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Abstract 

 

Artificial Intelligence (AI) is impacting the world similarly to how Industrial Revolution and 

Digital Revolution impacted the world in 18th and 20th centuries. The influence of Artificial 

Intelligence in shaping the future is inevitable and crucial for students in any major to acquire the 

skills needed to utilize AI in their respective fields and careers. One of the most effective 

approaches to introducing a new topic is by involving students in competitions. Amazon 

DeepRacer offers an excellent opportunity to introduce Machine Learning and Artificial 

Intelligence to the student body, providing essential tools and training to get started. In this study, 

a group of Mechanical Engineering students at The Citadel formed the artificial intelligence (AI) 

club and trained an Amazon DeepRacer car to follow a predefined trail. This study details the 

steps we took to train the car and compete in Amazon DeepRacer competition among senior 

military colleges. 

 

Introduction 

 

Hands-on activities are a key factor in effective engineering education. There are several ways to 

get students involved in the activities that they can apply knowledge learned in the classrooms to 

the real-world prototypes. Student clubs, competitions and projects are an excellent experience 

for students to design, build, test and troubleshoot real world functioning systems. Another great 

advantage, specifically for institutions focused on undergraduate teaching, is learning skills in 

conducting research to optimize, improve or add features to their prototype. Examples of 

engineering student clubs include rocketry club [1], Baja SAE club [2,3] and Robotic club [4]. In 

the past decade, the advent of Graphical Processing Units (GPUs) accelerated research and 

applications in the fields requiring intense computations. Machine and deep learning were the 

fields that benefited significantly from GPUs as they are computationally, very demanding. 



Although machine learning and deep learning have been used for decades, ChatGPT was the first 

application to demonstrate the power and usefulness of Artificial Intelligence (AI) to a public 

audience. Since then, many fields have utilized AI to their advantage. The power and 

effectiveness of AI in many fields have led many to believe the next revolution like agriculture, 

the industrial revolution, and technology will be centered around Artificial Intelligence.  

As it is crucial for students to equip themselves with skills in artificial intelligence to succeed in 

their future career or graduate studies, at Mechanical Engineering Department at The Citadel we 

formed AI club in summer 2023 and hosted the Amazon DeepRacer competition among senior 

military schools in November 2023. In summer 2023 the Citadel AI club started researching 

artificial intelligence to have general idea about the field and then focused specifically to 

Amazon DeepRacer on how that works. Meanwhile the adviser of the club, Dr. Niksiar, took two 

Amazon bootcamps on machine learning and deep learning to be able to guide the team with 

specific technical details. After the initial research on AI and DeepRacer in Summer 2023, 

Citadel team focused on choosing appropriate hyper-parameters and writing reward function to 

get ready for competition on November 8th. The emphasis here was on self-taught experience, 

meaning students take responsibility for learning and implementing DeepRacer with minimal 

guidance from adviser. At the end, this objective was met perfectly, and Citadel team did a great 

job on this. Amazon DeepRacer is a great way to introduce AI to the student body in any major. 

Amazon has created an infrastructure for students or universities who are interested in learning 

AI through Amazon DeepRacer. Amazon provides tutorials, documentation, and sample code to 

help developers get started. Amazon DeepRacer is supported through Amazon Web Services 

(AWS) in which developers can run their models on a cloud-based platform. Below we explain 

the structure and features of Amazon DeepRacer so that developers interested in using 

DeepRacer can follow along and start using DeepRacer. Although the perception is artificial 

intelligence is highly related to computer science, in this study we show that with the aid of 

Amazon DeepRacer infrastructure, all majors can get involved. 

