
Paper ID #44153

Integrating Theory and Practice: A CFD Education Approach

Dr. MEHMET Nasir SARIMURAT, Syracuse University

Mehmet Nasir Sarimurat earned his Ph.D. from Syracuse University in Syracuse, NY, USA, in 2008. He
held positions as a Senior and Staff Engineer at United Technologies Carrier Corporation in East Syracuse,
NY, USA, from 2007 to 2018. In 2018, he made the transition to the Department of Mechanical and
Aerospace Engineering at Syracuse University. Currently, he serves as an Associate Teaching Professor
and also holds the role of Undergraduate Program Director for Mechanical Engineering. His research
is primarily focused on fluid mechanics and turbomachinery, with a particular emphasis on model-based
simulation, design, and high-performance computing.

©American Society for Engineering Education, 2024

Integrating Theory and Practice: A CFD Education Approach

Mehmet Sarimurat
mnsarimu@syr.edu

Mechanical and Aerospace Engineering Department
Syracuse University

Abstract

This paper introduces the design and implementation of a course in computational fluid dynamics
(CFD) offered to senior undergraduate students at Syracuse University. The course utilizes a
novel structure that integrates theoretical foundations with practical,“tutorial-based” experiences.
The curriculum balances theoretical fundamentals, solidified through numerical solution
implementation in Python, with hands-on experience using industry-standard Ansys Fluent
software. Notably, the use of Python in the introductory phase prepares students for the increasing
utilization of Python for customization and optimization within commercial CFD packages.
Furthermore, the second part of the course adopts a unique problem-solving approach where
students actively replicate pre-recorded tutorials, fostering deeper understanding compared to
traditional lecture formats. This comprehensive and student-centered curriculum prepares future
engineers with the critical skills and software proficiency required to address contemporary fluid
mechanics challenges.

Introduction

In the context of rapid technological progress, the widespread use of computers and their
substantial computing power has led to the recognition of Computational Fluid Dynamics (CFD)
as a crucial tool in the design and analysis of engineering applications. This technology has
permeated various sectors, including aerospace design, chemical processing, oil drilling,
biotechnology, and energy generation. CFD’s transformative power lies in its ability to
significantly reduce the need for expensive physical prototypes. By virtually simulating and
visualizing complex fluid flows, engineers can identify design flaws, optimize performance, and
accelerate the development of cutting-edge solutions.

As CFD becomes more prevalent and indispensable in many industries, there is an increasing
demand for competent CFD practitioners. To address this demand, many universities have
incorporated CFD education into their undergraduate mechanical and aerospace engineering
curriculum1,2,3. A comprehensive review of existing undergraduate CFD courses can be found in
Li and Cheung4.

A key challenge in educating future computational fluid dynamics (CFD) professionals lies in
bridging the gap between theoretical understanding and practical application. Traditional
undergraduate CFD courses often lean heavily on instructor-led lectures, leaving limited space for
student engagement through hands-on learning. This stands in stark contrast to the experiences of
industry professionals, who often acquire their skills outside of formal classroom settings. This
suggests that active learning approaches, which engage students beyond passive information
consumption, can foster valuable skill development even without direct classroom instruction4.
Supporting this view, a study by Adair et al.5 found that a significant majority (73%) of CFD
students preferred learning through tutorials, lab activities, or collaborative group work, compared
to only 11% who favored traditional lectures. These findings highlight the need for a shift towards
more active learning approaches in CFD education.

This paper introduces a novel undergraduate CFD course specifically designed to overcome this
challenge. The course curriculum blends a rigorous theoretical foundation with a unique
”tutorial-based” practical experience. In the first segment, the fundamentals of CFD are explored,
emphasizing the numerical solution of differential equations using the finite volume method.
Drawing inspiration from the renowned book of Versteeg and Malalasekera6, “An Introduction to
Computational Fluid Dynamics: The Finite Volume Method,” students gain hands-on experience
implementing numerical solutions for 1D and 2D diffusion and convection-diffusion equations
through Python programming.

Transitioning from theoretical foundations to real-world applications, the second part of the
course equips students with practical experience using industry-standard commercial simulation
software, Ansys Fluent. In this section, students tackle diverse engineering scenarios like
supersonic wind tunnels, laminar and turbulent flow simulations, and convective cooling systems.
This section adopts a unique learning approach: instead of passively receiving instruction on how
to use the CFD code, students actively solve problems by watching pre-recorded tutorials,
replicating the presented scenarios, and submitting their work as quizzes. It’s important to note
that the problems covered in the videos are first discussed in detail in class. Students then
transition to the computer lab equipped with the CFD software, where they watch the videos and
recreate the covered concepts with the instructor readily available to answer any questions that
arise during the simulations.

The course’s comprehensive nature, covering both theoretical fundamentals and practical
experience with industry-standard software, aims to prepare students to address contemporary
fluid mechanics challenges. The teaching methodology integrates theory and ”tutorial-based”
practice, aligning with the evolving landscape of engineering education, which emphasizes
hands-on experience and practical skills. “The Applications of Computational Fluid Mechanics”
course, outlined in this paper, serves as a model for imparting essential CFD skills, contributing to
the advancement of engineering education.

