-tuning capabilities without manual annotation or AI-generated augmentation. This 
approach also allowed us to explore the effectiveness of utilizing well-structured, expert-created 
content as a standalone fine-tuning source. 
 
In addition to sentence annotation for fine-tuning, 169 and 109 sentences from the Problem 
Definition sections of the 2022 and 2019 reports were manually annotated for validation 
purposes. The purpose of these datasets is to evaluate the model’s classification accuracy 
performance across different fine-tuning exercises. Details regarding the number of sentences 
and the sources for each fine-tuning dataset used in this study are summarized in Table 1. The 
2022 dataset was in the context of an assistive robotic arm design, and 2019 was a scale model 
hyperloop vehicle design. In each dataset, the name “2019” or “2022” corresponds to the 
academic year from which the training data was drawn, and the final number corresponds to the 
number of sentences used to fine-tune the model. 
 

 
1 https://spacy.io/ 



Table 1 details the fine-tuning and validation datasets used in this work. 
Dataset Number of sentences per class Description 

0 1 2 3 4 Total 

2022_745 169 277 73 123 103 745 
Fine-tuning dataset. Include all annotated 
sentences from the 2022 term. 

2022_397 92 147 40 63 55 397 
Randomly selected subsets of the training 
dataset 2022_745. Classes’ relative 
proportions were kept similar. 

2022_200 46 74 20 32 28 200 

2022_100 23 37 10 16 14 100 

2022_36 6 11 9 5 5 36 

2022_Exemplar 
6 11 9 5 5 36 Fine-tuning dataset comprising 36 sentences 

corresponding to the instructor’s exemplar.  

2022_GPT 90 120 120 60 60 450 

Synthetic dataset generated through using 
ChatGPT to augment the course instructor’s 
exemplar of 36 sentences to a total of 450 
sentences. 

2022_2019_866 182 316 122 143 103 866 
2022_745 fine-tuning dataset plus 121 
sentences from the 2019 term. 

2022_Validation 34 51 32 26 26 169 
Validation dataset, comprising sentences 
from the 2022 term. 

2019_Validation 19 43 24 23 0 109 
Validations dataset comprising sentences 
from the 2019 term. 

 
Model Selection and Fine-tuning: 

Despite the advancements in GPT models, we opted for the distilBERT base uncased model due 
to its open-source nature, domain specificity, and cost-effectiveness [48-51]. This choice was 
supported by the model performance in highly specific domains where in-domain further pre-
training is advised for LLM. Bosley, et al. [48] showed that although not explicitly, commercial 
models like GPT might still need a form of outsourced fine-tuning by including examples in the 
prompt, known as in-context learning, to achieve performances observed in fine-tuned BERT-
type models. Furthermore, to achieve the specific level of targeted feedback, according to Hattie 
and Timperley’s [19] feedback framework, using a GPT model would require in-context learning 
to ensure that the feedback generated encourages student self-regulation and does not focus on 
the task as described by Dai, et al. [41]. In addition, the need for explainability in the feedback 
process and concerns about student data privacy also play a role in the decision. Finally, 
although the cost of text processing is relatively low in unitary terms, reports consist of various 
thousands of tokens. Moreover, when using data drawn from courses with approximately 1000 
students and several submissions each term, the cost becomes significant, especially in the 
context of testing the applicability of such a tool. 
 
The pretrained distilBERT base uncased model was adopted based on their performance and 
accuracy after testing BERT, distilBERT, RoBERTa, BART and distilBART. The adopted 
model is a general-purpose distilled pre-trained version of the BERT model [52]. A first fully 
connected pre-classifier layer streamlines the output from 768 to 32 features [53], followed by a 
30% dropout layer for optimization. The model then classifies these features into the target 
number of classes using a fully connected layer and a SoftMax layer for standardized output. We 
use the Adam optimizer with β1 = 0.9 and β2 = 0.999, a learning rate of 1e-05, a maximum 
sentence length of 256, and batch sizes of 32. The model was trained over 50 epochs to check for 
overall and within each class overfitting. These relatively large number of epochs are also 



recommended for small fine-tuning datasets [50]. A performance analysis was conducted to 
determine the optimum fine-tuning dataset size and impact of sentence sources. Although 
performance in multi-class classification tasks can be reported using different measures, for 
comparison purposes, we reported the accuracy calculated as the number of correct predictions 
divided by the total number of predictions turned into percentages. This measurement is suitable 
in balanced datasets with relatively homogenous class proportions, as is the case in the dataset 
details in Table 1. 
 
Results 
 

Effect of Fine-Tuning Dataset: 

Our initial analysis examines classification accuracies of distilBERT models fine-tuned with 
datasets ranging from 745 to 36 sentences (Table 1). We compared these to a zero-shot 
classification baseline, where class names were included in the classification prompt without 
prior fine-tuning. As illustrated in Figure 2, all fine-tuned models outperformed the baseline, 
demonstrating the value of fine-tuning across all dataset sizes. Notably, it is observed that 
models fine-tuned on relatively smaller datasets can achieve comparable accuracy to larger ones 
after additional training epochs, aligning with findings by Zhao, et al. [50] that suggest extended 
fine-tuning on small datasets can partially offset the need for larger annotation volumes. Indeed, 
when fine-tuned with half the size of the existing dataset, similar accuracy values are obtained 
after 21 epochs. For smaller datasets, it is unclear at this time if fine-tuning for more than 50 
epochs would compensate for the loss of accuracy or if this factor has a ceiling. 
 