 

Amazon DeepRacer 

 

Amazon DeepRacer is a 1/18 scale autonomous race car with a front camera receiving input data 

as an image (Figure 1, left). Amazon DeepRacer uses reinforcement learning, a subcategory of 



machine learning for its operation. Reinforcement learning works based on the reward concept, 

the car collects reward as long as it stays on track. In reinforcement learning, the car goes 

through many iterations which is called training and can range from 1-10 hrs. The training 

process is done in the simulator which will be discussed in the next section. AWS already has 61 

different tracks for Amazon DeepRacer and we chose the “A to Z Speedway” (Figure 1, right) 

for this competition and the cars were running counterclockwise. Also, there are three different 

race types that can be chosen: 

- Time Trial: performance is evaluated based on the fastest time 

- Object avoidance: the car is racing on a two-lane track with a fixed number of stationary 

obstacles placed along the track 

- Head-to-head racing: the car is racing against other cars on a two-lane track. 

The time trial was chosen for the competition.  

  
Figure 1. (left) Amazon Deep Racer car. (Right) simulator environment [5] 

 

Simulator 

 

The training process is done on a simulator which makes the process way more convenient and 

easier. This means that during the training process whenever the car gets off the track the user 

does not need to pick it up and put it on the start point again and repeat this for several hours of 

training. Instead, the developer can create the model in the simulator and let the car train itself. 

Whenever it gets off track, the computer puts it on the start point again for a new iteration of 

training. Figure 2 shows a car going through training on the simulator. There are several factors 



that come into play regarding how a model will perform. They can be boiled down into three 

main categories: hyperparameters, reward function, and training. Below we go over them briefly. 

 
Figure 2. A to Z Speedway track was chosen for competition [5] 

Reward Function 

 

The reward function defines how the car is going to be rewarded for staying on track. As an 

example, Figure 3 shows a reward function that rewards the car with 2 points if it stays on the 

center lane, 0.2 points if it enters black cells and zero points if it enters purple lanes. Through 

training, the car will learn that staying on the center line is the most beneficial behavior as it 

collects the maximum reward. Different rewarding mechanisms might be applied to keep the car 

on track depending on the purpose. As an example, one can be very conservative and select a 

very low speed for the car and penalize the car heavily in the case of it getting off the track to 

ensure that the car finishes a lap without getting off the track; this comes at expense of a long 

time run. In contrast, one might choose to pick a higher speed for the car and be less restrictive in 

regard to getting off the centerline and implement some mechanism to bring the car back to the 

center, this will result in a faster run for the car, provided it does not get off the track. Hence, 

with reward functions developers can be very creative and achieve a very competitive lap time 

with DeepRacer.  



 
Figure 3. A to Z Speedway track was chosen for competition [5] 

 

In Figure 4, we have shown an example of a reward function (this is not the code for reward 

function shown in Figure 3). Reward functions are written in python and utilize the information 

gathered from the car’s internal camera to calculate the best position for it, as well as the best 

course to correct its position. The car is inherently aware of the information contained within the 

parameter matrix. This information includes the distance from the centerline of the track, the 

total width of the track, and the direction in which the wheels are currently turned. It uses this 

information to divide the track into 3 types of location; on target (orange lane in Figure 3), 

which is within a specified bound around the centerline, the midrange (black lane in Figure 3), 

when the car loses some of its reward but is not immediately penalized, and the outside of the 

track, (purple lane in Figure 3) where the car is directly penalized for being too far from the 

center, as the car is likely to end up off the track and requiring a reset. All these calculations are 

utilized to affect the variable “reward” which is then returned to the main code running within 

the car. The higher the value of the reward, the more likely the car is to repeat the actions it took 

previously.  



 
Figure 4. Sample code for a reward function 

 

Hyper-parameters 

 

Hyper-parameters are the parameters that the user can change to optimize the model’s 

performance for a specific application or dataset. Amazon DeepRacer has a total of 9 hyper-

parameters that can affect the car’s performance on the track, based on how well it stays on the 

track and how quickly it can finish a lap. Below we explain each hyper-parameter separately: 

1- Gradient descent batch size. As the model trains, it gains experience, and stores it into an 

