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Abstract:

This work-in-progress project is grounded in a biomedical engineering junior-level course
dedicated to modeling biomedical systems. The course and project’s primary goal is to integrate
fundamental concepts from physics, chemistry, engineering, and mathematics to provide students
with a comprehensive foundation for addressing real-world biomedical engineering challenges.
Establishing connections and parallels between mathematical methodologies, specifically
differential equations, and the constitutive relationships in physics and chemistry are critical in
the development of biomedical engineers.

A key objective is developing critical thinking skills in students to tackle real-world biomedical
problems. BME problems in this course span multiple domains including: 1) bio-instrumentation,
2) drug kinetics, 3) mechanical systems, and 4) organ models. Undergraduate biomedical
engineering students frequently struggle with the intersection of mathematics in these domains as
the problems require students to freely recall various techniques to solve systems of differential
equations in story-problems. This is in contrast with many differential equations textbooks that
emphasize rote memorization methods or provide subtle hints of the particular method and or
process to be used to solve pre-written mathematical functions. Within engineering disciplines, it
is important for students to actively read story problems or interview stakeholders to identify key
constraints, and governing physical and biological conditions to derive their own mathematical
functions that describe the potential solution space for engineered solutions. The ability to
translate physical constraints and apply prerequisite knowledge from physics and biology are
often under-emphasized in mathematics courses. Furthermore, most mathematics courses focus
on analytical solutions and do not employ computational tools for numerical approximations
which are critical in engineering.

To promote the growth of applied mathematics within BME, we developed a comprehensive text
focused on dynamic biomedical systems. The text provides a primer of system characteristics
including: 1) linearity, 2) time-invariant, 3) autonomous as well as various different types of input
signals (i.e. step, impulse, sinusoidal etc). The text seamlessly interweaves a review of multiple



approaches to solving first and second order differential equations including: 1) Variation of
Parameters, 2) Undetermined Coefficients, 3) LaPlace Transforms, and 4) Eigenvectors and
Eigenvalues coupled with State Variable format. Alongside these analytical methods, numerical
approaches using MATLAB are also outlined. During lectures, students are exposed to
complementary instruction leveraging both mini lectures and active learning problem solving
using both analytical and numerical approaches that build in complexity from simple word
problems to more complex physiological models (i.e. systemic arteries, the body volume
compartments, neuron firing). Beyond simply plotting the solution spaces of the mathematical
functions, students are asked to write rules to communicate the utility of the models to other
stakeholders including healthcare professionals or basic biomedical scientists.

In summary, we have created a unique BME focused text for differential equations and linear
algebra that encourages students to harness their knowledge of physics, biology, physiology,
engineering, and mathematics to formulate dynamic models of physiological systems. Our overall
aim is to enhance students’ ability to apply and foster a deep appreciation of the power of
mathematics in addressing real-world BME challenges.

Background:

Ordinary differential equations are ubiquitous for understanding various topics and systems
studied as part of the undergraduate physics, engineering, chemistry, and biology

curriculums [1-4]]. Over the past two decades, numerous innovative teaching strategies ranging
from teacher-centered didactic and student-centric pedagogical approaches have been
implemented with mixed results [5]. Engineering disciplines require the application of ordinary
differential equations inherently providing a ‘contextual learning” environment; yet the typical
engineering undergraduate curriculum employs parallel tracks of 1) Mathematics (i.e. Calculus
I-IIT and Ordinary Differential Equations and Linear Algebra and 2) Engineering-specific courses
(i.e. Dynamic Biomedical Systems, Thermodynamics, Kinetics etc). Interestingly, there are a few
engineering programs that intimately integrate mathematics with the engineering point of view,
several of which have been shared at previous ASEE conferences [6,7]. In Pennell et al. [6],
authors used a mixture of both the “mathematical” and “engineering” perspective in combination
with numerical approximations solved in software packages (i.e. MATLAB, LABVIEW) in
combination with project-based engineering problems. Overall, they found this strengthened the
student’s analytical and engineering skill sets [6]. The project-based engineering problems
described as part of the mathematics course sequence described in Pennell; however, are generic
to all engineering disciplines.

