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‭A Powerful Labs Environment for Computer Science Courses‬

‭Abstract‬

‭Programming assignments are key to any computer science course. In today's digital landscape of‬
‭education, summative assessments, often called labs, are assigned on a weekly basis to students. The‬
‭goals of these assessments are often to reinforce and to evaluate mastery of the concepts taught in the‬
‭course. Upon graduation, students are tasked with programming complex projects. A key aspect of a CS‬
‭student's success in the real world is their ability to develop complex software in professional IDEs‬
‭(integrated development environments). In this paper we describe a new and powerful labs environment‬
‭that enables students to master their skills in software development through a cloud-based IDE with‬
‭support for over 50 programming languages. This labs environment supports an auto-grader and‬
‭professional unit testing frameworks. Additionally, the labs environment also provides instructors the‬
‭opportunity to collaborate with students in real-time. We present student usage and behavior data from‬
‭use of these labs in 300 introductory programming courses across 219 universities.‬

‭Introduction‬

‭Most introductory computer science (CS) courses assign one or more programming tasks each week. In‬
‭decades past, such programming assignments were graded by hand. A student was provided a prompt and‬
‭perhaps initial program files. The student may also be provided some example usages of the program.‬
‭Then, the student would go to a computer lab to develop the program. During lab hours, a student that‬
‭was stuck could ask the instructor. However, often, a student would not complete the assignment during‬
‭lab hours, so would have to wait for office hours to get an instructor's help. To submit, a student would‬
‭upload the developed program files, then wait a week or more for grading to be completed and feedback‬
‭to be provided.‬

‭In the last decade, many auto-graded programming assignment systems have been developed, both in‬
‭academia and commercially [1–4]. Such systems are often web-based, save instructor's time with grading,‬
‭and provide students more rapid feedback. Such systems have enabled instructors to switch from‬
‭assigning one-large-program to many-small-programming assignments each week, wherein each‬
‭assignment was more focused on a particular programming concept.‬

‭One such system, zyLabs, was released by zyBooks in late 2015. zyLabs focused on ease of use for‬
‭introductory CS courses. Since then, 100s of thousands of students have submitted programs against more‬
‭than 200 programming exercises in each of the popular programming languages (C, C++, Java, and‬
‭Python). The simplicity of the system and the many-small-programs approach has allowed students in‬
‭such programming courses to master one to two concepts at a time, without being distracted by the‬
‭sometimes complex settings of an integrated development environment (IDE). Prior research and‬
‭feedback from instructors and students have also confirmed that such programming labs are effective‬
‭learning materials for early learners [5]. However, zyLabs was less effective in providing large-scale‬
‭programming experiences in subsequent programming courses due to the lack of support for a full IDE,‬
‭popular frameworks, command-line tools, starting web servers, rendering graphic user interfaces, and‬
‭more.‬



‭This paper describes a new system, Advanced zyLabs, that provides powerful features, developed to be‬
‭effective for large-scale assignments and advanced courses. Then, the paper seeks to answer whether such‬
‭powerful features hurt student outcomes.‬

‭Advanced zyLabs‬

‭At the beginning of 2023, zyBooks released Advanced zyLabs, including over 50 programming language‬
‭configurations, a professional-grade Linux development environment, powerful instructor tools, and‬
‭advanced auto-grading capabilities. The goal of Advanced zyLabs was to provide students and instructors‬
‭with an easy to use yet professional-grade programming environment directly in their core learning‬
‭material, called a zyBook. Advanced zyLabs automatically installs and opens additional environments‬
‭needed for an assignment, reducing student frustration and saving student's time, as well as instructor's‬
‭time from needing to help debug each unique student device. Instead, students can focus on learning and‬
‭instructors can focus on teaching. No less, each student (and instructor) has a highly reproducible‬
‭programming environment accessible on the web from any device with internet access.‬

‭Advanced zyLabs offers students an accessible programming environment from their CS1 course, while‬
‭also introducing a professional-grade tool without the complexities of system setup. Advanced zyLabs‬
‭provides a consistent environment in the subsequent courses as well, minimizing distractions and‬
‭challenges associated with switching tools. Additionally, the professional-grade tool enables students to‬
‭develop practical skills, such as code testing, maintenance, and collaboration, that supplement the‬
‭individual concepts taught in various computer science courses [6].‬



‭Industry-standard capabilities‬

‭Figure 1: Advanced zyLabs IDE running a Python lab with IDE on top and console on bottom.‬