“experience bucket”. The higher the value of gradient decent, the more experience the model 

uses for later iterations. A higher value results in a smoother operation, but it is more likely to 

learn more slowly or become overfitted. However, a gradient descent batch size that is too low 

would result in a model that cannot learn from past mistakes and successes at all [6].  

def reward_function(params): 
    ''' 
    Example of penalize steering, which helps mitigate zig-zag behaviors 
    ''' 
    # Read input parameters 
    distance_from_center = params['distance_from_center'] 
    track_width = params['track_width'] 
    abs_steering = abs(params['steering_angle']) # Only need the absolute steering 
angle 
 
    # Calculate 3 marks that are farther and father away from the center line 
    marker_1 = 0.1 * track_width 
    marker_2 = 0.25 * track_width 
    marker_3 = 0.5 * track_width 
 
    # Give higher reward if the car is closer to center line and vice versa 
    if distance_from_center <= marker_1: 
        reward = 1.0 
    elif distance_from_center <= marker_2: 
        reward = 0.5 
    elif distance_from_center <= marker_3: 
        reward = 0.1 
    else: 
        reward = 1e-3  # likely crashed/ close to off track 
 
    # Steering penality threshold, change the number based on your action space 
setting 
    ABS_STEERING_THRESHOLD = 15  
     
    # Penalize reward if the car is steering too much 
    if abs_steering > ABS_STEERING_THRESHOLD: 
        reward *= 0.8 
    return float(reward) 

        

 



2- Number of epochs- This hyperparameter is a measure of how often the neural network of the 

model updates. When this number is higher, each alteration of the network has more data to work 

with and therefore is going to be less random. When this value is small, the model may happen to 

stumble into success, and therefore it may train faster than a higher value; however, this will 

come at the cost of a model that is more sporadic and make seemingly nonsensical movements.  

3- Learning rate- This value determines how much the model gains from gradient decent 

between each iteration. This number, being higher results in a model that will train much quicker 

but may not focus on a definite successful run.  

4- Entropy- This value determines how much randomness will influence the network in each 

iteration. A higher number will result in a more potentially chaotic model, but it will find 

different routes that may result in a better or faster time. If this value is too high, the model does 

not learn from its actions, and it always moves randomly.  

5- Discount factor- This value determines how many options the model have to choose from 

before each and every action, The larger this number is, the longer training takes, but the model 

may become more creative in determining its track lines 

6- Loss type- This model can be one of two options, Mean Squared error, or Huber loss. Mean 

squared error tends to be a faster method but may be less likely to find a successful path.  

7- Number of experience episodes between each policy-updating iteration- As previously 

mentioned, some of the prior hyperparameters refer to an experience bank. This model 

determines how large of a bank the model will have to be before making an alteration to the 

network, and as with many of these models. In reinforcement learning car will start with 

exploring the grid until it moves out of the boundary. As it moves around, collects rewards based 

on scores we defined for each location. This process is called an “episode”.  

8- Steering angle- This parameter measures the steering of the car in degree, if the car is steering 

right, it is negative and if car is steering left, it is positive.  

9- Speed- This parameter defines the speed of the car. 

 

Competition 

 

Competition was among three senior military schools, The Citadel, United States Naval 

Academy and United States Military Academy. The 2023 competition was hosted by The 



Citadel. Three different departments participated from each school, Mechanical Engineering 

Department at The Citadel, Computer Science Department at Naval Academy and Electrical 

Engineering Department at Military Academy. A total of 10 teams participated, and each team 

had two runs. Each run lasted two minutes, and the car could go around the path as many times 

as it was able. If a car had finished several laps during its two minutes of time, then the best 

timing was considered for the lap. The first team was from The Citadel with timing of 10.73 s, 

the second team weas from The Citadel again with timing of 11.45 seconds and third team was 

from Military Academy with timing of 12.16 seconds.  

