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Breaking the Textbook Paradigm: Increasing Access by Removing Words

Abstract

Textbooks are an anachronistic element of education in the 21st century which previous research
shows students do not read despite reading assignments. For over a decade, computing education
has evolved from textbooks to ebooks to interactive learning experiences with animations,
built-in IDEs, and autograders. More recent work has shown that many of these innovations such
as paired programming, code visualizers, and Parsons problems have positive educational
outcomes such as student engagement, retention, and increased learning gains – particularly for
students from historically marginalized communities. Unfortunately, due to the origins of these
learning experiences being textbooks, they often still look like text-heavy ebooks instead of
evidence-based, interactive learning experiences.

This paper uses data from a computing education platform used in dozens of US universities and
thousands of students to explore the relationship between how much time students spend reading
compared to the amount of text in the reading assignment. Specifically, we do multiple
regression analyses to understand how independent variables including word count, assessments,
and whether students engaged with code, affect dependent variables such as assignment grade
and how student’s time was spent.

We find that even without fine-grained details, learning experiences where students are spending
more time actively coding as opposed to reading result in higher performance. These at scale
results solidify that it is time for the field to break out of the overly passive textbook paradigm
and embrace learning experiences which center student opportunities to code.

Introduction

Recent research indicates a decline in engagement with traditional textbooks among
post-secondary students in computing disciplines. Studies by Margulieux and Catrambone [1],
and Amelink et al. [2], have highlighted a growing preference for interactive and digitally
accessible materials over conventional textbooks. This shift is attributed to the digital-native
characteristics of contemporary students, who favor multimedia-rich and interactive content [3].
Further, the study "Towards Modeling Student Engagement with Interactive Computing
Textbooks" [4] illuminates this trend by demonstrating that interactive textbooks, particularly
those utilizing Jupyter notebooks, significantly enhance student engagement through active code
execution and modification.

The transition towards digital learning platforms has introduced various interactive elements
designed to improve learning outcomes in computing education. Key features identified as
particularly effective include immediate feedback, micro-assessments, Parsons problems, and



interactive simulations [5] - [8]. Supporting this, Sigarchian et al. [9], in their work on "Hybrid
e-TextBooks as Comprehensive Interactive Learning Environments," emphasize the role of
hybrid e-textbooks that combine digital publishing, interactive eBook design, and multimedia
elements, showcasing a significant enhancement in learning outcomes.

The authorship of computing textbooks is evolving to include a mix of academic rigor and
practical experience, with a noticeable trend toward involving industry professionals as
co-authors or contributors [10]. This approach enriches educational materials with practical
insights, essential in a field where technology changes rapidly. The case study at zyBooks, as
discussed by Gordon, Lysecky, and Vahid [11], exemplifies this shift towards customizable
content, highlighting the potential of digital platforms to offer updated, relevant, and engaging
learning experiences.

Existing research highlights a significant change in how computing education is taught in
post-secondary institutions. Shifting from the traditional textbooks to interactive and digital
learning experiences aims to move away from text-heavy resources to more engaging and
evidence-based interactive learning platforms. This change is expected to improve student
engagement, retention, and learning outcomes by aligning educational tools with the modern
world's technological advancements and today's students' learning preferences.

Background

Importantly, many recent educational innovations have the added benefit of increasing
historically marginalized students’ performance to be more inline with their more privileged
peers. These innovations are varied and going through a selection of them provides an overview
of the shape a potentially less traditional but more inclusive learning environment might take.

Active Learning Pedagogy in Computing

Active learning in computing provides opportunities for students to practice their skills and
knowledge while learning rather than passively listening to a lesson. Two examples of such
active learning include peer instruction and pair programming.

Peer instruction, as explored by Greer et al [12], highlights student-centered instruction, and
swaps typical lecturing by moving information transfer out of and information assimilation into
the classroom. When using peer instruction, students complete readings and practice before
meeting as a class, and during class time, readings are discussed and more practices are
completed [12]. Peer instruction has been shown to be effective in upper and lower level courses,
improving student achievement, satisfaction, and self-efficacy. Peer instruction even improves
retention rates in introductory level programming courses. Peer instruction is effective for
multiple reasons. Firstly, the questions that replace lecturing are specifically designed to foster



interaction with course content. Secondly, students make use of classroom time to practice and
ask their peers questions, actively engaging with material as opposed to passively listening to
lectures.

