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Exploring Generative AI and Natural Language Processing to Develop Search Strategies 

for Systematic Reviews 

 

Abstract 

Systematic reviews, as well as other comprehensive literature reviews, require a rigorous and 

structured approach for an exhaustive literature search. Identifying the relevant keywords that 

encapsulate the research topic and then combining them using the appropriate search technique 

demands expertise in both search techniques and in-depth domain knowledge. As a result, 

librarians are frequently asked to join research teams to assist researchers unfamiliar with this 

intricate process. These subject specialists have expertise in using search tools and techniques to 

formulate search statements, yet they often need to conduct extensive literature surveys to 

identify relevant search terms, especially in rapidly evolving fields. Although controlled 

vocabularies and keywords supplied by authors and database companies are useful, they are 

often insufficient in capturing all relevant terms used in the literature. This paper explores how 

Generative Artificial Intelligence (AI) and Natural Language Processing (NLP) could be 

harnessed by librarians to refine the formulation of search terms for these reviews. This pilot 

study suggests that the use of Generative AI and NLP helps users identify relevant search terms 

for developing search strategies, although users must be cautious about the reproducibility of 

Generative AI's responses. 

 

Introduction 

Systematic reviews are a type of literature review that takes a systematic approach to search, 

review, and synthesis of information on a defined topic. A well-designed review will achieve 

“exhaustive and comprehensive searching”[1] for relevant evidence while minimizing selection 

bias. As the volume of scientific publications has surged exponentially over the past several 

decades [2], with a recent study showing that the number of publications in the Physical and 

Technical Sciences doubles every 11.9 years [3], the need for systematic reviews to collate and 

synthesize all this research has become critical. The general field of engineering has seen the rise 

in published research review papers that many other fields have seen recently [4-6]. Conversely, 

performing these systematic reviews presents a significant challenge to researchers in achieving 

both effectiveness and efficiency. 

The growing popularity of publishing systematic reviews contrasts with a growing body of 

clinical medical literature stressing the challenges and common failures evident in reviews. 

“[Evidence syntheses] are complicated and time-consuming undertakings prone to bias and 
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errors. Production of a good evidence synthesis requires careful preparation and high levels of 

organization in order to limit potential pitfalls” [7]. For example, various methods and 

approaches have emerged to navigate and identify relevant works within scientific literature. 

Some of these methods include citation chasing utilizing both library databases and Google 

Scholar [8]. Similarly, researchers use "related articles" or suggested article features available in 

article databases [9]. While these strategies can uncover numerous sources, they also carry the 

risk of introducing bias into the literature review process. Adopting more objective methods for 

conducting literature reviews is just as vital as obtaining comprehensive sources.  

In recent decades, the health and medical research communities have established a transparent 

approach to minimize bias in searching and reviewing existing literature [10]. This objective and 

SR methodology have gained traction in fields closely related to medicine, such as biomedical 

engineering and other health-related science disciplines [5]. Engineering has also begun to 

embrace SR methods, with recent studies highlighting the trends of systematic reviews in 

engineering education and emphasizing the widespread need for training engineering students 

and scholars in these methodologies [11]. 

Research consultations for SRs represent a new and expanding role for engineering librarians. 

The involvement of librarians is crucial to the systematic review process to train students and 

researchers, and to help formulate effective search strategies [12]. Some librarians are invited to 

join research teams to assist in developing search strategies and co-author papers. This growth in 

demand for library expertise on engineering reviews can represent a significant demand on 

librarian time.  Numerous articles have delineated the level of engagement and responsibilities 

that librarians conduct in the systematic review process and offered guidance for less 

experienced librarians to engage with researchers effectively [13, 14]. The initial literature 

interview, search and review phase can demand over 20 hours [15]. Engineering librarians will 

be called upon to employ various strategies to bridge any gaps in domain expertise.  

In this paper, we explore a variety of innovative methods, supported by technological advances 

such as natural language processing (NLP) and generative AI, to investigate whether these tools 

can enhance the efficiency and effectiveness of librarians' work in the systematic review process. 

Specifically, we attempt to answer the following research questions: 

1. Can natural language processing methods be utilized to extract relevant search terms 

from documents? 