In this work in progress paper, we present a biomedical engineering themed approach firmly
rooted in modeling of physiological systems that compliments existing parallel instruction of
ordinary differential equations and linear algebra while providing students the opportunity to
apply biomedical engineering skills involving the following: 1) Assembly of appropriate
information from stakeholder interviews or written problem statements to create appropriate box
diagrams and system input system output diagrams, 2) Analyze information to identify and define
the system boundaries, assumptions, appropriate variables, and the appropriate conservation or
accounting equations of the extrinsic property or properties of interest, 3) Calculate using
analytical and numerical techniques, and 4) Finalize using graphical approaches that highlight the



quantitative and qualitative impacts of system variables for the identification of the design
constraints or potential allowable tolerances.

Dynamic biomedical systems within biomedical engineering can include multiple domains
ranging from modeling of physiological systems used to create ‘virtual experiments’ to test new
theories of physiological responses. Alternatively, biomedical models may be used to identify
design constraints for medical devices required to restore normal physiological function (i.e.
insulin pumps, dialysis machines) or protective equipment (i.e. fighter jet pilot helmets) to
minimize injuries.

Redesigned Dynamic Biomedical Systems Course Structure:

To address the breadth of dynamical biomedical systems for adequate preparation career
preparation of junior biomedical, we re-developed a core junior course at New England land, sea,
and space grant public institution. Key elements of the course revision included: 1) New course
notes that provided step-by-step annotated analytical and numerical solutions to several
physiological-based dynamic biomedical systems, 2) Pre-class reading quizzes, 3) Hands-on
small group (3-4 students/group) in class problems, 4) Additional structured office hours run by a
senior undergraduate biomedical engineering student teaching assistant for near-peer mentoring,
5) Multiple quizzes during the semester, and 6) Holistic in-person one-on-one final exam
presentation modeled as an interaction between a project manager and employee or academic
advisor and student researcher to assess the student’s engineering habits of mind [8]].

New Course Notes & Pre-class Reading Quizzes:

New PDF searchable course notes were co-developed by a senior undergraduate student assistant
and the course instructor the summer before the course offering. Appendix [A]summarizes each of
the topical areas of the course notes. The notes are built in complexity both in terms of
physiological systems and mathematical concepts. The course notes assumed no prior knowledge
of System Characterization beyond the ability for students to identify if the system is open or
closed, and the extensive property of interest based on pre-requisite course knowledge. Chapter
One is focused on System Characteristics (i.e. Dynamic vs. Static, Casual, Time-Invariant, Linear,
Stability) and various System Driving Forces. These topics were new to most of the students
enrolled in the course and were taught in both the context of rigorous mathematical proofs as well
as more applied qualitative arguments forming the basis of the Dynamic, Linear, Time-invariant
systems [Dynamic LTE] leveraged throughout the rest of the course. Chapter Two reviewed
various analytical (Variation of Parameters, Underdetermined Coefficients, LaPlace Transforms,
and Eigenvectors & Eigenvalues coupled with State Variable Format) with step-by-step solutions
for students to review pre-requisite knowledge from their ordinary differential equations and
linear algebra course. Appendix |B|& |C| provides an example of step-by-step analytical solution
and numerical approaches to similar “mathematical” type ordinary differential equation.

Once the analytical approaches were reviewed, the course notes provided examples of using
MATLAB function, ode45, to numerically solve the same differential equations. The numerical
MATLAB instruction was also supplemented with online self-paced training courses: 1)



MATLAB On-ramp and 2)Solving Ordinary Differential Equations with MATLAB as most of the
students had minimal or no experience in the MATLAB coding environment. Chapters Three-Five
transitioned the students from “mathematical” differential equations into dynamic biomedical
engineering systems with increasing complexity ranging from single compartment/component to
multi-compartment/component systems. Appendix [D]provides an example of a single
compartment physiologically relevant example problem with step-by-step instructions.

Students were assigned to read and work through the example problems ahead of class time and
complete a reading quiz using an online learning management system. Before each class, the
instructor reviewed the overall class performance on each of the reading quiz questions and
reviewed as needed during class. Pre-class reading quizzes were graded where scores of 70% or
higher were replaced with 100%.