Pair programming is the practice of two programmers sitting side-by-side on one computer -- one
acting as the “driver” who controls the mouse and keyboard and the other acting as the
“navigator” who watches for errors and makes suggestions -- switching roles regularly. Pair
programming originally comes from a professional development style called extreme
programming (XP), which has found many benefits in the practice, most notably in terms of code
quality. “Pair programming was later adopted as a promising practice in higher education settings
because of the benefits of increased retention of students continuing their study of computing,
increases in programming confidence in students, and reductions in the ‘confidence gap’
between female and male students” [13]. As pair programming was further adopted, it was linked
to success in introductory programming courses and increased satisfaction and enjoyment when
programming [13].

Though some instructors worry about equal distribution of work, research has found that
individual performance on exams is similar when using pair or solo programming [13].
Additionally, students might immediately push back against pair programming because they
must practice soft skills that might not be typically associated with programming [14]. However,
if instructors continue to use pair programming in their courses, students will manage the
transition from solitary work to pair work, and they will benefit from it.

Active Learning Shifting Textbooks and Asynchronous Learning

Students had very limited access to information when textbooks first became an educational tool,
so they needed to include anything deemed relevant to a given subject. However, as students now
have access to more information than most libraries in their pockets, it no longer makes sense for
students to lug around heavy, expensive physical textbooks.

Two overarching barriers—lack of access due to prohibitive costs and length—make traditional
textbooks outdated, inefficient learning resources. For example, despite the excessive length of
some texts, like the over 1000 pages of Cay Horstmann’s Big Java or the roughly 85,425 words
of Think Python 2, research has shown that “94% of students spend less than two hours per
reading assignment” [15]. That results in a lot of wasted pages and costs. Not only are students
not reading, but many students are unable to even acquire the texts, as “65% of students at least
once [do] not purchase a required textbook” [16].

However, making texts more interactive and less text heavy may resolve these issues. For
example, minimizing text to the most critical points while using other representations, such as



images and tables to express details results in higher learning gains [15]. In digital modalities,
instructors can use videos and other interactive elements to engage students in the material.

Research has also shown that less text (approximately 50% of the original) improves aspects of
learning like completion time, amount remembered, and student satisfaction by 58% [17].
Shorter texts have also been shown to double student learning gains between pre and post-tests,
and increase student satisfaction by 26% [15].

As you reduce text, instructors can replace passive reading with interactivity in several ways.
There is, of course, adding practice exercises (whether they are graded or not), but instructors
can also add visualizations and Parsons problems to help students think about code at a really
low or really high level. One study, which measured student performance with interactive
web-native content against the performance of students with static web content, found that “the
average improvement score was 16% higher for participants given the interactive web-native
content than the static web content” [18].

Lots of Computer Science is invisible, so using a visualization or simulation tool can help
students “see” what is happening under the hood of their code. Abstract concepts like function
calls, recursion, data structures, and scope can be concretized with a little animation. Previous
research has found that students who interacted more with an earlier version of the Python Tutor
code visualizer outside of class had statistically significant higher midterm exam grades.
Additionally, using the visualizer outside of class correlated with the students’ performance on
the three unannounced quizzes [19].

Making textbooks less text heavy and including more interactive elements, like visualizers and
practice exercises, benefits students’ learning outcomes and makes learning more accessible by
potentially reducing costs.

Coding and Skills Practice

Writing code is a time-consuming task for students. So, in addition to asking students to predict
the output of existing code, Parsons problems offer another way to expose students to code
without requiring large amounts of time. Research shows that while Parsons problems take
“significantly less time than fixing code with errors or than writing the equivalent code... there
was no statistically significant difference in the learning performance, or in student retention of
the knowledge one week later” [20]. Additionally, as students make their way through units and
semesters, the amount of work they do decreases, and yet, Parsons problems have been shown to
be one of the most engaged with features on interactive platforms despite the drop off in student
completion of tasks [21].