‭Advanced zyLabs is well-suited to large, real-world projects and lab assignments. Advanced zyLabs‬
‭supports industry-standard IDEs, custom package installs, use of command-line tools, having large data‬
‭files in the lab, and much more. Tools such as git/GitHub, vim, and programming language‬
‭compilers/interpreters are all available in the lab’s interactive Bash console session. Advanced zyLabs‬
‭allows users to start web servers and create full-stack web applications with React, Angular, Node.js, and‬
‭Django. Advanced zyLabs even allows users to access the Linux machine’s desktop so they can build‬
‭desktop GUI applications.‬



‭Figure 2: Advanced zyLabs web programming lab with IDE on top, browser console in bottom-left, and‬
‭rendered webpage on bottom-right.‬

‭Fully-integrated, auto-graded student projects and lab assignments‬

‭Instead of expecting students to create HTML, CSS, and Javascript files in an external editor then upload‬
‭such files for auto-grading, Advanced zyLabs enables a student to write such code directly in the‬
‭environment and a student to test incremental developments with live-rendered previews of their‬
‭webpage. Advanced zyLabs works on a real web server, so creating auto-graded assignments on full-stack‬
‭web development with popular client or server-side frameworks like React, Angular, and Node.js is‬
‭supported. Likewise, Advanced zyLabs allows students to access large datasets from the live MySQL‬
‭database on Linux. With the integration of MySQL Workbench, one of the most popular query tools,‬
‭students can now learn database development, administration, and architecture in this visual tool directly‬
‭in the zyBook. Furthermore, the support of Python and Java with MySQL in Advanced zyLabs means that‬
‭instructors can create auto-graded assignments of real-life database applications.‬



‭Figure 3: Advanced zyLabs with MySQL console on left and MySQL Workbench on right.‬

‭Instructor creatable and customizable‬

‭zyBooks provides pre-made programming assignments; however, an instructor can create and edit a‬
‭programming assignment. An instructor can choose the IDE that students are provided: One of the‬
‭custom-developed IDEs or an industry-standard IDE, like Visual Studio Code, Jupyter Notebook, or‬
‭RStudio. An instructor can write the assignment's prompt and define the files to give the student. An‬
‭instructor can add, edit, or remove various types of test cases: Simple input-output test; more advanced‬
‭autograded test cases, such as using JUnit and GoogleTest; a bash script with custom logic to run in the‬
‭Linux auto-grading environment; and even a manually-graded test case.‬



‭Figure 4: Advanced zyLabs using Jupyter Notebook IDE with Python code.‬

‭Figure 5: Advanced zyLabs using Visual Studio Code IDE with Python code‬



‭Collaboratory features‬

‭Even with autograding and rapid feedback, a student may still get stuck and need instructor help.‬
‭Advanced zyLabs enables an instructor to enter a student's coding environment, edit code, and run‬
‭commands, along with the student. Such a collaborative feature reduces the need for a student to send the‬
‭instructor screenshots, and then the instructor to try to recreate the issue.‬

‭Figure 6: Instructor viewing the live edits of student Jack Mazzone, who is working in an IDE.‬

‭Advanced zyLabs saves each edit of each text file by a student. An instructor can playback a student's edit‬
‭history, keystroke-for-keystroke. This includes the code a student ran on each development run, the code a‬
‭student had on each graded submission, and all of the steps in between.‬



‭Figure 7: Playback history open for student Jack Mazzone.‬

‭Advanced zyLabs offers many powerful student-facing features. The remainder of this paper focuses on‬
‭how these features affect student outcomes.‬

‭Early usage data‬

‭Methods‬

‭A total of 25,196 students used Advanced zyLabs, from 506 courses at 219 institutions. We identified the‬
‭lab activities that were most commonly assigned in Python, C++, and Java zyBooks. Instructors opted in‬
‭to using AZLs during such and such time frame. Any course using these labs was included in this dataset.‬

‭We defined the following metrics to help analyze student usage of the lab activities between the original‬
‭zyLabs (classic labs) and the new Advanced zyLabs (advanced labs).‬

‭Student-level: For each student, the following metrics were applied to each lab activity:‬