Hands-on Small Group Modeling Activities:

The course was taught in an active learning classroom equipped with both whiteboards and large
TV monitors with oval shaped tables with chairs for 4-5 students. The total class size for the Fall
2024 semester was 20 students, so generally students sat in groups of 4 based on their own
selection. The in-class activities were designed to build on the course notes and provide
additional opportunities for students to analytically and numerical solve LTE ordinary differential
equations. Once students mastered the basic mechanics of analytical and numerical solution
approaches, the in-class problems focused more on physiological systems. Over the course of the
semester, student teams completed in-class exercises focused on the following physiological
systems: 1) Arterial Vascular Dynamics, 2) Body Volumes, 3) Neural Activity of a single neuron
using Hodgkin Huxley Model and 4) Blood Alcohol Dynamics. The physiological modeling
assignments contained both an in-person group based portion as well as an individual homework
component. The individual homework component focused more on the synthesis and
interpretation of the modeled phenomenon. Examples of an in-class and individual post-class
assignments can be found in Appendix [E| & [l The combination of the in-class and individual
assignments refined students’ engineering habits of mind (Eng. Habits of Mind ref) Lucas &
Hanson, particularly in the description and justification of ‘what if” scenarios focused on altering
various parameters of the system. Full justification of the results of the ‘what if” scenarios
required the students to describe using mathematical principles rather than solely relying on
graphical solutions derived from the numerical solutions to improve mathematical rigor.

Undergraduate Student Learning Assistant for Near-Peer Mentoring:

The senior undergraduate student author of this WIP was critical for the implementation of the
course revisions. The undergraduate student attended every lecture period and actively engaged
students during problem solving sessions. In addition to class periods, the undergraduate learning
assistant provided two separate two-hour problem solving sessions each week for the students to
attend. During these class sessions, he provided additional problem-solving strategies and
practice opportunities.



Individual Student Performance Assessment:

Students were assessed multiple times throughout the semester in the form of four 75-minute
quizzes given during class. The quizzes were modeled based on in-class activities and homework
assignments. The quizzes consisted of two-parts; part one was closed-book and focused on
analytical approaches whereas part two required students to use MATLAB to write appropriate
functions to numerically solve dynamic biomedical systems. Each quiz was worth 7.5% of the
overall grade and provided students frequent and low-stakes opportunities to confirm their own
understanding. The final individual assessment was based on a more extensive take-home final
exam problem that students were given 24-hours to complete and post both a PowerPoint
presentation outlining their engineering problem solving strategy, system diagram, solution
approach, and graphical solutions as well as all MATLAB scripts written to numerically solve the
system. Students booked 15-minute appointments with the course instructor and presented their
PowerPoints one-on-one during the final exam week. Students were provided an opportunity to
correct any errors during the presentation as well as describe how they may have altered their
approach if they had erred. Ultimately, students were assessed using the engineering habits of
mind rubric as described in [8]. The final exam accounted for 30% of the overall grade.

Results & Discussion:

Quantitative Student Assessment:

Quantitatively, student success was based on the average student scores in homework, quizzes,
and final exam grades. The average student performance on homework assignments was 89%,
higher than the individual student performance on individual quizzes or final exam. This was not
surprising as during homework assignments students worked collaboratively without specific
time-constraints and had open-access to both the instructor and the undergraduate learning
assistant questions. Interestingly, the final exam average of 86.5% was higher than any quiz
average despite being more complex.

The increasing quiz average as seen in Figure[I] over the course of the semester and the fact that
the final exam scores were the highest on average further supports that students grew in their
ability to solve and communicate solutions to dynamic biomedical systems. Interestingly, the
standard deviation of the final exam was the smallest indicating that the overall student
performance was coalescing around scores that demonstrate proficiency.
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Figure 1: Average (n = 20) student performance on quizzes and final exam. Error bars are standard
deviation.

Semi-quantitative Assessment of Student Attitude Towards Course:

The end of semester course evaluations were used as a semi-quantitative assessment of student
attitude towards the course. Of the 20 students enrolled in the course, 7 students completed the
end of semester course evaluation and specific attention was given towards the following standard
course evaluation questions using a 5-point Likert scale where 1 is not at all and 5 is very much.

Questions focused on intellectual growth:

* Question 1: How much were you encouraged to think for yourself? Average: 4.57, Median
5.0.

* Question 2: How much did this course challenge you intellectually? Average: 5, Median 5.
* Question 3: How much did you learn from this course? Average: 4.29, Median 4.0.

Overall these student responses indicate that the course revisions fostered a rich learning
environment that effectively stimulated students’ intellectual growth.

Questions focused on course materials & class structure:

* Question 4: Were the class meetings profitable and worth attending? Average 4.45, Median
4.0.

* Question 5: What is your overall rating of the primary readings? Average: 3.33, Median;
3.5.

These scores suggest that students valued the in-class hands-on problem solving approach to
lectures. Interestingly, there was only moderate satisfaction with the primary readings. Therefore,
we have initiated an exploration into how to improve the course notes to improve student
satisfaction.