Governing Equations for Fluid Flow

The Applications of Computational Fluid Dynamics course begins by deriving the fundamental
equations for fluid flow, which include the conservation of mass, momentum, and energy.
Notably, this section is both challenging and crucial for understanding the course content. The

governing equations for fluid flow can be intricate, often posing a complexity that students may
find challenging. However, a comprehensive grasp of these equations is essential for students to
numerically solve and interpret the results effectively. Consequently, significant emphasis is
placed on thoroughly deriving these equations in the initial classes. Key references for this
derivation include CFD books by Anderson7, as well as Versteeg and Malalasekera6. Due to
space limitations, the detailed derivation of the conservation equations is omitted, and only the
final form of the equations is presented in the vector form as follows:

Continuity:

∂ρ

∂t
+∇ · (ρV) = 0 (1)

x-momentum:

∂ (ρu)

∂t
+∇ · (ρuV) = −∂p

∂x
+∇ · (µ∇u) + SMx (2)

y-momentum:

∂ (ρv)

∂t
+∇ · (ρvV) = −∂p

∂y
+∇ · (µ∇v) + SMy (3)

z-momentum:

∂ (ρw)

∂t
+∇ · (ρwV) = −∂p

∂z
+∇ · (µ∇w) + SMz (4)

Energy:

∂ (ρe)

∂t
+∇ · (ρeV) = −p∇ ·V +∇ · (k∇T) + Φ + Se (5)

Several points related to Equations (1)-(5) above:

• In Equations (2)-(4), SM represents the momentum source, encompassing both the body
force and viscous stress terms that account for compressibility. This serves to further
streamline and simplify the momentum equations.

• In Equation (5), Φ denotes the dissipation function, responsible for capturing the energy
dissipation resulting from viscous stress, and Se represents the energy source term.

• By combining Equations (1)-(5) with the equations of state for perfect gases, which are:

p = ρRT (6)

and

e = CvT (7)

and assuming known values for the viscosity µ, conduction coefficient k, and specific heat
constant Cv for a given fluid, a system of seven equations and seven unknowns is obtained.
The unknowns include the density ρ, the three velocity components (u, v, w), pressure p,
temperature T , and internal energy e. Consequently, particularly for laminar flows, the
mathematical problem is closed. Given appropriate initial and boundary conditions, solving
these seven equations provides a solution for the seven unknown flow properties.

• Equations (1)-(5) form a set of coupled, nonlinear partial differential equations. It is not
possible to solve these equations analytically, except for a narrow range of very simple
problems. For more complicated real-world engineering problems, these equations can only
be solved numerically and this is where the need for computational fluid dynamics comes
in.

Transport Equation: The Model Equation for Fluid Flow

Examining Equations (1)-(5), one can discern a similarity in their formulation. This commonality
allows for the characterization of these equations under the term known as the transport equation.
The general transport equation for a fluid property ϕ in its differential form is considered:

∂ (ρϕ)

∂t
+∇ · (ρϕV) = ∇ · (Γ∇ϕ) + Sϕ (8)

In the above equation, property ϕ can represent any fluid properties, such as velocity, temperature,
or pollutant concentration. The first term on the left-hand side denotes the temporal change (rate
of increase or decrease) of the property ϕ, while the second term represents the net rate of flow of
the property in or out of the fluid element. On the right-hand side, the first term characterizes the
rate of change (increase or decrease) of the property ϕ due to diffusion, and the second term
indicates the production or destruction of the property.

In Equation (8), by selecting appropriate values for the diffusion coefficient Γ and source terms,
one can set ϕ equal to the following quantities (see Table 1) to obtain the special forms of
conservation equations as presented in Eqs. (1)-(5).

Table 1: Correspondence between Transport Equation and Conservation Laws

ϕ = 1 Continuity
ϕ = u x-momentum
ϕ = v y-momentum
ϕ = w z-momentum
ϕ = T Energy equation

As is commonly practiced in introductory Computational Fluid Dynamics (CFD) courses, this
class utilizes the Finite Volume Method (FVM) to solve the integral form of the transport

equation presented in Eq.(8). This approach introduces students to the numerical methods used in
solving the governing equations of fluid flow, avoiding the complexities associated with
attempting to solve the entire set of conservation laws presented in Eqs. (1)-(5)

We start by integrating Eq. (8) over a random differential control volume d

A

in the form:

∫
CV

∂(ρϕ)

∂t
d

A

+

∫
CV

∇ · (ρϕV) d

A

=

∫
CV

∇ · (Γ∇ϕ) d

A

+

∫
CV

Sϕ d

A

(9)

By applying the Gauss Divergence Theorem, which states that for an arbitrary function F

∫
CV

∇ · F d

A

=

∫
CS

F · dA (10)

the transport equation takes on the following form:

∂

∂t

∫
CV

(ρϕ) d

A

+

∫
CS

(ρϕV) · dA =

∫
CS

(Γ∇ϕ) · dA+

∫
CV

Sϕ d

A

(11)

Introduction to the Finite Volume Method

The finite volume method offers a structured approach to solving partial differential equations,
consisting of the following five fundamental steps.

Step 1: Mesh Generation

Initially, the domain is subdivided into smaller sections, a process commonly referred to as mesh
generation.

Step 2: Deriving the integral form of the differential equations that need to be solved

The second step involves ensuring that students grasp the given differential equations, integrate
the equation, and convert volume integrals to surface integrals using the Gauss divergence
theorem where applicable.