‭● Completion: Whether the student completed the activity. Value of 1 was assigned if the‬
‭student completed the lab activity by submitting a correct answer at some point for that‬
‭activity. Otherwise, a value of 0 was assigned.‬
‭● Number of tries: The total number of submissions for a particular lab activity. Each‬
‭time a student submitted code for a lab activity, we interpreted that submission as‬
‭one more try of that lab activity by that student. We stopped counting once a correct‬
‭submission was made for that lab activity by that student.‬
‭● Time spent: The estimated number of hours between a student's first and final submissions on a lab.‬

‭Lab-level: The following metrics were applied to each lab activity:‬
‭● Completion rate: The percentage of students who completed the lab activity.‬
‭● Average number of tries: Of students who completed the activity, the sum of each‬
‭student's number of tries divided by the number of students.‬
‭● Average time spent: Of students who completed the activity, the sum of each student's‬
‭time spent divided by the number of students.‬

‭Results‬

‭Figures 8–9 show the lab-level metrics across for ten selected Python lab activities, in the order in which‬
‭they are typically assigned. The metrics are shown for advanced lab activities completed during Fall‬
‭2023, and for classic lab activities from Fall 2022, for comparison. The average completion rate was 93%‬
‭for advanced labs and 94% for classic labs. The average time spent was 7.2 hours for both advanced and‬
‭classic labs. The average number of tries was 4.0 for advanced labs and 3.8 for classic labs.‬

‭Figure 8: Average attempts on selected Python labs for advanced and classic lab platforms.‬



‭Figure 9: Average hours spent on selected Python labs for advanced and classic lab platforms.‬

‭Figures 10–11 shows the lab-level metrics across ten selected C++ lab activities, in the order in which‬
‭they are typically assigned. The metrics are shown for advanced lab activities completed during Fall‬
‭2023, and for classic lab activities from Fall 2022, for comparison. The average completion rate was 96%‬
‭for advanced labs and 93% for classic labs. The average time spent was 3.5 hours for advanced labs and‬
‭5.3 hours for classic labs. The average number of tries was 3.9 for both advanced and classic labs.‬

‭Figure 10: Average attempts on selected C++ labs for advanced and classic lab platforms.‬



‭Figure 11: Average hours spent on selected C++ labs for advanced and classic lab platforms.‬

‭Figures 12–13 shows the lab-level metrics across ten selected Java lab activities, in the order in which‬
‭they are typically assigned. The metrics are shown for advanced lab activities completed during Fall‬
‭2023, and for classic lab activities from Fall 2022, for comparison. The average completion rate was 96%‬
‭for advanced labs and 94% for classic labs. The average time spent was 8.3 hours for advanced labs and‬
‭7.4 hours for classic labs. The average number of tries was 3.6 for advanced labs and 3.8 for classic labs.‬

‭Figure 12: Average attempts on selected Java labs for advanced and classic lab platforms.‬



‭Figure 13: Average hours spent on selected Java labs for advanced and classic lab platforms.‬

‭Figure 14: Histogram of number of advanced labs assigned per course.‬

‭Lab system‬ ‭Language‬ ‭Completion rate‬ ‭Time spent‬
‭(hours)‬

‭Number of tries‬

‭Advanced‬ ‭Python‬ ‭93%‬ ‭7.2‬ ‭4.0‬

‭Classic‬ ‭Python‬ ‭94%‬ ‭7.2‬ ‭3.8‬

‭Advanced‬ ‭C++‬ ‭96%‬ ‭3.5‬ ‭3.9‬

‭Classic‬ ‭C++‬ ‭93%‬ ‭5.3‬ ‭3.9‬

‭Advanced‬ ‭Java‬ ‭96%‬ ‭8.3‬ ‭3.6‬

‭Classic‬ ‭Java‬ ‭94%‬ ‭7.4‬ ‭3.8‬



‭Table 1: Summary of early usage data. Advanced and classic labs had similar measures for each metric.‬

‭Discussion‬

‭Early data usage of the advanced labs platform looks promising. The struggle, measured by time spent‬
‭and number of submissions on assignments, appears to have stayed consistent after introducing advanced‬
‭labs. For C++ labs, we actually observed a slight decrease in time spent on most of the advanced labs.‬
‭Further investigation is needed to understand this decrease in time spent, and more precise measurement‬
‭of actual time spent‬‭working actively‬‭on the lab is‬‭needed for this investigation.‬