Qualitative Student Responses:

In addition to the official university-sponsored evaluation of the course, students were voluntarily
asked to respond to the following three questions:

1. Please describe how your perception of math as it is applied in biomedical engineering was
altered as a result of Dynamic Biomedical Systems?

2. Please describe why modeling is important to the field of biomedical engineering?
3. Please describe how Dynamic Biomedical Systems challenged your way of thinking?

Overall student responses to question 1 highlighted a positive shift in their perception of the
relevance of mathematics in the context of the biomedical engineering program. One particular
student wrote:

‘I realized that there were actual, legitimate, beneficial applications of differential
equations. Before I thought differential equations were a niche, general form of math,
now I can see how they can be applied to model physiological systems.’

In response to question two, student responses consistently underscore the significance of
modeling within the biomedical engineering domain. Students appreciated how previous
knowledge acquired in engineering courses (conservation and accounting equations) were
interwoven with biology, physics, and chemistry needed to model the dynamics of biological
systems. One student wrote the following quote highlighting both the impacts of modeling in
terms of hypothesis testing and medical device design:

‘Modeling is where you have the most range to tweak and perfect your ideas and
theories. Otherwise there is the possibility of being entirely off based, and even
potentially harming someone or something in human/animal trials should that be the
next step. Then there is also the side of modeling where the next step isn’t trials but
rather just gaining a better understanding of biological systems and this is the best
method that exists at this point in time.’

Finally in response to question 3, students generally expressed a shift in how they approach
problem solving highlighting the importance of numerical approaches to create graphical
representations of how the various components of the human body interact. Specifically, one
student wrote the following:

‘Dynamic Biomedical Systems helped open my mind to the idea of different ways to

learn and test ideas. While hands-on testing is important, knowing that models can

be used to rapidly test and explore concepts that would be unfeasible to perform in

the real world (and/or at a large scale) allows me to have an additional tool in my
pocket for future endeavors.’



Conclusion:

In summary, we have created a unique BME focused text for differential equations and linear
algebra that encourages students to harness their knowledge of physics, biology, physiology,
engineering, and mathematics to formulate dynamic models of physiological systems. Our overall
aim is to enhance students’ ability to apply and foster a deep appreciation of the power of
mathematics in addressing real-world biomedical engineering challenges.
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Appendix A A Condensed Version of The Table of Contents Within Class Notes

Topics in Course Notes and Page Numbers
Topic Pages
Describing systems 1-14
Solving first order systems 17-28
One Compartment models in physiology 29-37
Solving higher order differential equations 40-54
Multi-compartment models in physiology 56-63

Appendix B  Solving For an Analytical Solution Example From Text

Example 2 of variation of parameters method on a D.E.:

dzél—it) =ky(t)+6



First find homogeneous solution:

d?iTEft) —ky(t) =0
yn(t) = Ce*!

Parameterize constant C for the equation:

Place into original D.E.:

Differentiate the equation (hint: use product rule):

%it)ekt + kC(t)e! = kC(t)e* + 6
dCO(t) i
7 e =6
Solve for C(t):
dC(t) —kt
7t 6e
C(t) = /68_kt dt
6 ke
C(t) = —ze +Ch

Place back into original function where C was parameterized, to get solution:

6
y(t) = (— e + O

Appendix C Solving For an Numerical Solution Example from text

Example 2 given the following D.E. with k = 2, and an initial condition I.C. = 3. The function can be written in
MATLAB as:

) _ —ky(t) +2 (C.0.1)
db

function dydt = myODE1l (t,y)

k =2; %[s]"—1

dydt = -y*xk + 2;

end

Now to solve the differential ODE4S5 is used as it is the base solver implemented in MATLAB for simple differential
equations. The function is called with the time frame with the I.C. and plotted as:

IC = 3

tspan linspace (0,10); %time span from 0 to 10 [s]

[t,y] = oded5 (@myODEl, tspan,IC); %solving the function with ODE45
solver

|| ~e



plot (t, Y)

xlabel ('t [s]")
ylabel ("y(t)")
ylim ([0 4])
x1im ([0 107)
4
357
3
257
Z 2
15
il
0.5
0

o 05 1 15 2 25 3 35 4 45 5
t[s]

Figure 2: Example 2 differential equation plotted from O to 5 seconds. (This figure was made in
MATLAB.)