Step 3: Discretization for Internal Cells

Subsequently, the integral form of the equation derived in Step 2 is discretized for internal
cells.

Step 4: Discretization for Boundary Cells

Here, the integral form of the equation derived in Step 2 is discretized for the boundary
cells.

Step 5: Matrix Setup

Once the differential equation is discretized for both internal and boundary cells, the final task is
to set up the matrix system and solve it to determine the fluid property (e.g., the variable in the
differential equation) at each cell.

To illustrate the solution of a differential equation using the finite volume method, we select the
1D convection-diffusion equation with a source term, expressed as:

d

dx
(ρϕu) =

d

dx

(
Γ
dϕ

dx

)
+ Sϕ 0 ≤ x ≤ L (12)

This equation signifies the transportation of the property ϕ, as depicted in the schematic in Figure
1. The domain size is denoted by L, and the values of ϕ at the left and right boundaries are
predetermined. Furthermore, there is a production of ϕ within the control volume, as represented
by the source term Sϕ.

Figure 1: One-dimensional domain for transportation of property ϕ with source

This problem will be solved numerically using the finite volume method and the five steps
presented above.

Step 1: Mesh Generation

Initially, the domain is divided into a finite number of N cells, and N control volumes are created.
For instance, N = 5 can be chosen, resulting in the generation of five finite control volumes, as
illustrated in Figure 2.

Figure 2: Mesh generation

Step 2: Deriving the integral form of the differential equations that need to be solved:

The differential equation given in Eq.12 needs to be solved numerically using FVM. Since the
finite volume method solves the integral form of the differential equations, we begin by
integrating the equation over an arbitrary control volume, yielding:

∫
CV

d

dx
(ρϕu)d

A

=

∫
CV

d

dx

(
Γ
dϕ

dx

)
d

A

+

∫
CV

Sϕd

A

(13)

Applying the Gauss divergence theorem:

∫
CS

(ρϕu)dA =

∫
CS

(
Γ
dϕ

dx

)
dA+

∫
CV

Sϕd

A

(14)

Step 3: Discretize the equation for the internal cells

Figure 3: Internal cell used for discretizing the equation

For an arbitrary internal cell (i) shown in Fig. 3 with the hatched lines and cell boundaries (w) to
the west and (e) to the east, the integral in Eq. 14 can be carried out as:

(ρϕu)A|we =

(
Γ
dϕ

dx

)
A|we + Sϕ

A

(15)

or, since ρ, u, and Γ are constant, and

A

= ∆xA:

ρuA (ϕw − ϕe) = ΓA

[(
dϕ

dx

)
w

−
(
dϕ

dx

)
e

]
+ Sϕ∆xA (16)

The value of ϕ and the gradient (dT/dx) at the west and the east boundaries can be calculated
using linear approximation, or the central differencing as:

ρu

(
ϕi+1 + ϕi

2
− ϕi + ϕi−1

2

)
= Γ

(
ϕi+1 − ϕi

∆x
− ϕi − ϕi−1

∆x

)
+ Sϕ∆x (17)

Defining:

F ≡ ρu and D ≡ Γ

∆x
(18)

Eq. 17 can be simplified as:

(
−D − F

2

)
ϕi−1 + 2Dϕi +

(
−D +

F

2

)
ϕi−1 = Sϕ∆x (19)

Equation 19 is valid for all internal cells.

Step 4: Discretize the equation for the boundary cells

Figure 4: Cell at the left boundary

Starting with the left boundary shown in Figure 4 with the boundaries being (A) and (w),
integration of Eq. 14 over this control results in

(ρϕu)A|wA =

(
Γ
dϕ

dx

)
A|wA + Sϕ

A

(20)

which can be written as:

ρu (ϕw − ϕA) = Γ

[(
dϕ

dx

)
w

−
(
dϕ

dx

)
A

]
+ Sϕ∆x (21)

Analyzing each term in the equation above, ϕw can be calculated as the average of ϕ at the two
neighboring nodes, and ϕA is already known since ϕA = ϕ0. Moving on to the terms on the
left-hand side: the gradient (dϕ/dx)w can be calculated using central difference approximation,
and (dϕ/dx)A can be determined using forward differencing approximation. Utilizing this
information, Eq. 21 becomes:

ρu

(
ϕ2 + ϕ2

2
− ϕ0

)
= Γ

(
ϕ2 − ϕ1

∆x
− ϕ1 − ϕ0

∆x/2

)
+ Sϕ∆x (22)

Using the definitions provided in Eq.18, the discretized form of the above equation
becomes:

(
3D +

F

2

)
ϕ1 +

(
−D +

F

2

)
ϕ2 = (F + 2D)ϕ0 + Sϕ∆x (23)

Figure 5: Cell at the right boundary

Moving on to the right boundary shown in Figure 5 with the boundaries being (e) and (B),
integration of Eq. 14 over this control volume yields:

(ρϕu)A|Be =

(
Γ
dϕ

dx

)
A|Be + Sϕ

A

(24)

which can be written as:

ρu (ϕB − ϕe) = Γ

[(
dϕ

dx

)
B

−
(
dϕ

dx

)
e

]
+ Sϕ∆x (25)

Analyzing each term in the equation above, ϕB is known since ϕB = ϕL, and ϕe can be calculated
as the average of ϕ at the two neighboring nodes. Moving on to the terms on the left-hand side:
the gradient (dϕ/dx)B can be calculated using backward difference approximation, and (dϕ/dx)e
can be determined using central differencing approximation. Utilizing this information along with
the definitions provided in Eq. 18, the discretized form of Eq. 25 becomes:

(
−D − F

2

)
ϕ4 +

(
3D − F

2

)
ϕ5 =

(
−F

2
+ 2D

)
ϕL + Sϕ∆x (26)

Step 5: Setting up the matrix

Once the differential equation that needs to be solved is discretized for the internal and boundary
cells, the next step is to set up the matrix system and solve it to obtain the fluid property, in this
case, ϕ, at each node.

