
Paper ID #44328

Assessing the Effectiveness of Open-ended Engineering Design Projects in a
First-Year Engineering Programming Course for Improving Students’ Problem-Solving
Styles

Dr. John Alexander Mendoza-Garcia, University of Florida

John Mendoza Garcia serves as an Instructional Associate Professor at the Department of Engineering
Education within the Herbert Wertheim College of Engineering at the University of Florida. He received
his Ph.D. in Engineering Education at Purdue University, and his Master’s and a Bachelor’s in Systems
and Computing Engineering from Universidad de Los Andes, in Colombia, and Universidad Nacional
de Colombia respectively. He teaches and investigates the development of professional skills such as
problem-solving, systems thinking, and design thinking. He worked in Industry before transitioning to
academia.

©American Society for Engineering Education, 2024



Assessing the effectiveness of open-ended engineering design projects  

in a first-year engineering programming course  

for improving students' problem-solving styles 
 

1. Introduction 

Two of the engineering learning outcomes proposed by ABET are asking that students can 

"identify, formulate and solve complex engineering problems…" and "apply engineering design 

to produce solutions that meet specified needs…" That is why engineering schools are working 

on providing courses in which students must engage in solving open-ended problems to facilitate 

reaching these learning outcomes. However, most of those courses are typically at the end of the 

career path (Capstone design project) and maybe an introductory design course in their first year. 

In these courses, students must find a problem and work on defining a specific problem, which 

gets them closer to what the outcome expects. On the other hand, most of the courses 

engineering students take in their first year ask them to solve well-defined problems with a right 

answer (they might be able to take different paths to get to that answer, but there is still one right 

answer). Several engineering education thought leaders have called for incorporating the 

development of professional skills, like problem-solving for open-ended engineering design 

problems, across all the different engineering courses. Following such a call, I, the author of this 

paper, incorporated an engineering design project into the Computer Programming for Engineers 

course taught at University of Florida for two semesters, hoping that such instructional 

intervention positively impacts students' problem-solving skills. 

2. Frameworks 

2.1 Conceptual Framework 

2.1.1 Social Problem-solving 

There are many ways in which literature has defined problem-solving; still, assessment tools for 

measuring such skills are scarce. In this study, I used a model developed by D'Zurilla et al. [1] in 

which their team proposes a focus on the process of problem-solving and does not want to limit 

the process to particular kinds of problems but to those that "influences one's adaptive 

functioning in the real-life social environment" (and engineering problems are some of those.) 

D'Zurilla et al.'s model uses the term social Problem-Solving for such problems. The model 

develops the concepts of "problem-solving," "problem," and "solution," specifying that problem-

solving "refers to the process of finding a solution." In contrast, "solution" refers to "carrying out 

those solutions in the actual problematic situations." The model comprises "problem orientation" 

and "problem-solving skills." Through these components, they developed the Social Problem-

Solving Inventory, which has two scales: Problem-Solving Orientation Scale (POS) and 

Problem-Solving Skills Scale (PSSS). Problem Orientation refers to the "disposition" to 

problems; therefore, the scale has a measure for Positive Problem Orientation (PPO) and 

Negative Problem Orientation (NPO). Regarding Problem-Solving Skills, they developed the 

idea of 3 different styles that describe it: Rational Problem Solving (RPS), 



Impulsivity/carelessness, and avoidance style. Based on this model, D'Zurilla et al. describe the 

problem-solving process as either constructive or dysfunctional (see a schematic in Figure 1). 

Figure 1 - Figure created by D'Zurilla et al. [1] showing their model for the social problem-solving process based on the five-

dimensional model developed by their team (2002). 

According to the model for the problem-solving process, a positive orientation leads toward a 

rational problem-solving way, which is more likely to produce positive outcomes. On the 

contrary, a negative problem orientation leads towards styles such as impulsive, careless, or just 

avoidance, which are more likely to generate negative outcomes and motivate the problem-solver 

to give up.   

2.2 Hypothesis 

A course like programming is expected to develop problem-solving skills, and following this 

model, an expectation would be that a typical programming course increases students' positive 

problem orientation and, because of the nature of the programming problems, would increase the 

rational problem-solving style level. Starting from that assumption, I hypothesize that adding an 

engineering design project to the course will make higher gains in these two styles while 

contributing to a higher decrease in the dysfunctional styles. 