In computer science, we often ask students to build larger programming projects over the span of
days or weeks. As teachers, we know that students do not always have the skills to project and
time manage themselves well on these larger projects. Additionally, we know that trying to
estimate how long it takes to plan, program, and test software projects is hard [22] and even
software organizations in industry find it challenging to deliver software on time [23]. To help
scaffold students on these larger projects, teachers often break projects up into milestones or
separate gradable deliverables.

Benefits of Milestones in Programming Projects

By breaking these larger projects into distinct milestone assignments, teachers can more easily
see where students are on the project, how much time each milestone takes, and how well
students are performing on each milestone. For students, having distinct milestone assignments
makes each piece more approachable and more clearly communicates expectations and
deadlines.

Shaffer and Kazerouni [24] found in a third year Data Structures and Algorithms course that
students who were given milestones “were more likely to finish their projects on time, produced
projects with higher correctness, and finished the course with generally better outcomes”.
Additionally, within the set of students who were given milestones, “students who completed
more milestones saw better outcomes.”

Additional research shows that a variety of smaller problems increase student performance and
reduce stress [25]. Using many small programs leads to students spending a sufficient amount of
time on their work, and they do not wait until the last moment to begin their work [25].

There are no perceived downsides to adding milestones when comparing withdrawal rates and
failure rates, and “an end-of-term survey indicated that student perceptions of the milestones
were overwhelmingly positive” [24]. Breaking work into smaller increments not only benefits
the teacher’s understanding of how students are progressing, but also increases student’s
likelihood to complete work on time, with increased correctness within said work.

Methods

Data Collection

We collected University and College assignment data between March and December 2023 on the
Codio platform. We pulled together the data fields listed and described in Table 1.



Table 1: List of data fields collected about each completed assignment

Data Field Description

hashed_student_id Anonymized student ID.

hashed_assignment_id Anonymized assignment ID.

completed_date Date the assignment was marked as completed by the
student.

reading_word_count A count of student-facing words in the guides feature.
Words in assessment items were not included.

time_spent_seconds Total time the student spent on the assignment as calculated
by the platform in seconds.

coding_time_spent_seconds Coding time or time the student spent typing was calculated
by combining keystroke timestamps into sessions and
summing all sessions associated with an assignment. A
keystroke was considered the end of the session if there was
no other keystroke within 10 minutes.

num_assessments The number of assessment questions within the assignment.

answered_assessments The number of assessment questions the student answered.

For the results below, a calculated data field which represented non-coding time was derived by
subtracting the time coding from the total time spent.

The initial set of data included 684,507 completed assignments from 30,273 unique students.
After filtering out rows where not all of the above data fields were able to be retrieved, we were
left with 620,352 completed assignments from 28,229 unique students. Finally, we filtered out
rows with flawed data including negative time spent, more time spent coding then total time
spent, or grades above 100%. This left our final dataset as 525,941 completed assignments from
27,977 unique students.

Statistical Analysis

In the results section, linear regressions were run using the linreegress method from the Scipy
library when comparing two variables. The regression equation, Pearson correlation coefficient,
and Cohen’s d are reported alongside a scatter plot.

Multiple linear regressions are run to test the relationship between multiple variables in
predicting a single output variable. To accomplish this, we used OLS regression from
statsmodel.api.



Data Context

To get a sense of the assignments, Table 2 provides descriptive statistics for the collected data
fields. A number of assignments have a reading word count of 0. This could happen if there were
only assessments which might occur for quizzes or exams. Comparing total time spent and
coding time spent we see the average time spent coding is about a quarter of total time spent. The
rest of that time was probably spent reading or answering assessments. In terms of assessments,
most students completed all assessment questions within an assignment given how aligned
number of assessments and answered assessments are. Finally, grades as reported on the platform
for the completed assignments are very high with at least half of the grades being 100% and the
average being 84%. This could be due to teachers setting up participation grading rules such that
only completion and not correctness is taken into account.