Table 2: Discretized algebraic equations for each cell

Cell Number Discretized equation

1
(
3D + F

2

)
ϕ1 +

(
−D + F

2

)
ϕ2 = (F + 2D)ϕ0 + Sϕ∆x

2
(
−D − F

2

)
ϕ1 + 2Dϕ2 +

(
−D + F

2

)
ϕ3 = Sϕ∆x

3
(
−D − F

2

)
ϕ2 + 2Dϕ3 +

(
−D + F

2

)
ϕ4 = Sϕ∆x

4
(
−D − F

2

)
ϕ3 + 2Dϕ4 +

(
−D + F

2

)
ϕ5 = Sϕ∆x

5
(
−D − F

2

)
ϕ4 +

(
3D − F

2

)
ϕ5 =

(−F
2

+ 2D
)
ϕL + Sϕ∆x

Table 2 summarizes the algebraic equations obtained from discretizing the differential equation
for the boundary and internal cells, as presented above in Eq. (22) for the cell at the left boundary,
Eq. (26) for the cell at the right boundary, and Eq. (19) for internal cells. Note that, although the
domain is divided into five cells for this problem, Eqs. (19), (22), and (26) are independent of the
number of cells. We could have divided the domain into 1000 cells, and still, Eq. (22) would have
been valid for the left cell (cell number 1), Eq. (26) would have been valid for the right cell (cell
number 1000), and Eq. (19) would have been valid for the remaining 998 internal cells. An
algebraic equation for each internal cell could have been obtained by replacing (i) in this equation
with the corresponding cell number.

Next, two numerical examples are presented to reinforce the use of the finite volume method in
the solution of the differential equations. It is noted that these two examples are modified from
Ref.6.

Example 1: 1D diffusion Equation with the Source Term

Figure 6: Heat conduction in 1D rod with the heat source

Consider the problem of heat conduction in an insulated rod, as illustrated in the figure. 6. The
rod has a length of L = 2 cm, a constant thermal conductivity k = 0.5 W/mK, an area of
A = 1 m2, and uniform heat generation q = 1000 kW/m3. Faces A and B are at temperatures
TA = 100 ◦C and TB = 200 ◦C, respectively. The governing equation is given by:

d

dx

(
k
dT

dx

)
+ q = 0 (27)

(a) Solve this problem analytically and find the temperature distribution T (x) along the rod.

(b) Utilize the finite volume method with 5 cells (N = 5) to calculate the steady-state
temperature distribution in the rod.

To solve this problem analytically, Eq. 27 can be integrated twice, and boundary conditions can
be utilized, yielding an analytical solution for T (x) as

T (x) =

[
TB − TA

L
+

q

2k
(L− x)

]
. (28)

To solve this problem numerically using the Finite Volume Method with 5 cells, we follow the
same steps covered earlier for the solution of Eq. 12. By setting u = 0, ϕ = T , Sϕ = q, and
Γ = k, we can rewrite Eq. 12 to obtain Eq. 27. Additionally, we have ϕ0 = TA and ϕL = TB.
With these substitutions, the discretized algebraic equations in Table 2 become:

Table 3: Discretized algebraic equations for 1D diffusion problem

Cell Number Discretized equation

1 3DT1 −DT2 = 2DT0 + q∆x

2 −DT1 + 2DT2 −DT3 = q∆x

3 −DT2 + 2DT3 −DT4 = q∆x

4 −DT3 + 2DT4 −DT5 = q∆x

5 −DT4 + 3DT5 = (2D)TL + q∆x

Equations in the above table can be put in the matrix as:


3D −D 0 0 0
−D 2D −D 0 0
0 −D 2D −D 0
0 0 −D 2D −D
0 0 0 −D 3D



T1

T2

T3

T4

T5

 =


2DT0 + q∆x

q∆x
q∆x
q∆x

(2D)TL + q∆x

 (29)

By solving this matrix system, the temperature at each node can be calculated. This process is
implemented through a Python code, as illustrated in Figure 7. The results obtained from the
numerical calculations are then plotted against the exact solution of the differential equation in
Figure 8. The numerical results, along with the exact solution, are tabulated in Table 4, where the
percent error due to approximations in the numeric solution is also presented. As shown in this
table, when using 5 cells in this particular case, the error is within the range of 3% or less.