2.3. Assessing Problem-Solving Styles 

D'Zurilla et al. developed the Problem-Solving Inventory, a Likert-type questionnaire in which 

participants self-report their perception of their "problem-solving behavior and attitudes." The 

number of questions started at 50, but D'Zurilla and other researchers have found ways to reduce 

the number of questions, keeping the consistency and validity of the questionnaire. In this study, 

I used the Social Problem-Solving Inventory-Revised Short-Form with 25 questions [2] based on 

participants' answers.  

2.4 Contextual Framework 



2.4.1 The course content 

I am the instructor of record in one of the sections of this university's two-credit Computer 

Programming for Engineers course. In this course, students learn how to code solutions for 

programming problems using MATLAB as a programming language. The course is divided into 

12 modules; the first five focus on developing general programming skills using decision 

structures and loops. The course’s second part develops students' ability to work with vectors and 

matrices. For each module, students must complete three low- and middle-level coding problems 

and a higher complexity problem or problems as homework. A brief description of each module 

is offered below. 

In module 2, students start learning about the MATLAB programming environment, how they 

can ask for input from the user, and how they can execute a process and create an output for the 

user with different formatting options. In the homework, students are asked to code the 

calculations to find the angles of a triangle given the length of three sides, which implies the 

implementation of a formula that uses the input from the user and delivers the angles of the 

triangle as output.  

In module 3, students learn about the decision-making structures, specifically the conditionals if-

else-end, if-elseif-end, and how they behave if nested.  In the activities, they solve problems like 

finding the amount customers are charged for their water usage based on a tiered system (e.g., 

between 0 and 5,999 gallons, they must pay $2.35 per 1000 gallons, and between 6,000 and 

20,000 gallons, they must pay $3.75 per 1000 gallons. For the problem, the user inputs the water 

usage, and the code will return the money owed. There is another activity in which students 

implement a currency converter in which the user inputs a transaction amount in dollars; for 

example, the code calculates the equivalent in Yens or Canadian dollars. In the homework, 

students are asked to implement the code that decides the cost of an ice cream based on user 

selections for size, flavor, and toppings.  

Regarding modules 4 to 6, students learn applications of indefinite (while-loop) and definite 

loops (for-loop). Some of the problems in these modules are the calculation of mathematical 

series after using several terms and another is creating patterns. For example, in module 4, 

students are asked to calculate the pi using the Wallis formula, which involves the addition of 1 

or more terms. Therefore, in the code, the user is asked how many terms they want to use to 

make the calculation (e.g., 500), and the code will generate the output using the number of terms 

the user provided as input (for 500 terms, the output is 3.14002068). Similarly, in module 5, for-

loops, the student must write code that calculates the factorial of a number (they cannot use the 

factorial function pre-defined in MATLAB; these series in module 6 are more complex because 

of the use of nested loops. The other kind of problem is patterns. In this area, students are asked 

to create different shapes using nested for-loops and an if structure for deciding if printing and 

what to print. For example, the border of a square made of *, or the multiplication chart that 

students in elementary school use.  

In modules 8 to 12 (module 7 is the exam), students are introduced to strings and matrices. In 

module 8, they learn about vectors in MATLAB, with topics like indexing, deleting values in a 



vector, and using vector functions like find, sum, isequal, isempty, etc. As activities, they are 

asked to rotate a vector, delete the content of a vector based on specific criteria several times, 

and implement a sorting algorithm. In the homework, they are asked to implement the code that 

calculates the score that would be obtained by the user if throwing 6 dice (e.g., the sum of the 

dice, a score if they are consecutive, the score when you obtain 3 pairs, among others). In 

Module 9, students work on string vectors. In this module, we use the concept of ciphers, which 

is applied in several activities. As usual, activities start with low complexity, asking them to 

write code that calculates the number of words in a phrase. Activities also ask for the 

manipulation of strings, such as deleting the repeated letters or reversing the letters and 

punctuation in each word of a phrase. In modules 10 and 11, students are introduced to matrices 

through images. In the course we use digital images that use the Red, Green, and Blue model 

(RGB), in which each coordinate row or column holds a number that represents the intensity of 

each of these colors, which when combined, and drawn on the screen, show the color of a pixel 

to the human eye. These values typically range from 0 (no intensity) to 255 (maximum 

intensity). Therefore, they are asked to rotate or flip an image, create specific shapes like circles 

or a chessboard, count the number of coins in an image, find an object in an image, and decode 

an image by multiplying the numbers on each pixel (RGB) by a specific amount calculated based 

on the values already existent among others. 