Table 2: Descriptive statistics of collected data fields

reading_
word_
count

time_
spent_
seconds

coding_
time_
spent_
seconds

num_
assessments

answered_
assessments grade

mean 709.148 3,930.829 1,355.354 4.562 4.444 83.883

std 1,100.083 7,668.097 3,269.409 5.394 5.313 29.418

min 0 1 0 0 0 0

25% 0 788 128 1 1 80

50% 336 1,788 473 3 3 100

75% 941 3,952 1,331 6 6 100

max 15,332 906,172 174,000 111 96 100

Results

We start by exploring if the time spent, and more specifically how the time was spent, predicts
the grades students earn on assignments (Figure 1). We found a statistically significant, but very



weak correlation between total time spent and the assignment grade (p<0.05 and ρ = 0.043).
Interestingly, despite the weakness of the correlation, a medium effect size was found (d=0.709).
Similar results were found for both non-coding and coding time - statistically significant but very
weak correlations (ρ = 0.024 non-coding and ρ = 0.059 coding) with a medium effect size
(d=0.616 non-coding and d=0.550 coding).

Figure 1: Types of Time Spent correlated with Grade
Total time spent vs Grade Regression line: y = 0.000165x + 83.236
Non-Coding Time vs Grade Regression line: y = 0.000122x + 83.570
Coding Time vs Grade Regression line: y = 0.000533x + 83.160

To try to understand if non-coding time is primarily related to reading, we explore the
relationship between the number of words in the assignment and the ways students spent time in
terms of coding or not (Figure 2). We found a statistically significant but weak correlation



between word count and total time spent (p<0.05 and ρ = 0.043). Despite the weak correlation, a
medium effect size was found (d=0.588). Word count was correlated with both non-coding time
and coding time weakly yet statistically significant (ρ = 0.225 non-coding and ρ = 0.192 coding)
and with small effect sizes (d=0.453 non-coding and d=0.265 coding). A slightly stronger
correlation and effect size are seen for non-coding time than coding time which one might
expect, though often programming assignments can have rather lengthy specification documents
which students must read and often re-read.

Figure 2: Word count correlated with types of Time Spent
Word count vs Total time spentRegression line: y = 1.743x + 2694.660
Word count vs Non-Coding Time Regression line: y = 1.173x + 1743.777
Word count vs Coding Time Regression line: y = 0.570x + 950.884

We also explored how answering assessment questions related to student time usage (Figure 3).
All three regressions showed weak yet statistically significant correlations with medium effect



sizes (total: ρ = 0.204, p<0.05, d=0.724; non-coding: ρ = 0.176, p<0.05, d=0.635; coding: ρ =
0.2170, p<0.05, d=0.584).

Figure 3: Answered Assessments correlated with types of Time Spent
Answered Assessments vs Total time spentRegression line: y = 294.207x + 2623.251
Answered Assessments vs Non-Coding Time Regression line: y = 189.427x + 1733.584
Answered Assessments vs Coding Time Regression line: y = 104.780x + 889.667

In an attempt to better understand the interplay between these fields, a multiple regression
analysis was run, which showed statistical significance:

grade = -0.0006 x words + 0.0006*coding_time + -3.84 x 10-5x non-coding_time
+ -0.196 x answeered_assessments + 84.252



While the R squared value is uninspiring at 0.005, notably all coefficients aside from coding time
are negative.

Digging in to just how students are spending their time, a multiple regression again showed
statistical significance with a similar (0.004) R squared value:

grade = 0.0005*coding_time + -4.13 x 10-6x non-coding_time + 83.167

Again, we see coding time as having a positive and meaningful larger coefficient than
non-coding time.

Conclusion

Our linear regression results seemingly indicated that what type of time students spent during
assignments was unimportant. Notably reading and assessments seem just as much a part of
coding as non-coding activities. When multiple regression analysis is run we begin to see the
same results as we would expect from the literature – that students actively constructing code is
more influential then non-coding time.

Given that time spent actively coding does not appear to be at the expense of other learning
activities such as reading and assessments, even without deep context, we see the promise of
structuring asynchronous learning experiences around opportunities for students to be actively
engaging with code.
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