2. Is it feasible to use generative AI to suggest relevant search terms? 

3. Can either of these technologies assist users in formulating an improved search 

statement? 
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Literature Review 

The ideal search strategy in a systematic review aims to retrieve all relevant studies – 

maximizing recall while excluding irrelevant ones to ensure precision. In practice, enhancing one 

measure usually inversely affects the other. However, this has changed over time. The 

methodologies for SRs have shifted since 1985, when Cooper outlined 15 methods, such as 

browsing library shelves and sending general requests to government agencies [16] Today a 

search is typically detailed in a SR protocol by specifying the search statement/database pairs, 

along with any limits or filters and date the search was conducted [17].  The database selection is 

often a discipline-based consensus, so it is the search statement that controls how effective 

searching is. 

 

The design of a search query is the most time-consuming aspect of a librarian’s task in a 

systematic review [15]. Creating a sequence of search terms that optimizes both recall and 

precision requires deep familiarity with the literature, including terms used outside one's regular 

expertise (White, 2009). This process of digesting a body of text and identifying patterns seems 

ideally suited to automation. In 2009, Ananiadou et al., [18] discussed using text mining to 

extract terms and expand queries.  Text mining applies statistical analysis to a specific body of 

text to identify patterns, including associated terms. Natural language processing (NLP) is a 

closely related concept where computer programs (i.e., machine learning) extract and utilize 

these patterns on unstructured text to aid understanding. NLP is a field that interacts with 

artificial intelligence (AI) and employs machine learning (ML) techniques. ChatGPT is an AI 

application that leverages NLP principles to understand user inputs and generate responses. 

The systematic review process can be divided into smaller tasks, and some of them can 

reasonably be targeted for automation, like screening papers for inclusion or extracting data from 

them. Software such as Covidence is already aiding researchers in these areas. However, a 2020 

review by van Dinter et al.[19] examined 41 systematic reviews using some form of automation 

and found that only 7 included automating the search query creation process. A 2021 study found 

that text-mining tools could significantly reduce the time spent creating queries, though it also 

found a decrease in query sensitivity [20]. Furthermore, a 2022 review of  artificial intelligence 

used in systematic reviews, by Blaizot et al. [21] found 12 health science studies, yet none 

applied AI to search query creation. This indicates an absence of tools used to create search 

statements although Toth et al. [22] propose that this could be fully automated. 

Given the increase in systematic reviews within engineering there is a large need for engineering 

librarian involvement. Automation tools might be a way for librarians to efficiently manage 

serving researchers across a broad range of topics.   
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Research Methods 

The team formation 

A team, consisting of a medical doctor and a Ph.D. student in biomedical engineering, reached 

out to a librarian for research consultation in conducting a systematic review on non-invasive 

techniques for monitoring human blood glucose levels. Although the team had expertise in both 

the medical and engineering fields, they required guidance in executing their first systematic 

review. The team specifically needed guidance in crafting a thorough and unbiased search 

strategy to review literature and gather relevant studies from databases. 

Reference interview and writing the initial search statement. 

After the initial reference interview, the team and the librarian pinpointed three major concepts: 

glucose, non-invasive, and sensor. They agreed to conduct searches in three primary databases: 

Web of Science, PubMed, and Scopus. The librarian expanded the search terms for these major 

concepts based on information from the initial reference interview, MeSH review, and 

examination of seed articles discussed with the team. These key terms were then combined using 

Boolean operators to represent the concepts, initially for PubMed and later manually translated 

for use in Web of Science and Scopus. The search strategies were almost identical, except the 

one for PubMed included MeSH terms. 

The preliminary search statement entered for Web of Science Core Collection and 

MEDLINE  

("diabetes mellitus" OR diabet* OR glucose OR hyperglycemi* OR hyperglycaemi* OR 

hypoglycemi* OR hypoglycaemi* OR glycemi*) AND (noninvasive OR "non invasive" OR 

"minimally invasive" OR "less invasive") AND ("Biosensing Techniq*" OR sensor* OR sensing 

OR biosens* OR biomarker*) 

 

Initial search and initial result review 

The initial search statements yielded 3,696 results from PubMed, 6,397 from the Web of Science 

Core Collection plus MEDLINE (limited to topics), and 5,593 from Scopus (limited to titles, 

abstracts, and keywords) as of September 30, 2023. Despite significant overlap among the three 

databases, the sheer volume of results was overwhelming and required further refinement. To 

refine the search, the team decided to review additional keywords. Rather than downloading all 

records and deduplicating results across the three databases, the librarian opted to download and 

analyze the largest dataset, which came from the Web of Science, using natural language 

processing (NLP).  
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Keyword Extraction 