Class-specific Performance: 

The average improvement after additional training epochs is not consistent among the different 
classes. Classes with higher misclassification rates, such as Safety Considerations (Figure 3), are 
more affected when fewer annotated sentences are available during fine-tuning. For this 
particular class, when fine-tuned with half the sentences (2022_397 dataset), the resultant 
classification accuracy is systematically 10 points below that when all sentences are considered. 
Overall, the Safety Considerations class shows the lowest accuracies across all epochs compared 
to the other classes despite this class not being the least represented.  Possible explanations for 
this result are included in the discussion section. The previous behaviour is accentuated when 
comparing the accuracy obtained with smaller fine-tuned datasets of 200 sentences or less. As 
the number of sentences available for fine-tuning decreases, not only does the overall accuracies 
decrease, but the number of classes that consistently show lower accuracies increases, and the 
number of epochs needed to be stabilized increases as well. 
 
Synthetic Dataset Comparison: 

For the purpose of comparing the models fine-tuned with the synthetic dataset (2022_GPT), the 
model fine-tuned with the manually annotated dataset, 2022_397, was chosen as they have a 
similar number of sentences per class. The comparison shows a systematic decrease in accuracy 
across all classes, with the exception of the Safety Considerations class, which shows an increase 
that ranges between 10 and 20 points (Figure 4). Among the classes for which the model fine-
tuned with synthetic sentences derived from an exemplar resulted in lower classification 
accuracies, the performance of the Subsystems and Functions, Attributes, and Constraints classes  



 
Figure 2 shows the overall validation accuracy across epochs for various fine-tuned models, illustrating the benefits of fine-
tuning even with limited data. 

 

 
Figure 3 contrasts class-specific accuracies between models fine-tuned on the full dataset (2022_745 full lines) versus a reduced 
dataset (2022_397 dash lines), highlighting disparities in misclassification rates.  

 
stands out. These two classes have relatively more sentences than the rest of the classes. 
Particularly, the Subsystems classes have significantly more synthetic sentences for fine-tuning 
than the manually annotated dataset. The latter is due to the exemplar’s class proportion differing 
from those in the students’ reports. Further analysis of the possible relation between the number 



of sentences and observed accuracy in the presence of synthetic data is included in the next 
section. 
 
Cross-term Predictive Accuracy to Novel Scenarios: 

To assess the model’s performance when applied to a new scenario, we tested a fine-tuned model 
using sentences from the 2022_745 dataset. These sentences were extracted from students' 
reports on the creation of a working prototype of an assistive robotic arm. We applied this model 
to classify sentences from the 2019_Validation dataset, which includes reports on the modelling 
and constructing a scale prototype of a Hyperloop vehicle. Although accuracy varied among 
classes and over epochs, the overall accuracy decreased by an average of 5%, as shown in Figure 
5. The difference in accuracy was notably smaller than anticipated. These discrepancies were 
slightly higher for the Subsystems and Stakeholder classes. 
 
We then tested whether these asymmetric decreases in accuracy persisted after incorporating 
additional sentences from the 2019 problem scenario, attempting to simulate the early 
availability of an instructor’s exemplar or guided solution. Consequently, we generated an 
expanded dataset (2022_2019_866), adding 121 sentences from the 2019 scenario into the 
2022_745 dataset. These sentences are different from those used in the validation process, 
serving to develop a new fine-tuned model. When validated against the 2022 sentences, 
accuracies decreased by an average of 1% across all classes and epochs; notably, despite the 
differing backgrounds of the two scenarios, the accuracy of the Problem Goal and Background 
categories increased. However, these results require further analysis, as the absence of the Safety 
Considerations class in the 2019 instructions, which led to no sentences attributed to this class, 
could have influenced the outcomes. When this expanded model, which incorporates both the 
2022 and 2019 scenarios, was validated against the 2019_Validation dataset—as would be done 
with student reports in the upcoming term—overall accuracy further decreased to an average of 
76% across all classes and sufficient training time, as shown in Figure 5. 
 
Discussion 
 
Our results on the influence of fine-tuning dataset size on classification accuracy suggest that AI 
educational tools based on LLM have the potential to achieve high efficiency even with limited 
data. The performance of fine-tuned distilBERT models across a range of dataset sizes shows 
that accuracies of approximately 80% can be achieved with datasets of as little as 400 sentences, 
which is equivalent, in this case, to approximately 14 reports, in contrast to the order of 
thousands usually reported in the literature for fine-tuning LLM models [45, 53, 54]. This 
observation aligns with the research conducted by Zhao, et al. [50], which suggests that with 
sufficient training, smaller datasets can nearly match the classification accuracy achieved by 
larger datasets. 
 