One crucial point to emphasize here is the importance of programming and knowledge of a
programming language in the numerical solutions of engineering problems. While the matrix
system presented in Eq. (29) is relatively straightforward and could be solved using an
engineering calculator, real-world engineering problems often involve considerably more
complexity. To illustrate this, consider a simple modification to this problem: increasing the
number of cells from 5 to 15. Solving the resulting matrix manually on a calculator would
become cumbersome and time-consuming. In contrast, with Python code, this change is
effortless. By simply adjusting the value of N to 15 and rerunning the program, we can efficiently
obtain the numerical solution for this problem with 15 cells as shown in Fig. 9.

import numpy as np
import matplotlib.pyplot as plt

TA, TB, q, L, k, N = 100, 200, 1e6, 0.02, 0.5, 5
dx = L / N
D=k/dx

x = np.linspace(dx / 2, L - dx / 2, N)

a = (np.diag(-2 * np.ones(N)) +
np.diag(np.ones(N - 1), 1) +
np.diag(np.ones(N - 1), -1))

a[0, 0], a[-1, -1] = 3D, 3D

b = -q * dx * np.ones(N)
b[0] -= 2 *D* TA
b[-1] -= 2 *D* TB

tempr = np.linalg.solve(a, b)

x_analytic = np.linspace(0, L, 100)
t_analytic = ((TB - TA) / L +

q / (2 * k) * (L - x_analytic)) * x_analytic + TA

plt.plot(x_analytic, t_analytic, ’k’, label=’Analytic’)
plt.plot(x, tempr, ’ro’, label=’Numeric’)
plt.legend()
plt.locator_params(axis=’x’, nbins=5)
plt.xlabel(’$x(m)$’)
plt.ylabel(’$T(ˆoC)$’)

Figure 7: Python code for FVM solution of 1D diffusion with sourcse

Figure 8: Exact vs FVM (numeric) solution (imax = 5)

Table 4: Comparison of Finite Volume and Exact Solutions (imax = 5)

Node Number 1 2 3 4 5
x (m) 0.002 0.006 0.01 0.014 0.018

Finite Volume Solution 150 218 254 258 230
Exact Solution 146 214 250 254 226

Percentage Error (%) 2.73 1.86 1.60 1.57 1.76

Figure 9: Exact vs FVM (numeric) solution (imax = 15)

Figures 9 also illustrate the importance of mesh refinement in numerical methods. In Fig. 8, with
only 5 cells, the numerical solution deviates from the analytical result. However, refining the
mesh to 15 cells in Fig. 9 leads to perfect agreement, highlighting the impact of cell size on
accuracy. This is a key concept in computational fluid dynamics (CFD): mesh independence. As
the number of grid points increases and cell size ∆x decreases, the error in the numerical solution
shrinks, leading to better agreement with the exact solution. Achieving mesh independence
involves systematically refining the mesh and monitoring key parameters until the solution does
not change with further refinement of the mesh. This ensures that the chosen mesh is sufficiently
fine for reliable CFD simulations.

Example 2: 1D Convection Diffusion Equation

Figure 10: One-dimensional domain for transportation of property ϕ. with no source

Consider the source free 1D convection-diffusion equation in the form

d

dx
(ρϕu) =

d

dx

(
Γ
dϕ

dx

)
0 ≤ x ≤ 1 (30)

which represents the transport of the property ϕ through convection and diffusion in
one-dimensional domain shown in Figure 10. The boundary conditions are: ϕ(x = 0) = ϕ0 = 1
and ϕ(x = L) = ϕL = 0.

Solve this equation numerically using the Finite Volume Method and the following parameters:
u = 0.1 m/s, L = 1.0 m, ρ = 1.0 kg/m3, Γ = 0.1 kg/m.s. Compare the results against the exact
solution of:

ϕ(x) = ϕ0 + (ϕL − ϕ0)
exp (ρux/Γ)− 1

exp (ρuL/Γ)− 1
(31)

To solve this problem numerically using the Finite Volume Method with 5 cells, we follow the
same steps covered earlier for Eq.12. Comparing Eqs.12 and 30, we see that they are identical
except for the absence of a source term in Eq. 30. Additionally, the domain size is set to L = 1 m,
and the boundary conditions are specified as ϕ0 = 1 and ϕL = 0. With these substitutions, the
discretized algebraic equations in Table 2 become:

Table 5: Discretized algebraic equations, (Sϕ = 0, ϕ0 = 1 and ϕL = 0)

Cell Number Discretized equation

1
(
3D + F

2

)
ϕ1 +

(
−D + F

2

)
ϕ2 = F + 2D

2
(
−D − F

2

)
ϕ1 + 2Dϕ2 +

(
−D + F

2

)
ϕ3 = 0

3
(
−D − F

2

)
ϕ2 + 2Dϕ3 +

(
−D + F

2

)
ϕ4 = 0

4
(
−D − F

2

)
ϕ3 + 2Dϕ4 +

(
−D + F

2

)
ϕ5 = 0

5
(
−D − F

2

)
ϕ4 +

(
3D − F

2

)
ϕ5 = 0

The discretized equations in Table 5 can be put in the matrix as follows:


3D + F/2 −D + F/2 0 0 0
−D − F/2 2D −D − F/2 0 0

0 −D − F/2 2D −D + F/2 0
0 0 −D − F/2 2D −D + F/2
0 0 0 −D − F/2 3D + F/2



ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

 =


F + 2D

0
0
0
0

 (32)

By solving this matrix system, the property ϕ at each node can be calculated. This process is
again implemented through Python code, as illustrated in Figure 11. The results obtained from the
numerical calculations are then plotted against the exact solution of the differential equation in
Figure 12.