Finally, in module 14 (13 is exam 2), students are taught about functions, which they will use 

when implementing their solution to the final project. In this final assignment, students 

implement one step in the 2048 game. Specifically, a 4x4 board is given to them, and they must 

write a function that reads that board in the image and convert it to a MATLAB matrix. They 

must also write another function that, based on a board configuration, produces the new board 

after a movement in one of the directions: left, right, up, or down, and it also calculates the new 

score.  The new board and the new score are returned to the executive function that called them.   

2.4.2 Teaching style  

The course is taught following a flipped classroom model in which students watch the lecture 

before class (e.g., at home), and in class, they come to work on the course activities. Activities 

are due at the end of the day the class is taught, and homework is due three or four days later. 

The course has been taught following this scheme for several years. Although encouraged to talk 

to each other, students are expected to create their solutions independently and not copy them 

from other students. The due dates in the course are mostly not flexible. 

2.4.2 The Experiment: Including an Engineering Design Project 

In fall 2021 and spring 2022, students in that course were asked to complete an Engineering 

Design Project in addition to their programming work. To balance the course workload, 

homework was optional in one semester, while activities were optional in the other semester. The 

expected product students had to create was an App developed in MATLAB in which students 

implemented their solution to a programming problem that they defined. For this project 

definition, students worked on two deliverables: problem scoping, in which they decide the topic 

of their project, and then define a problem and a project that deals with such a problem. Before 



continuing, the instructor had to approve their problem statement and project goal. Since most of 

the students did not have programming experience before the course, and they were learning at 

the same time they were proposing the project, the problem they focused on was not expected to 

have high complexity in terms of implementation. However, they were expected to follow the 

design process when defining the solution they would implement. Once their project was 

approved, students had to follow an idea-generation stage in which they proposed different 

implementation ideas, followed by a stage of idea reduction and selection using strategies like 

pros/cons and the Decision-making matrix. The next stage was the creation of a rapid prototype 

in PowerPoint in which they graphically showed how their App would look and what 

interactions it would make with the user. In the next stage, students develop their ideas for 

coding the different functionalities using flowcharts or pseudocode, which they implement in 

MATLAB in the following 3 stages: Beta 1, Beta 2, and final presentation. For the final 

presentation, students, in addition to the program implementation, must write a scope document 

and create a video in which, in the first part, they present their project in a Shark Tank-style in 

which they present to possible investors, therefore, they introduce the problem they tackled, and 

the solution they created. The audience changes in the second part of the video; this section is for 

the instructor and focuses on the implementation.  Part of what students are required to do for the 

project is to learn how to use the MATLAB App designer, following the videos provided by 

Mathworks, the company that developed MATLAB.  

Regarding the project teamwork, students were required to work in teams. Such teams were 

created and assessed using the Comprehensive Assessment of Team Member Effectiveness – 

CAMTE tool developed by Purdue University. The tool was used to ensure that the teams could 

meet and were balanced in gender and skills. During the semester, teams were asked to assess 

their peers three times in the semester, two using CATME, which facilitates the evaluation of 

peers in a team, and in the final project defense in which the team meets with the instructor and 

is asked to evaluate their peer's work during the meeting.  

3. Methods 

3.1 Participants 

Participants in this study are engineering students who took my section of the course Computer 

Programming for Engineers from the spring and fall of 2021 to the spring and fall of 2023. 

Students were mainly in their first year of engineering and were enrolled in different majors 

(several engineering programs require this class). Most of the students took the pre-test, while 

approximately half of them took the post-test, except for spring 2023, in which the same number 

of students who took the pre-test equaled the number of students who took the post-test. Table 1 

shows in detail the number of students who took the survey the first week of classes (pre) and the 

last week of classes (post) per semester. 

 Spr-21 Fal-21 Spr-22 Fal-22 Spr-23 Fal-23 

Pre 21 49 17 47 41 42 

post 10 24 7 34 41 25 
Table 1 - Number of students per semester who completed the Problem-Solving Styles Survey the first week of classes (pre) and 
the last week (post) 



3.2 Data collection 

A pre/post-test was designed for this study to find changes in students' problem-solving styles 

after taking the course. Consequently, students were asked to answer the Social Problem-Solving 

Inventory-Revised Short-Form (SPSI-R) on the first and last week of classes. The survey was 

created in Qualtrics, and student scores were automatically calculated and shown to students. 

Results were saved without any identifier. Students were offered extra credit for taking the 

survey. Still, since participation in the study was voluntary and allowed anyone to get the extra 

credit, students were told that they could skip all the questions, and when reaching the last page, 

they could take a screenshot to get the extra credit. In this way, any student could get the extra 

credit regardless of whether they take the survey. The survey was anonymous to avoid possible 

student identification. Each semester's pre and post-test scores were gathered in an Excel file, 

and the data for this study was analyzed there.  