Each full record from the Web of Science Core Collection and MEDLINE is comprised of 

multiple fields, mainly TI (Title of the Article), AB (Abstract), DE (Author Keywords), and ID 

(Clarivate’s Keywords Plus). Therefore, results were extracted into three files: 1) free text from 

titles and abstracts, 2) author keywords, and 3) Keywords Plus. Given that both the Author 

Keywords and Keywords Plus fields consist of words and phrases separated by commas, they 

were subjected to simple term frequency analysis.  

Term Frequency analysis (TF) quantifies how many times a word or phrase appears within a 

document, which is useful for evaluating keyword lists like Author Keywords and Keywords 

Plus. However, assigning equal weight to all keywords fails to capture their relative significance 

across multiple documents. In contrast, TF-IDF (Term Frequency-Inverse Document Frequency) 

assesses a word's relevance in a document by merging its document frequency (TF) with the 

rarity of the term across the entire corpus (IDF) [23]. This method emphasizes words that are 

common in a specific document but otherwise uncommon, more effectively revealing word 

relevance. As a result, TF-IDF is more appropriate for extracting keywords from free texts such 

as abstracts and titles. 

To conduct the TF-IDF analysis on the titles and abstracts, the authors employed Python’s 

Natural Language Toolkit (NLTK) and programmed it to process n-gram extraction. They then 

used scikit-learn's TfidfVectorizer to calculate the TF-IDF scores for each n-gram [24]. This 

approach facilitated a more nuanced analysis of the textual data, enabling the authors to identify 

and review a list of keywords extracted from the keyword phrases and sentences from the title 

and abstract fields.  

Generative AI 

In parallel with the keyword extraction using NLP, the team investigated whether Generative AI 

could assist in discovering more relevant terms related to wearable sensors for monitoring and 

sensing blood glucose levels in humans for a systematic review. The team used ChatGPT 

versions 3.5 and 4 multiple times, prompting the AI with questions for keywords related to their 

original research questions. This initial exploration was conducted in September 2023, and the 

same prompts were tested again twice in January 2024. All prompts and responses were 

documented for future discussions.  

Evaluation 

After reviewing the four sets of keywords extracted and generated from the methods above, a 

new search statement was formulated for Web of Science, which was then adapted for Scopus 

and PubMed. These revised search statements were then presented to the research team for 
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feedback. This collaborative process led to the finalization of the search strategy, integrating 

keywords identified through natural language processing and those suggested by ChatGPT. In 

this paper, the authors compare and analyze the search terms ultimately selected by the research 

team with the initial sets, to assess the effectiveness of the various methods outlined earlier. 

 

Figure 1. Flow chart of the research process, including the number of keywords in NLP analysis  

 

  



7 
 

Results and analysis 

The preliminary search statement yielded 6,397 results from the Web of Science Core Collection 

and MEDLINE. Term Frequency (TF) analysis within the Author Keywords section revealed 

11,186 unique keywords, with “diabetes” appearing most frequently, 434 times. Keywords Plus, 

a unique feature of Web of Science, generates keywords from the titles of cited articles not 

included in the article's title or Author Keywords [25]. The TF analysis within Keywords Plus 

revealed 10,331 unique terms, with “GLUCOSE” as the top keyword, occurring 354 times. The 

top 20 keywords identified from the TF analysis are listed in Table 1. 

Table 1: Top 20 terms identified in the Author Keywords and Keywords Plus fields 

Ranks Author Keywords TF Keywords Plus TF 

1 diabetes 434 GLUCOSE 354 

2 glucose 277 DIAGNOSIS 291 

3 diabetes mellitus 190 DISEASE 274 

4 biomarkers 189 SENSOR 269 

5 biomarker 181 RISK 219 

6 non-invasive 180 IN-VIVO 211 

7 diabetic retinopathy 142 INSULIN-RESISTANCE 210 

8 biosensor 112 EXPRESSION 203 

9 noninvasive 96 SENSORS 189 

10 type 2 diabetes 95 PREVALENCE 183 

11 obesity 79 BIOMARKERS 170 

12 glucose sensor 76 BLOOD-GLUCOSE 166 

13 diagnosis 72 NANOPARTICLES 161 

14 blood glucose 71 ASSOCIATION 159 

15 nonalcoholic fatty liver disease 70 SYSTEM 154 

16 glucose sensing 69 BIOSENSOR 148 

17 saliva 69 MELLITUS 145 

18 inflammation 66 DIABETES-MELLITUS 133 

19 biosensors 66 MORTALITY 129 

20 optical coherence tomography 63 CELLS 123 

 