These examples provide a solid foundation for students to grasp the fundamentals of the Finite
Volume Method (FVM). Notably, several additional examples are covered in class before
transitioning to applications with commercial CFD software, Fluent. These include an example
demonstrating the upwind scheme for obtaining a converged solution and another exploring the
solution of the 2D diffusion equation. These are omitted here to maintain brevity.

Two homework sets are assigned to test student comprehension of the FVM. These problems
mirror those covered in class and require students to use Python for programming. Recognizing
the diverse Python experience among students, the code structure is provided, with students only
required to modify specific sections relevant to the given problem. It’s important to emphasize
that Python use in this CFD class is a unique and contemporary feature. This is because many
commercial CFD software packages allow user customization and optimization, which is often
done in Python. Therefore, having students write simple Python solutions for differential
equations prepares them for future endeavors as CFD engineers in industry, where basic Python
knowledge is increasingly valuable.

import numpy as np
import matplotlib.pyplot as plt

Constants
rho, u, gamma, L = 1, 0.1, 0.1, 1
Fi0, FiL = 1, 0
N = 5
dx = L / N
F = rho * u
D = gamma / dx

Analytical solution
x_analytic = np.linspace(0, L, 100)
Fi_analytic = (

Fi0 + (FiL - Fi0) * (np.exp(F * x_analytic / gamma) - 1)
/ (np.exp(F * L / gamma) - 1)

)

Numeric solution
x = np.linspace(dx / 2, L - dx / 2, N)
a = (

np.diag((2 * D) * np.ones(N))
+ np.diag((-D - F / 2) * np.ones(N - 1), -1)
+ np.diag((-D + F / 2) * np.ones(N - 1), 1)

)
a[0, 0] += D + F / 2
a[-1, -1] += D - F / 2

b = np.zeros(N)
b[[0, -1]] = [F + 2 * D, 0]

Fi = np.linalg.solve(a, b)

Plotting
plt.plot(x_analytic, Fi_analytic, ’k’, label=’Analytical’)
plt.plot(x, Fi, ’--ro’, label=’Numerical’)
plt.legend(loc=’best’, shadow=True, fontsize=’x-large’)
plt.xlabel(’x (m)’)
plt.ylabel(’ϕ’)

Figure 11: Python code for FVM solution of 1D convection diffusion equation

Figure 12: Exact vs FVM (numeric) solution (N = 5)

Applications of CFD Using Ansys Fluent

This CFD course stands out for its focus on real-world applications using the commercial code
Ansys Fluent, comprising 60% of the class. Before diving into the commercial code, students are
introduced to the fact that CFD codes, like Ansys Fluent, follow steps similar to those discussed
in class for solving conservation equations of fluid flow using the finite volume method.
Specifically, the process involves mesh generation, discretization of relevant equations using the
finite method, and solving the discretized equations to obtain flow properties at each node.

A key distinction between Fluent and the class approach lies in how the solution to discretized
equations is achieved. In class, matrix algebra is utilized, while commercial codes opt for iterative
schemes due to their computational efficiency.

The class meets twice a week for 80 minutes each session. During the first 80 minutes, the class
delves into an in-depth discussion of the selected problem. In the subsequent 80 minutes, students
convene in a computer lab equipped with the Ansys Fluent CFD code. They watch a pre-recorded
video illustrating the simulation of the particular problem, then recreate the simulation and submit
it as a quiz. The instructor is available during this lab time to address any queries from students.
Appendix-1 includes links to video recordings for simulations of each problem covered in the
CFD class, and a brief discussion of two of these problems follows.

Example 1: Inviscid Flow in a supersonic wind tunnel

The application section of the course begins with the simulation of inviscid flow inside a
supersonic wind tunnel designed for testing air vehicles capable of exceeding the speed of sound
(Fig. 13).

Concentrating on the 2D midsection of such a tunnel as shown in Fig. 14, the flow at the inlet of
the wind tunnel comes from a reservoir where the pressure and temperature are P0 and T0

Figure 13: supersonic wind tunnel8

Figure 14: 2D cross section of a supersonic wind tunnel

respectively. The reservoir’s large size ensures minimal flow velocity within, making P0 and T0

the stagnation pressure and temperature. The flow then proceeds through a convergent-divergent
nozzle, expanding to supersonic flow before entering the test section. Further information on the
workings of supersonic wind tunnels can be found on the NASA website9.

For this exercise, the simulation focuses on the flow inside the converging/diverging nozzle
preceding the test section shown in Fig. 15. Only half of the nozzle is simulated due to symmetry.
The simulation assumes inviscid flow, as viscous effects are confined to narrow regions along the
walls and have a limited impact on predicting flow properties within the test section.

The choice of this exercise as the initial class assignment is rooted in its status as a classic
textbook problem with an analytical solution. Consequently, students can compare CFD results
against analytical outcomes to assess the accuracy of their simulations. Flow properties for
comparison include the development of Mach number and static pressure across the
convergent-divergent nozzle, represented by the equations:

(
A

At

)2

=
1

M2

[
2

γ + 1

(
1 +

γ − 1

2
M2

)] γ+1
γ−1

(33)

p

P0

=

(
1 +

γ − 1

2
M2

)− γ
γ−1

(34)

This problem can be solved numerically using Ansys Fluent by applying the same steps that were

Figure 15: Converging diverging section of the nozzle simulated using CFD

discussed earlier when the Finite Volume Method was discussed, which are:

Step 1: Mesh Generation

The first step is dividing the domain into smaller subdomains, which is also known as the mesh
generation. This is done in Ansys Meshing, and the resultant mesh is shown in Fig. 16.