The retention of relatively high accuracies in classifying sentences from novel scenarios using 
models fine-tuned with data from previous terms represents a significant advancement in the 
development of automated feedback systems for engineering design education. This ability to 
transfer problem-solving knowledge and skills to new situations is crucial, as highlighted by 
Jonassen [2]. Our results, presented in Figure 5, demonstrate the model’s robustness across 
different training scenarios, whether they are based on more diverse fine-tuning datasets or solely  



 
Figure 4 compares class accuracy between models trained on synthetic (full lines) and a manually annotated dataset (2022_397 
dash lines), highlighting the limitations of synthetic data.  

 

 
Figure 5 illustrates the impact of training diversity on model accuracy when applied to novel scenarios. It displays the 
accuracies for models fine-tuned with sentences solely from the 2022_745 dataset (shown with solid lines) compared to models 
trained with an expanded dataset that includes sentences from both 2022 and 2019 (dashed lines). This comparison demonstrates 
that using models fine-tuned with sentences from previous term scenarios (indicated by diamond markers) to classify sentences 
from novel scenarios (indicated by circle markers) does not significantly reduce accuracy. 

 



on historical data.  This finding is particularly important for our study, as it is expected that 
student-generated sentences, which could extend beyond those derived from an instructor's 
exemplar, will not be available for annotation before the start of the term. Further testing in the 
effect of broadening the problem scenarios with cases from additional terms is underway. 
 
The analysis of our model’s performance showed that the classification accuracy across different 
classes can vary as much as 20% for the larger dataset. The range of variation for models fine-
tuned with smaller datasets can increase to 30%, suggesting the variation, in some cases, could 
be linked directly to a smaller number of annotated sentences for fine-tuning. However, this 
possible explanation does not apply to all classes. The Safety Considerations class exhibits 
systematically lower accuracies across the different test cases despite containing nearly 40% 
more sentences than the class with the smallest number of sentences for fine-tuning. Further 
analysis is needed to understand the impact of linguistic and semantic features of the different 
classes in the fine-tuning process. 
 
Furthermore, it is possible that the linguist and semantic diversity, or the lack of it, may have 
played a role in the lower accuracies observed in the model trained with ChatGPT augmented 
sentences that we derived solely from the instructor’s exemplar. Students’ responses from 
different reports exhibit a diverse linguist and semantic diversity compared to the instructor’s 
exemplar. Nevertheless, using synthetic data generated through techniques such as augmentation 
with tools like ChatGPT offers a promising strategy for enriching underrepresented classes in 
existing annotated fine-tuning datasets. Further testing on the utility of using ChatGPT 
augmentation capabilities on an instructor’s exemplar of novel scenarios to be added to existing 
annotated sentences from previous terms is underway and will be presented in future 
publications. 
 
Conclusion 
 
Our study provides valuable insights into the application of LLM models to engineering design 
education. We show that open-source distilBERT models, when fine-tuned with small datasets of 
400 sentences on the problem definition dimensions of a generic problem-solving process used 
in engineering design, can achieve an accuracy of approximately 80%. This performance 
suggests that, as shown by Zhao et al. [50], the need for large datasets to fine-tune LLMs 
effectively may not be as restrictive as previously thought. These findings are particularly 
promising for instructors or educational settings with limited resources for extensive dataset 
development who would prefer to develop in-house fine-tuned models. 
 
Our results confirm that the fine-tuning process retains relatively high accuracy even when 
incorporating data from various terms or using it across terms, indicating the model’s robustness 
in handling diverse problem scenarios without significant performance reduction. This feature is 
particularly relevant in engineering education, where learning to transfer knowledge and skills to 
new problems is essential. Our analysis suggests that AI tools based on LLM have the potential 
to support a wide range of educational content beyond engineering design. 
 



However, further research is needed on how linguistic and semantic features, among other 
factors, influence the model’s performance and how synthetic data might be used effectively to 
supplement training datasets. While synthetically generated annotations can improve 
underrepresented classes in training datasets, more detailed exploration is needed to understand 
the underlying requirement to achieve the potential fully. 
 
In summary, our findings provide positive preliminary results on the use of LLMs to achieve 
meaningful accuracies in triggering automated feedback prompts at a self-regulation level 
anchored to a generic problem-solving process widely used to develop complex problem-solving 
skills in engineering design. 
 
Limitations 
 
In this section, we explore some of the limitations associated with the use of large language 
models (LLMs) in educational contexts. In addition to the well-documented issues of bias, 
privacy, and copyright concerns that have been detailed by several authors [7, 10-13]. AI-based 
tools have specific limitations beyond the scope of this study when used in assessment contexts 
that differ from providing formative feedback. The accuracy achieved in this study is suitable for 
triggering responses when classifying several sentences as feedback prompts based on average 
behaviour rather than precise individual statements. Furthermore, the targeted feedback prompts 
generated aim to incentivize students’ critical self-evaluation of their problem-solving process 
and communication, and they are not intended for specific corrections at a sentence level. 
 
From a technical perspective, the results presented in this study are also constrained by the 
specificities of the dataset used, the selected LLM, and the parameters utilized in the fine-tuning 
process. These factors limit generalizability and applicability across different educational 
settings or disciplines. 
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