The Title and Abstract fields were merged and analyzed using TF-IDF, programmed to identify 

2-grams, or two-word consecutive word phrases, instead of single words. This analysis resulted 

in identifying 504,873 unique keywords. Table 2 below lists the top 20 keywords from the TF-

IDF analysis in the Title and Abstract fields, sorted by their TF-IDF scores.  
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Table 2: Top 20 terms sorted by TF-IDF scores, identified through TF-IDF analysis in the Title 

and Abstract (TiAb) fields 

Ranks TiAb TF TF-IDF 

1 glucose 4258 280.385 

2 patients 2971 156.757 

3 non 3962 147.816 

4 blood 2614 141.343 

5 invasive 4315 140.797 

6 diabetes 3297 138.088 

7 monitoring 2505 133.607 

8 diabetic 2061 122.276 

9 non invasive 3484 121.855 

10 disease 2393 117.214 

11 based 2668 116.698 

12 sensor 1628 114.523 

13 using 2946 109.131 

14 noninvasive 2656 104.309 

15 detection 1872 98.875 

16 liver 862 97.047 

17 blood glucose 1333 94.092 

18 biomarkers 1602 84.318 

19 retinal 738 82.970 

20 sensing 1241 81.943 
 

The librarian initially reviewed the compiled lists, checked for additional keywords, and revised 

the search statement. These compiled lists and the revised search statements were then shared 

with researchers to identify any further keywords for the final search statement. To assess 

whether the analysis helped identify additional keywords, the preliminary search statement was 

compared with the final one.  

The table below compares the search statements before and after revision, including the 

expanded keywords for biomarkers. For this pilot study analysis, we are presenting only the parts 

of the revised search statement that pertain to the original concepts, even though additional 

concepts and keywords were later added by the researchers. Furthermore, the researchers have 

chosen not to disclose the full list of keywords of biomarkers, sharing only those relevant to the 

subsequent discussion. 
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The keywords originated from MeSh Terms, such as “diabetes mellitus” or “Biosensing 

Techniq*,” are kept in the revised search statement despite being redundant to diabet* or 

biosens* to facilitate its translation into a PubMed search statement later.  

Table 3: Comparison of initial vs. revised search statement.  

  Preliminary search statement Part of the revised search statement 

Concept #1: 

Diabetes 

("diabetes mellitus" OR diabet* 

OR glucose OR hyperglycemi* OR 

hyperglycaemi* OR hypoglycemi* 

OR hypoglycaemi* OR glycemi*)  

("diabetes mellitus" OR diabet* OR glucose OR 

hyperglycemi* OR hyperglycaemi* OR 

hypoglycemi* OR hypoglycaemi* OR glycemi* 

OR glycaemi* OR "insulin resistan*" OR 

"impaired glucose" OR metabol* OR "glucose 

prediction" OR "blood sugar" OR OGTT OR 

HbA1c OR hba1c OR "hemoglobin A1c" OR 

"haemoglobin A1c" OR "glycated hemoglobin" 

OR prediabet* OR pre-diabet*)  

Concept #2: 

Noninvasive 

(noninvasive OR "non invasive" 

OR "minimally invasive" OR "less 

invasive")  

(noninvasive OR "non invasive" OR "minimally 

invasive" OR "less invasive")  

Concept #3: 

Sensors 

("Biosensing Techniques" OR 

sensor* OR sensing OR biosens* 

OR biomarker*) 

("Biosensing Techniq*" OR sensor* OR sensing 

OR biosens* OR biomarker* OR smartwatch 

OR "wearable sens*" OR "smart phone" OR 

"Apple watch" OR Fitbit OR "smart ring" OR 

whoop OR Huawei OR aktiv OR "fitness 

tracker*" OR "activity tracker*" OR "smart 

watch*")  

Concept #4: 

Biomarkers 

  ("heart variab*" OR HRV OR "heart rate 

variab*" OR "heart rate" OR EKG OR 

electrokardio OR electrodermal OR EDA OR 

"galvanic skin" OR GSR OR sleep* OR […] 

OR Actigraph* OR GPS OR "ambient light" 

OR "oxygen satura*" OR capacitive OR "blood 

volume puls*")  

 

Moreover, a Python script was written to determine which fields and methods identified the most 

relevant search terms within three keyword lists – Author Keywords, Keywords Plus, and Titles 

and Abstracts.    