Figure 16: Mesh generation

Step 2: Deriving the integral form of the differential equations that need to be solved

The second step is to ensure that students understand which equations Ansys Fluent will solve.
Because this is a 2D, steady, inviscid flow problem, the conservation equations presented in Eqs
(1)-(5) undergo significant simplification and adopt the following form:

∂(ρu)

∂x
+

∂(ρv)

∂y
= 0 (35)

∂(ρu2)

∂x
+

∂(ρuv)

∂y
= −∂p

∂x
(36)

∂(ρuv)

∂x
+

∂(ρv2)

∂y
= −∂p

∂y
(37)

cV

[
∂(ρuT)

∂x
+

∂(ρvT)

∂y

]
= −p

(
∂u

∂x
+

∂v

∂y

)
(38)

The above equations together with the state equation of

p = ρRT (39)

are integrated over each control volume and integral form of these equations are obtained.

Steps 3-5: Discretization and solution of the equations

Students are informed that in the subsequent stages, Ansys Fluent utilizes the finite volume
method to discretize the governing equations. The resulting set of algebraic equations is then
solved using an iterative scheme. Figures (17)-(20) display some results obtained from the
solution of this problem by Ansys Fluent using the Finite Volume Method.

Figure 17: Mach Number Plot at the Symmetry-line (CFD vs 1D theory)

Figure 18: Contours of static pressure

Figure 19: Contours of Mach Number

Example 2: Laminar Flow around a 2D Cylinder

For the second problem, we simulate 2D flow around a cylinder at different Reynolds Numbers.
The Reynolds Numbers selected are 2, 10, 20, and 40. The cylinder diameter is 1 meter, fluid
density is 1 kg/m3, and dynamic viscosity is 0.05 kg/(m·s). The velocity is varied to achieve the
desired Reynolds Number. It is noted that this problem is modified from an Ansys innovation
course10. The problem schematic and boundary conditions are shown in Figure (20).

Figure 20: Problem schematic and boundary conditions (Modified from10)

Step 1: Mesh Generation

The meh generated for this problem using Asnys meshing is shown in Fig. 21.

Figure 21: Mesh generation

Step 2: Deriving the integral form of the differential equations that need to be solved

Similar to the previous problem, the second step is to ensure that students understand which
equations Ansys Fluent will solve. This problem involves 2D, steady, incompressible, laminar
flow. Additionally, there is no need to solve the energy equation since temperature is not of
interest, and thus, the problem can be assumed isothermal. Under these assumptions, the
conservation equations presented in Eqs (1)-(5) take on the following form:

∂u

∂x
+

∂v

∂y
= 0 (40)

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ µ

(
∂2u

∂x2
+

∂2u

∂y2

)
(41)

ρ

(
u
∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ µ

(
∂2v

∂x2
+

∂2v

∂y2

)
(42)

Above equations are integrated over each control volume and integral form of these equations are
obtained.

Steps 3-5: Discretization and solution of the equations

In the subsequent steps, Ansys Fluent utilizes the finite volume method to discretize the integral
form of the equations presented above. The resulting set of algebraic equations is then solved
using an iterative scheme. It is noted that for this case, by solving the above three equations, the
commercial code will provide three flow properties at each node: pressure p, x-component of
velocity u, and y-component of velocity v. These properties can be used to calculate other
parameters of interest, such as drag force or drag coefficient. Figure (22) displays students’ work,
depicting pathlines colored by velocity magnitude, while Table 6 presents students’ work

comparing the drag coefficient as predicted by CFD versus experimental data for different
Reynolds numbers.

Figure 22: Pahlines around 2D cylinder as function of Reynolds number

Table 6: Comparison of Drag Coefficients

Reynolds Number Coefficient of Drag (CFD) Experimental Percent Difference
2 7.65 7.3 4.8%
10 2.82 2.8 0.9%
20 2.04 2.0 2.1%
40 1.53 1.5 2.1%

Beyond the two exemplar cases presented above, several other cases are covered in the full
course. These additional cases include:

• CFD simulation of Turbulent Flow in a mixing elbow

• Convective Cooling of a heat sink

• CFD simulation of unsteady flow around a 2D Cylinder

• Design and optimization of a high-speed compressor stage using Ansys turbo tools and
CFD

While the details of these cases are not presented here, recordings are accessible through the links
provided in the Appendix-1.

It is important to note that before delving into the CFD solutions for turbulent flow cases, two
lectures are dedicated to providing a foundational understanding of turbulent flows. These
lectures cover:

• Introduction to turbulent flow

• Using the Reynolds number to classify laminar vs. turbulent flow

• Modeling turbulent flow in CFD:

– Selecting an appropriate turbulence model

– Choosing methods for near-wall flow modeling

– Specifying turbulence boundary conditions at inlets

Finally, in the lectures, the importance of validation and verification, the sensitivity of simulations
to turbulence models, and the significance of mesh-independent studies in CFD are discussed.
This is accomplished by exploring various technical publications in these areas. For instance, the
importance of validation and verification is highlighted using resources such as the AIAA guide
on validation and clarification of CFD11, and students are introduced to the NASA
website8.