Appendix D Example Of Liver With Reaction Kinetics

Adding complexity to modeling systems is looking more closely at what is occurring in said system. Take the liver
for example, we would like to look at a type of metabolism. We want to determine the diffusion of the substance into
the liver then the metabolism of the substance. In fig. 8] we can see that the arteries and veins will carry the substance
in the blood to the liver, where then it is metabolized.



Consumption
of substance

Figure 3: General look at the physiological mechanisms of the liver. (This figure was made in
biorender.)

With now seeing the system we can define its boundaries and make assumptions. This will then allow us to start a
model for the system we will mathematically define. We then construct the systems diagram with the boundaries
specified and the list of assumptions shown in fig. @

Membrane around liver
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Figure 4: System input output diagram of the liver. (This figure was made in biorender.)



List of assumptions:

* Blood incomprehensible fluid

* Reaction is steady and does not change based off of concentration
* Concentration of substance cannot react outside the liver

* Flow of substance into the bladder is constant.

* Reaction is not dependent on spacial location in the liver

* Constant volume of liver (homogeneous structure)

With the assumptions listed and diagram made the equation can be written in terms of the concentration of substance
s(t), where the reaction constant is K, :

dVLS(t)
dt

= Qinsin(t) - Qouts(t) — Kms(t)

Volume is not changing so the it can be pulled out of the differential operator:

|%3 dz(tt) = QinSin(t) - Qouts(t) - Kms(t)
dS(t) _ ansln(t) - Qouts(t) - Kms(t)
dt Vi
dS(t) _ ansln(t) o S(t)(Qout + Km)
dt N VL VL

List of vairables:

¢ s(t) = substance concentration
* $in(t) = substance coming in
* Q;n = flow rate in

e @Q;n = flow rate out

e K s = Reaction constant

e V7, = Volume of liver

Now we can solve the D.E. with respect to s(t), keeping in mind that this is a in-homogeneous D.E. so we will use
variation of parameters: First find homogeneous solution:

ds(t) S(t) (Qout - Km)

a T Vi =0
sp(t) = Ce ™kt
k — (Qout + Km)
VL

Parameterize constant C for the equation:
sp(t) = C(t)e k
Place into original D.E.:

—kt d
[C(t)@ k } a

— kOt tt 4 Qnsin()
VL,



Differentiate the equation (hint: use product):

dC(t) g —kt _ —kt | Qinsin(t)
o ¢ EC(t)e ™™ = —kC(t)e™ ™ + v,
dC(t) e—kt — Qinsin(t)
dt Vi

Solve for C(t) use integration:

dC(t) _ anszn(t) ekt

dt \%5
ansm(t) kt
C(t :/7 dt
(t) v, ©
noin t
C(t) = QkSiVL()ekt L0

Place back into original function where C was parameterized, to get solution:

inSin t . —
S(t):(Q kVL(>ekt+Cl)e kt
Where, k = M

VL

Appendix E In Class

In this in-class activity we will use MATLAB to solve the first order differential equation that was discussed in the
cardiovascular modeling background reading. There is real-world patient data that is supplied for you that you will
load into MATLAB.

To complete this in-class activity, you will need to download the following files from Brightspace:

¢ ODESolverStart.m
¢ ODEfunc2Start.m

Expectations: By the end of the class period, your group will be turning in a single MATLAB script to the
appropriate folder on Brightspace as well as a single physical worksheet (this sheet) showing all your work.
Set-up:

1. Complete the MATLAB files, ODESolverStart.m and the ODEfunc2Start.m to solve Equation 8 in the
background reading materials. For initial model parameters, we will use the following values:

¢ Capacitance: 1.2 mL/mmHg

* Resistance: 1.0 mmHg-ms/mL
Hint this means that you will need to create multiple figures:

* Modeled pressure vs time

* 2-resistor modeled pressure vs. time.

* Modeled pressure vs. time and a 2-resistor modeled vs. time on a single plot

2. Now we will explore the effects of changes to the Resistance and Capacitance using the Single resistance

based model using a fixed input flow, Qi(t), using Examplel data set. To isolate the effect of altered resistance
or capacitance, we will hold either the resistance or capacitance constant. Note that the ODESolverStart.m

script contains functions to find the minimum, maximum, and mean of both the modeled and measured data
sets. Complete the following tables:



(a) Let’s hold C constant at 1.2 mL/mmHg and fixed Q; ()

R
(mmHg*s/ml)

Pressure
Maximum
(mmHg)

Pressure
Minimum
(mmHg)

Pressure
mean
(mmHg)

Pulse
Pressure
(mazx — min)
(mmHg)

0.50

0.75

1.0 (BL)

1.25

1.5

1.75

2.0

(b) Let’s hold C constant at 1.2 mL/mmHg and fixed Q; ()

C (ml/mmHg)

Pressure
Maximum
(mmHg)

Pressure
Minimum
(mmHg)

Pressure
mean
(mmHg)

Pulse
Pressure
(maz — min)

(mmHg)

0.6

0.9

1.2 (BL)

1.5

1.8

2.1

24

(c) Using the data in the previous 2 tables, plot the percentage change in maximum, minimum, mean, and
pulse pressures (referenced to baseline values identified in the table) as a function of percentage change
in R (referenced to baseline value) in a single plot.