Of the total 78 search terms in the revised search statement, 68 search terms appeared in the 

Titles and Abstracts keyword list, with 10 not found. Seventeen search terms were not matched 

with keywords from Author Keywords, and the Keywords Plus set did not include the 

corresponding search terms for 41. The high number of search terms not found in the Keywords 

Plus set is consistent with the findings of Zhang et al.’s [26], which reported that keywords in 

Keywords Plus alone are not effective at representing the content of the article. 
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The researchers included product or brand names in the search statements, highlighted in blue in 

the table below. These names were found in some Titles and Abstracts but were less prevalent in 

Author Keywords and Keywords Plus. It's important to note that the TF-IDF analysis for 

Abstracts and Titles was conducted using a 2-gram approach, meaning keywords composed of 

three or more consecutive words were not matched and are highlighted in red font. Although the 

final search terms include a small number of phrases longer than two words, the author believes 

the effect of limiting the analysis to 2-grams is considered negligible. 

 

Table 4: Search terms absent from search fields. 

Not found in Titles and Abstracts 

Keywords 

Not found in Author 

Keywords (DE) 

Not found in Keywords 

Plus (ID) 

aktiv actigraph* actigraph* 

blood volume puls* activity track* activity track* 

ekg Aktiv Aktiv 

electrokardio ambient light ambient light 

heart rate variab* apple watch apple watch 

heart variab* Ekg biosensing techniq* 

Huawei Electrokardio blood sugar 

pre-diabet* Fitbit blood volume puls* 

smart ring fitness track* capacitive 

whoop Gps diabetes mellitus 

  haemoglobin a1c ekg 

  heart variab* electrodermal 

  Huawei electrokardio 

  smart phone* fitbit 

  smart ring fitness track* 

  smartwatch* galvanic skin 

  whoop glucose prediction 

    glycaemia* 

    gps 

    gsr 

    haemoglobin a1c 

    heart rate variab* 

    heart rate* 

    heart variab* 

    hemoglobin a1c 

    hrv 

    huawei 

    hyperglycaemi* 

    hypoglycaemi* 

    less invasive 

    non invasive 
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    ogtt 

    oxygen satura* 

    pre-diabet* 

    prediabetes 

    smart phone* 

    smart ring 

    smart watch 

    smartwatch* 

    spO2 

    whoop 

 

In parallel to NLP, the authors also utilized ChatGPT 4.0, a Generative AI application, to suggest 

a list of keywords related to wearable devices. In September 2023, ChatGPT provided a list of 22 

keywords. When a similar question was asked on January 16, 2024, as part of content 

verification for this paper, it generated a list of 21 keywords, omitting "Camera" and "IR 

Sensors" (highlighted in yellow) but adding "Compass" (highlighted in gray). Remarkably, when 

the question was repeated just 10 days later, ChatGPT expanded the list to include two additional 

keywords: "hydration sensor" and "stress and fatigue sensors," which are highlighted in green. 

The variation in responses to the same or similar questions is noteworthy. The prompts for each 

instance and the corresponding responses are documented in the table below, with changes 

between different instances highlighted in yellow, gray, and green for clarity. 

 

Table 5: Variations of ChatGPT 4.0 Responses over time  

"Can you list a 

comprehensive list of sensors 

available through commercial 

wearable devices including 

smartwatch?" (2023, 

September) 

"Could you please provide me 

with a comprehensive list of 

sensors available on 

commercial wearable devices, 

including smartwatches? 

"(2004, January 16) 

"Could you please provide me 

with a comprehensive list of 

sensors available on 

commercial wearable devices, 

including smartwatches?" 