Additionally, the sensitivity of solutions to turbulence models and the necessity of
mesh-independent studies are explored by discussing publications authored by the
instructor12,13,14,15 and other researchers16,17. These documents are also provided for students to
review independently.

Conclusion

The paper has presented the design and implementation of a unique ”Applications of
Computational Fluid Mechanics” course tailored for senior undergraduate students. Its innovative
structure integrates theoretical foundations with a practical, ”tutorial-based” experience,
equipping students with both the knowledge and skills necessary to tackle real-world fluid
mechanics and heat transfer challenges.

The course strikes a balance between theoretical fundamentals, covered through numerical
solution implementation in Python, and hands-on experience using industry-standard Ansys
Fluent software. By incorporating Python in the introductory phase, students are prepared for
future industry endeavors, given Python’s increasing utilization for customization and
optimization in commercial CFD packages. Additionally, the course’s second part adopts a
unique problem-solving approach where students actively replicate pre-recorded tutorials,
fostering deeper understanding and engagement.

The comprehensive and student-centered approach of this course prepares future engineers with
the critical skills and software proficiency required to address contemporary fluid mechanics
challenges. By integrating Python usage and active learning strategies, this course serves as a
model for equipping students with essential CFD skills, contributing to the advancement of
engineering education.

References

[1] Kendrick Aung. Design and implementation of an undergraduate computational fluid dynamics (cfd) course. In
2003 Annual Conference, pages 8–367, 2003.

[2] Rajesh Bhaskaran. Strategies for the integration of computer-based simulation technology into the engineering
curriculum. In 2007 Annual Conference & Exposition, pages 12–1303, 2007.

[3] Steven AE Miller. A contemporary course on the introduction to computational fluid dynamics. International
Journal of Mechanical Engineering Education, 48(4):315–334, 2020.

[4] Xiangdong Li and Sherman CP Cheung. A learning-centered computational fluid dynamics course for
undergraduate engineering students. International Journal of Mechanical Engineering Education, 2024.

[5] Desmond Adair, Zhumabay Bakenov, and Martin Jaeger. Building on a traditional chemical engineering
curriculum using computational fluid dynamics. Education for Chemical Engineers, 9(4):e85–e93, 2014.

[6] Henk Kaarle Versteeg and Weeratunge Malalasekera. An introduction to computational fluid dynamics: the
finite volume method. Pearson education, 2007.

[7] John David Anderson, Gérard Degrez, Erik Dick, and Roger Grundmann. Computational fluid dynamics: an
introduction. Springer Science & Business Media, 2013.

[8] NASA Glenn Research Center. Overview of cfd verification validation, . URL
https://www.grc.nasa.gov/www/wind/valid/tutorial/overview.html. Accessed
February 8, 2024.

[9] NASA Glenn Research Center. Facilities — glenn research center — nasa, . URL
https://www1.grc.nasa.gov/facilities/.

[10] Ansys Inc. Steady-flow past a cylinder. URL
https://courses.ansys.com/index.php/courses/steady-flow-past-a-cylinder/.
Accessed February 7, 2024.

[11] Computational Fluid Dynamics Committee. Guide: Guide for the verification and validation of computational
fluid dynamics simulations (aiaa g-077-1998 (2002)), 1998.

[12] Mehmet N Sarimurat and Thong Q Dang. Shock management in diverging flow passages by blowing/suction,
part 2: applications. Journal of Propulsion and Power, 28(6):1230–1242, 2012.

[13] Mehmet N Sarimurat and Thong Q Dang. An analytical model for boundary layer control via steady blowing
and its application to naca-65-410 cascade. Journal of Turbomachinery, 136(6):061011, 2014.

[14] Mehmet N Sarimurat. Assessment of a correlation based transitional model for compressor cascade
performance prediction.

[15] Mehmet Sarimurat. A comprehensive analysis of flow blowing and its effects on change in main flow
conditions and loss generation in compressible flows. Aerospace Science and Technology, 130:107905, 2022.

[16] Robin Blair Langtry, FR Menter, SR Likki, YB Suzen, PG Huang, and S Vo¨ lker. A correlation-based
transition model using local variables: Part ii—test cases and industrial applications. In Turbo Expo: Power for
Land, Sea, and Air, volume 41693, pages 69–79, 2004.

[17] Robin Langtry, Janusz Gola, and Florian Menter. Predicting 2d airfoil and 3d wind turbine rotor performance
using a transition model for general cfd codes. In 44th AIAA aerospace sciences meeting and exhibit, page 395,
2006.

Appendix-1: Link to the pre-recorded videos on CFD applications

1. Application 1: CFD simulation of a supersonic wind tunnel
Link: https://video.syr.edu/media/t/1_tfphjkw8

2. Application 2: CFD Simulation of a flow around 2D Cylinder
Link: https://video.syr.edu/media/t/1_ovwrgu1t

3. Application 3: CFD Simulation of turbulent flow in a mixing elbow
Link: https://video.syr.edu/media/t/1_phu3e71t

4. Application 4: Convective cooling of a heat sink
Link: https://video.syr.edu/media/t/1_phu3e71t

5. Application 5: Aeromechanical-design-of-a-compressor-stage
Link: https://video.syr.edu/media/t/1_whegz752