4. Findings 

In spring 2021, RPS increased from 10.86 to 11.46, while PPO rose from 11.29 to 11.54. This 

increase was also seen in the fall of 2021, from 12.41 to 13 for PPO and 11.29 to 11.54 for PPO. 

Likewise, most scores that were expected to decrease did so. In the spring of 2021, scores for 

NPO decreased from 6.31 to 5.79, and impulsivity/carelessness also reduced from 4.2 to 4.17. 

Still, the score for avoidance style increased from 4 to 4.25. In the same way, in the spring of 

2022, the scores for avoidance style decreased from 6.29 to 5.71, and NPO also reduced from 7 

to 4.86. On the other hand, scores for Impulsivity/carelessness increased from 6.69 to 6.91. A 

summary of these results is shown in Table 2. 

 Fall 2021 Spring 2022 

 pre post change pre post change 

Positive Problem Orientation (PPO) 11.29 11.54 0.25 10.82 12.57 1.75 

Rational Problem Solving (RPS) 10.86 11.46 0.6 12.41 13 0.59 

Avoidance Style 4 4.25 0.25 6.29 5.71 -0.58 

Negative Problem Orientation (NPO) 6.31 5.79 -0.52 7 4.86 -2.14 

Impulsivity/Carelessness 4.2 4.17 -0.03 3.76 4.29 0.53 

Table 2 - Scores in pre-posttest when an engineering design project was included in the course. 

The relative magnitude of the change in the scores can be visualized in the chart below in Figure 

2.  



 

Figure 2 - Relative Magnitude change in pre-posttests for fall 2021 and spring 2022 - including an engineering design project. 

 

In the spring and fall of 2022 and spring of 2023, the class was taught in the “traditional” way in 

which students were required to complete course activities and homework, solving well-

structured and defined problems. In the fall of 2022, RPS decreased from 11.23 to 11.21, and 

PPO reduced from 11.17 to 10.76. in the Spring of 2023, although RPS increased from 11.27 to 

11.51, PPO decreased from 11.61 to 10.93. On the other hand, the avoidance style decreased in 

the fall of 2022 from 5.85 to 5.41, but it increased in the spring of 2023. NPO scores increased in 

fall 2022 (6.69 to 6.91), spring 2023 (6.88 to 7.41), and avoidance from 5.46 to 6.73. A summary 

of these data can be seen in Table 3. 

 Fall 2022 Spring 2023 

 pre post change pre post change 

Positive Problem Orientation (PPO) 11.17 10.76 -0.41 11.61 10.93 -0.68 

Rational Problem Solving (RPS) 11.23 11.21 -0.02 11.27 11.51 0.24 

Avoidance Style 5.85 5.41 -0.44 5.46 6.73 1.27 

Negative Problem Orientation (NPO) 6.69 6.91 0.22 6.88 7.41 0.53 

Impulsivity/Carelessness 5.35 4.32 -1.03 4.71 4.39 -0.32 

Table 3 - Scores in pre-posttest when an engineering design project was not included in the course. 

The relative magnitude of the change from the pre-test to the post-test can be seen in the chart in 

Figure 3: 

-3
-2
-1
0
1
2

Change in Problem Solving styles scores from pre 
post tests including a design project

fall 2021 spring 22



 

Figure 3 - Relative magnitude change in the scores of pre/post-tests in fall 2022 and spring 2023  - Regular course without 

engineering design project 

 

5. Discussion 

The expectations were that when in a regular programming course, students would increase their 

Positive Problem Orientation and Rational Problem-Solving scores and, at the same time, 

decrease their scores for the styles of Negative Problem Orientation, avoidance, and 

Impulsivity/carelessness. It was also expected that including an engineering design project would 

increase the gains in PPO and RPS while decreasing the scores for NPO, avoidance, impulsivity, 

and carelessness similarly.  

The data suggests that the problem-solving style scores (RPS and PPO) increased when the 

engineering design project was included as expected. Similarly, in these two semesters, scores 

for NPO decreased as expected. On the other hand, when the course was taught in the 

“traditional” way, focused on asking students to solve only well-defined programming problems, 

the expected-to-increase problem-solving style scores (PPO and RPS) decreased. Likewise, NPO 

scores increased in both semesters, which was also unexpected.  