(2024, January 26) 

Accelerometer Accelerometer Accelerometer 

Ambient Light Sensor Ambient Light Sensor Ambient Light Sensor 

Barometer (or Atmospheric 

Pressure Sensor) 

Barometer Barometer 

Bioimpedance Sensor Bioimpedance Sensor Bioimpedance Sensor 

Blood Oxygen (SpO2) Sensor Blood Oxygen Sensor (SpO2) Blood Oxygen (SpO2) Sensor 

Camera Capacitive Sensor Capacitive Sensor 

Capacitive Sensor Compass Compass 

Electrocardiogram (ECG or 

EKG) Sensor 

ECG (Electrocardiogram) 

Sensor 

ECG (Electrocardiogram) Sensor 
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Galvanic Skin Response (GSR) 

Sensor 

Galvanic Skin Response Sensor Galvanic Skin Response Sensor 

Glucose Monitor Glucose Monitoring Sensor Glucose Monitoring Sensor 

GPS (Global Positioning 

System) 

GPS (Global Positioning 

System) 

GPS (Global Positioning System) 

Gyroscope Gyroscope Gyroscope 

Heart Rate Monitor Heart Rate Monitor (HRM) 

(Photoplethysmography or 

PPG). 

Heart Rate Monitor (HRM) 

IR Sensors Magnetometer Hydration Sensor 

Magnetometer (or Compass) Microphone Magnetometer 

Microphone NFC (Near Field 

Communication) 

Microphone 

NFC (Near Field 

Communication) 

Pedometer NFC (Near Field 

Communication) 

Pedometer Proximity Sensor Pedometer 

Proximity Sensor Skin Conductance Sensor Proximity Sensor 

Skin Conductance Sensor Temperature Sensor Skin Temperature Sensor 

Temperature Sensor UV Sensor Stress and Fatigue Sensors 

UV Sensor   Temperature Sensor 

    UV Sensor 

 

Discussion 

The primary aim of this study was to investigate the application of various NLP tools in 

extracting search terms and formulating search strategies for systematic reviews and other 

comprehensive literature reviews. The search terms extracted from titles and abstracts closely 

matched those chosen by researchers and experts, with Author Keywords being the second most 

useful and Clarivate's Keywords Plus showing the least utility, corroborating Zhang et al.'s 

earlier findings [26]. Although this study focused on a single SR consultation, it investigated 

various methods for rapidly reviewing keywords and topics to aid researchers in refining their 

research focus.  

The authors also highlight the challenge of downloading certain database fields, leading to the 

exclusion of controlled vocabulary from the analysis. The datasets for the NLP method 

investigation were sourced from the Web of Science Core Collection and MEDLINE. Although 

Web of Science offers searchable MeSH terms from MEDLINE®, these terms could not be 

downloaded through a web interface. These controlled vocabulary terms could be valuable in 
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identifying relevant articles but as they were functionally unavailable, they were excluded from 

the NLP analysis. 

Furthermore, the study examined the potential and limitations of using Generative AI to identify 

key search terms. Unlike the labor-intensive processes of coding for TF and TF-IDF analyses, 

Generative AI can rapidly generate responses with search terms with the proper prompts, 

bypassing the need for extensive data preparation and analysis. However, the inconsistency in 

Generative AI's responses over time (Table 5) and the lack of reproducibility raise questions 

about its credibility as a tool for research or scientific reasoning. Despite the promise Generative 

AI holds in easing systematic review processes, its variability underscores the need for caution. 

Librarians should advise researchers to perform secondary verifications rather than rely solely on 

Generative AI's responses. 

 

Conclusion  

The increasing adoption of systematic reviews in engineering underscores the critical need for 

methods that are both effective and methodical in crafting search strategies. This investigation 

aimed to assess the potential of NLP and Generative AI technologies in aiding librarians and 

researchers involved in systematic reviews and extensive literature searches, with the goal of 

making the process of identifying relevant search terms more streamlined. The study explored 

the use of various NLP techniques to uncover new search terms from bibliographic records. It 

also examined the role of Generative AI within this framework. While Generative AI can rapidly 

provide answers to prompts, thereby reducing the time and effort involved in the NLP process, 

its responses can vary over time, necessitating a secondary verification process. Despite this, 

both NLP and Generative AI serve as complementary tools in the systematic review process, 

each contributing to the efficiency of search strategy development as well as the 

comprehensiveness of the search strategy itself. 
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