 
Figure 5. Amazon DeepRacer car running on the track [7] 

 

Performance 

 

When training of the model is finished in the simulator, the results can be evaluated in the 

evaluation section. Figure 6 shows the results of two sample models, the left one is a high 

performing model, and the right one is a low performing model. These graphs have three distinct 

lines. The green line represents the value of the reward variable and its progress as the model 

trains for more iterations. In high performing model (Figure 6a), the reward value increases as 

the model trains for more time, while in low performing model (Figure 6b) the reward value 



fluctuates/decreases. Note that in Figure 6b the model obtains a high reward value (i.e. 200) in 

the first iteration is totally random. The red line represents the percentage of the track that the 

machine was able to complete during the evaluation runs after training. This is typically a 

measure of how well the machine will complete the track without veering off course. As can be 

seen from Figure 6a the model from iterations 17~27 has reached %100 completion which 

means if training is stopped at that point there is high probability that car will finish a lap without 

getting off the track. On contrast, the red line for the low performing model is decreasing which 

means the car will get off track further and further as model trains more. The blue line represents 

the progress of the model in terms of reduced run time or reduced off-track time through 

iterations, as can be seen from Figure 6a the progress has increased over iterations while for 

Figure 6b it fluctuates.  

 
Figure 6. (a) is evaluation of a high performing model and (b) is evaluation of a low performing 

model . The red line shows the percentage of the track machine was able to complete in a run, the 

green line shows the total reward collected, and blue line shows success of car during training.  

 

Discussion 

 

The models created by teams were loaded on the Amazon DeepRacer car and were tested on the 

real track. Although the Amazon DeepRacer physical car and simulator are designed in the same 

way and work similarly, they are not identical and there were several difficulties in running the 

models on physical car. The camera of physical car was sensitive to the environmental light, 

making them easily veer off the track due to nuances from the surrounding environment. 

Generally, the models that were overfitted did not perform well on the physical car and tended to 



veer off the track frequently, while they might have good performance on the simulator. 

Overfitting occurs when a model learns the training data very well, picking up any noise and 

fluctuations in the data while missing the underlying pattern.  An overfitted model will perform 

poorly on new or unseen data. On the other hand, underfitting happens when the model is too 

simple to capture the underlying structure of the data. Based on our experience overfitting must 

be avoided to make sure the car stays on the track.  

Finally, the financial of competition was generously supported by amazon and there was $25 k 

grant for equipment, travel logistics, students training time and awards. With this grant we were 

able to purchase the track, car, router, barricades, reimburse students for the training hours they 

were using AWS to train their models and competition prizes. The first three teams with the best 

running time were awarded.  

 

Student Perception  

 

Citadel team members were asked about their perception about AI before and after the 

competition and how effective this competition was in familiarizing them with Artificial 

Intelligence. All students admitted that they got a better understanding of what AI is and how is 

used in different fields. Also, they mentioned after participating in the competition they realized 

AI is not purely related in computer science and can be used in many fields in mechanical 

engineering, they mentioned fields like, design, manufacturing, quality control and autopilot. 

They were also feeling nervous about it before the competition because they had little knowledge 

of AI and had never done such a thing. But curiosity and pushing them out of their comfort zone 

was the main reason for them to participate. Finally, the fact that different engineering majors 

participated in the competition made students more competitive and passionate about the 

competition, specifically for mechanical engineering students to prove themselves again 

computer science teams.   

 

Conclusion 

 

Amazon Deepracer competition was a great experience for undergraduate students to get 

involved and learn about machine learning by implementing that. Amazon has provided great 



infrastructure to facilitate students with limited knowledge of machine learning to participate. It 

is designed so that students can have access to a few reward functions and initial values of 

hyperparameters to get started, and when they enhance their skills, they can develop more 

complex models by adjusting reward function or hyper parameters. Providing tutorials and 

documentation has made it possible for all engineering majors to participate, with just basic 

programming knowledge required. This can be incorporated in ME curriculum or other 

engineering majors through student club competing with other universities or holding 

competition within the school among different departments and schools with different categories, 

for sophomore, junior and senior students. In fact, any engineering student who has passed a 

programming language course can participate.  
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