How does changes in R affect various aspects of pressure (minimum, maximum, mean, and pulse)?

(d) Now repeat part c, but this time plot the percentage change in maximum, minimum, mean, and pulse
pressures (referenced to baseline values identified in the table) as a function of percentage change in C
(referenced to baseline value) in a single plot.

How does changes in C affect various aspects of pressure (minimum, maximum, mean, and pulse)?

3. Analytically demonstrate that the modeled system is linear (Hint: Use law of additivity and homogeneity).

Appendix F  Out of Class

In this homework assignment, we are going to continue working with the cardiovascular modeling in-class activities
and dig a little deeper to continue our exploration. Be sure to have your MATLARB files accessible and notes from the
in-class exercise to assist you in completing this assignment.

1. So far in our modeling journey, we have used modes to perform ‘what if” kind of experiments. Models can
also be used for system identification. For example, if you have measured pressure and flow data you may
interpret the physiological status of the cardiovascular system in terms of resistance and capacitance. The
model that you completed in class calculate the arterial pressure, P a (t), given measured volumetric flow rate,
Qi (t) and parameter values R and C.

As a first step, adapt the code to create a plot of the measured P a (t) and modeled P a (t) using the measured
data from Examplel.txt file (Patient 1). After you adapt the code, alter both the Resistance and Capacitance
values such that the modeled data fits the measured data better. (Hint: your model is very simple so it will not
be an exact match. A good fit is determined by visual inspection with matching peaks and valleys of the
pressure waveform.



(a) Complete the following table using the data from Examples 1-3 which corresponds to Patients 1-3.
Notice that R and C are provided for Example data sets 2 and 3. Use these fits as models to consider
how good the visual fit needs to be.

R Estimated | C Estimated | SVR
(mmHg*s/mL) (mL/mmHg) (mmHg*s/mL)

Example 1
Example 2
Example 3

(b) Generate and label plots of Patient 1-3 measured and modeled arterial pressure vs. time plots. Clearly
label the modeled vs. measured patient data and all axes.

(c) How does the modeled parameter R compare with the Systemic Vascular Resistance (SVR)? Hint:
Remember SVR = mean measured pressure/mean measured flow.

(d) Let’s assume that Example 1 is representative of a normal patient’s systemic arterial circulation. How
do the physiological conditions corresponding to Example 2 and Example 3 differ from this normal
condition? Hint: A complete answer will include potential diseased states associated with the altered R
and C values provided in part a.

2. Now that you have model the system and considered both the ‘what if” and the systematic characterization,
you are tasked with creating a set of rules to help guide a physician in distinguishing abnormalities in arterial
pressure caused by changes in arterial compliance (C) vs. changes in arterial resistance (R) if the input flow
rate, Q i (t) remains constant for all conditions. Hint: Be sure to cite figures that you have generated from the
model to support your rules.



3. Now we are going to model the 3-element Windkessel model (see Cardiovascular background reading for
more information). This model adds a third element, a resistor, to improve the fit of the model vs. measured
arterial pressure dynamics. Modify your existing MATLAB code to include this additional resistance. Assign
the following values for each of the components:

0.61
p——— VAV
Qi(1) r
P.(t) C — — R< 0098 Pp(t)

l 19 [

e =0.61 mmHg s/mL
+ R =0.98 mmHg s/mL
e C=19mL/mmHg

S

Figure 5: RC circuit for Windkessel model

Use the following values of:
* r=0.61 mmHg*s/mL
* R=0.98 mmHg*s/mL
e C=190 mL/mmHg

(a) Plot the modeled vs. measured arterial pressure curves and clearly label the axes and the curves.

(b) How does the parameter values compare to the parameter values in the 2-element Windkessel model?
Hint what does (r + R) in the 3-element Windkessel model mean? How does the capacitance values
compare?
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