‭Limitations‬

‭This research shows the average time spent and number of attempts on labs. The data was not limited to‬
‭particular courses with specific characteristics, but all courses using the labs. This means that the largest‬
‭courses have high influence on the data, and looking more deeply at targeted courses may provide deeper‬
‭insight. As instructors could choose whether or not to assign advanced labs instead of classic labs, there is‬
‭also a self-selection bias in the data, where all of the advanced labs users are in courses with instructors‬
‭who wanted to use advanced labs. Finally, the time spent metric used in the analysis is coarse. A more‬
‭accurate measure of how much time a student spends‬‭actively working‬‭on their programming assignment‬
‭will improve this work in the future.‬

‭Future Directions‬

‭The powerful advanced labs platform opens doors to many new features and analytics. Future research‬
‭may look at whether more time is saved on grading for teaching assistants and instructors with advanced‬
‭labs. Further, future work may also look at usage of the collaborative programming feature to evaluate‬
‭how the feature gets used and measure how collaborative programming impacts student outcomes.‬

‭The playback feature of advanced labs allows an instructor to recreate a student's code at any point in‬
‭time. Future work may develop insights into student behavior using such data. One such insight may be‬
‭determining when a student begins to struggle excessively, such as if a student submits many times in a‬
‭short period without making many changes and without achieving a higher score. Another insight may‬
‭also be to determine when suspicious behaviors take place, such as pasting in large sections of text, which‬
‭in some cases might indicate cheating.‬

‭Hints: Preliminary data‬

‭This subsection provides a step into a particular future direction: Providing students with hints. Many‬
‭students in introductory computer science courses struggle excessively with their coding homeworks.‬
‭Such excessive struggle is often caused by a specific logic or syntax error. A student may be unable to‬
‭resolve such a struggle from such an issue, and the student's learning may be negatively impacted.‬

‭To provide assistance in real time and reduce such struggle, zyBooks recently released an experimental‬
‭hints system in Advanced zyLabs as a limited beta. A hint was generated with an AI language model and‬



‭integrated with Advanced zyLabs, allowing students to generate and view hints on each failing test case.‬
‭Every time a student failed a test case, a button showed underneath the test case with the label “‬‭Help‬‭me‬
‭with this test‬‭” as shown in Figure 15.‬

‭Figure 15: Failing test on advanced lab with hints enabled.‬

‭Each hint provided a targeted message to help the student identify and understand the issue. A student‬
‭could select between two options to get another hint for the same test case. As shown in Figure 16, a‬
‭student can choose “‬‭Explain it another way‬‭” to get‬‭the same hint explained differently, or‬‭“Provide‬‭me‬
‭with a more detailed explanation‬‭” to get a more explanation‬‭on the hint provided.‬

‭Figure 16: AI generated hint for failing test case.‬

‭So far the hint system has been used by 9 courses, 55 students and has resulted in 344 total conversations‬
‭and 923 total messages with an average conversation including 2.68 messages. Figure 17 shows the‬
‭conversations distribution by zyBook, and Figure 18 shows the hint conversations distribution by student.‬
‭Finally, Figure 19 shows the distribution of messages in conversations.‬



‭Figure 17: Hint conversations across all 9 zyBooks with AI hints enabled.‬

‭Figure 18: Hint conversations across all 55 students that generated at least one hint.‬

‭Figure 19: Distribution of hints messages in conversations‬



‭Note that these 55 students were included in the "Early usage data", which had 25,196 students, so were‬
‭0.2% of the total students therein. Future work may measure the impact of such hints on student struggle.‬
‭Future work may also include analyzing the efficacy of such AI generated hints and the impact such hints‬
‭had on programming labs’ completion. Such analysis may compare courses where hints were provided‬
‭and courses where hints were not provided for the same problems, including controls for other confounds,‬
‭such as different instructors, course offerings, student demographics, and more. Future work may also‬
‭evaluate student self-efficacy, including a student's belief that the hint system impacted that student's‬
‭self-efficacy.‬

‭Conclusion‬

‭Advanced zyLabs includes many powerful features, for students and instructors, including‬
‭industry-standard IDEs, highly-customizable development environment and tools, Linux machine’s‬
‭desktop, collaborative environments, and more. Nonetheless, each metric of student usage was about the‬
‭same: 93-96% average completion rate, 3.5-8.3 average time spent (hours), and 3.6-4.0 average number‬
‭of tries. Such measures indicate that Advanced zyLabs do not impede student outcomes. Future work may‬
‭analyze novel features of Advanced zyLabs, such as the hints system, and may measure the impact on‬
‭student outcomes specifically in advanced computer science courses.‬
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