Engineering students are expected to develop high levels of engineering problem-solving skills, 

which ultimately impacts motivation and retention. According to the findings in this study, when 

teaching programming to these students, there are teaching opportunities that can be 

implemented to improve students’ problem-solving styles, such as Engineering Design Projects. 

These kinds of projects are effective for this purpose if they follow a Project-based Based 

Learning approach, which is “characterized by students’ autonomy, constructive investigations, 

goal setting, collaboration, communication and reflection within real-world practices [3].” The 

results also show that the nurturing of problem-solving styles in engineering students can go 

hand-in-hand with the learning of technical Engineering skills. Including such opportunities for 

students to work on engineering design projects in non-engineering design courses, but in more 

traditional engineering technical courses is an idea that is worth considering. In such a case, 

instructors and course developers, when defining their course goals, along with the development 

of technical skills, could include a better response to problems (e.g., using problem-solving 

-1.5

-1

-0.5

0

0.5

1

1.5
PPO RPS Avoidance NPO Impuls./Careless.

Change in Problem Solving Styles scores from pre post 

tests without a design project

fall 22 spring 23



styles), and they can also talk about students' motivation towards engineering. Instructors could 

also track the number of students who usually drop their class and assess if the change impacts 

students’ retention. In this way, replacing some course content to include an engineering design 

project can be better justified and aligned with ABET SLOs [4].  

The impact of PBL and engineering design projects on motivation and retention has been 

previously studied. [5] found that engineering students taught through PBL strategies perceived 

that the course content is useful, a key factor in learning and motivation to learn [6]. Similarly, in 

[7], the authors studied the retention of mechanical engineering students, finding that students' 

persistence increased to 79% after they created an introductory engineering design course. 

Limitations 

The results from this study are limited by the number of students who participated in the survey 

at the beginning and end of the course. In the pre-test, the number of participants in most cases is 

almost double the number of students who complete the post-test survey. However, this is 

mitigated by having scores from more than one semester. I also acknowledge that all the students 

were taking other courses; therefore, it is unknown if their problem-solving styles changed only 

due to their experience in this course. Finally, results are also limited to the discipline and the 

kind of problems that students were exposed to in the programming course.  

Future work 

Since I recognize that including a design project in the programming course is not always 

feasible, it would be relevant to test if different teaching styles could lead to a better outcome 

regarding the development of problem-solving skills. Also, since all the courses share a similar 

shell, it will be relevant to include additional programming sections taught by different 

professors to increase the sample and strengthen the evidence. It is also possible to study 

students’ retention in a class before and after the change and track their persistence in 

engineering after several semesters. 

 

References 

[1] T. J. D’Zurilla, A. M. Nezu, and A. Maydeu-Olivares, “Social Problem Solving: Theory and 

Assessment.,” Social problem solving: Theory, research, and training., no. 1971, pp. 11–27, 2009, 

doi: 10.1037/10805-001. 

[2] K. Sorsdahl, D. J. Stein, and B. Myers, “Psychometric properties of the Social Problem Solving 

Inventory-Revised Short-Form in a South African population,” International Journal of Psychology, 

vol. 52, no. 2, pp. 154–162, 2017, doi: 10.1002/ijop.12192. 

[3] D. Kokotsaki, V. Menzies, and A. Wiggins, “Project-based learning: A review of the literature,” 

Improving Schools, vol. 19, no. 3, pp. 267–277, Nov. 2016, doi: 10.1177/1365480216659733. 



[4] ABET, “Criteria for Accrediting Engineering Programs, 2023 - 2024.” Accessed: Mar. 31, 2024. 

[Online]. Available: https://www.abet.org/accreditation/accreditation-criteria/criteria-for-

accrediting-engineering-programs-2023-2024/ 

[5] H. M. Matusovich, M. C. Paretti, B. D. Jones, and P. R. Brown, “How problem-based learning and 

traditional engineering design pedagogies influence the motivation of first year engineering 

students,” ASEE Annual Conference and Exposition, Conference Proceedings, 2012, [Online]. 

Available: 

https://www.engineeringvillage.com/share/document.url?mid=cpx_6e3d60139686bec03M67d7

2061377553&database=cpx 

[6] D. Perkins, Making Learning Whole: How Seven Principles of Teaching Can Transform Education, 

First edit. San Francisco, California: Jossey-Bass, 2009. 

[7] R. Roth, “Improving freshman retention through an introduction to engineering design course,” 

ASEE Annual Conference Proceedings, pp. 5653–5660, 2001, [Online]. Available: 

https://www.engineeringvillage.com/share/document.url?mid=cpx_765291100a99d6fddM60bc1

9255120119&database=cpx 

  


