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Current Progress of providing Rich Immediate Critique of Antipatterns
in Student Code

Abstract: The “Rich, Immediate Critique of Antipatterns in Student Code” (RICA) project aims
to provide rich, relevant, and immediate feedback to students learning to program in their first year
of engineering education. This feedback is indispensable in effective student learning, particularly
in introductory computing courses. Conventional classroom feedback mechanisms fall short here,
partly because large-scale courses like those in First-Year Engineering (FYE) often strain the in-
structional team’s capacity to deliver timely feedback. Our project aims to address this challenge
by developing Code Critiquers specifically tailored for First-Year Engineering (FYE).

1 The RICA Project

Our ongoing RICA project is developing a real-time Code Critiquer system, WebTA, that identi-
fies, categorizes, and provides feedback on mistakes in MATLAB source code (antipatterns) that
are commonly made by novices and unlikely to be made by experts. In programming, where the
learning process is iterative and often fraught with errors, immediate feedback can serve as a criti-
cal form of scaffolding. The RICA project aligns with broader educational theory that supports the
vital role of immediate feedback. However, it takes it a step further by focusing on the “richness”
and “relevance” of this feedback. The project exists in the intersection of computer science, engi-
neering, and cognitive & learning sciences. By focusing on antipatterns, it addresses the mental
models that students form while learning to code. Antipatterns represent code structure, which,
while usually syntactically correct, could lead to unintended consequences: errors, inefficiencies,
or complexities.

The context of the project is a First-Year Engineering Program. At our institution, FYE has a
typical total enrollment of approximately 1,000 students matriculating each fall into the College of
Engineering. FYE is a common first-year engineering experience taken by all first-year students
in the College of Engineering. During an Engineering Fundamentals course, students are taught
programming in MATLAB.

The poster focuses on research conducted by our graduate students over the past year. This research
includes a Human Factors analysis, development of a visual representation tool for specifying
antipatterns using a visual representation of regular expressions, and work developing a Machine
Learning algorithm to detect antipatterns.



2 Background

The context of the project is a First-Year Engineering Program (FYEP) with an enrollment of
approximately 1,000 students. FYEP is a common first-year engineering experience taken by
all first-year students in the College of Engineering, where students are taught programming in
MATLAB.

The conceptual framework for RICA is informed by the foundational work of Alexander (1977) on
pattern languages, which emphasizes the importance of identifying recurring problems and their
solutions in a way that is universally applicable yet never redundant. This approach is adapted
to the programming education context, where ‘antipatterns’—recurring coding mistakes that are
counterproductive to good software design—are identified, named, and categorized. This not only
facilitates a shared vocabulary between instructors and students but also allows for the development
of critiquing systems that can provide specific, actionable feedback on these antipatterns.

The project builds upon the insights from pedagogical research that highlights the critical role of
immediate feedback in the learning process. Studies by Shute (2008) and Narciss (2008) under-
score the value of formative feedback in fostering deep learning and mastery of complex skills,
such as programming. This body of work advocates for educational interventions that are respon-
sive to student needs, providing guidance that is both timely and tailored to their specific learning
contexts.

In synthesizing these perspectives, the RICA project endeavors to address the unique challenges
faced by novice programmers, particularly those in first-year engineering programs. By leveraging
the capabilities of the WebTA system to provide rich, immediate critique of antipatterns, the project
aligns with contemporary educational theories that prioritize student engagement, personalized
learning experiences, and the development of critical thinking and problem-solving skills.

2.1 The WebTA System

WebTA is a research platform for developing and testing our Code Critiquers [1]. WebTA is a
federated architecture for critiquing code in the Canvas LMS [2, 3, 4, 1]. WebTA has been used
since 2014. The system has been used by 1,421 students in 27 course instances. These students
made 64,964 submissions to 119 assignments [4]. WebTA utilizes a federated architecture with
a Grails-based Web Site and LTI Module comprising a front-end that handles all communication
with the student through the Canvas LMS. Critic modules are their own application. Inter-module
communication issues are resolved through the database.

2.2 MATLAB Critic

A prototype MATLAB Critic, developed by Walther [5, 6], analyzes a student’s MATLAB code
providing error and style guidance and feedback. The MATLAB Critic parses and analyzes code
looking for antipatterns. When an antipattern is detected, the critic generates a critique for the
student. The critique covers code structure, shakedown test results, and programming style in a
manner appropriate for novice coders.

The following MATLAB antipattern example is derived from actual student submissions, slightly



modified for brevity.

Floating-point Loop Threshold: Students often forget that the sets of real numbers and floating-
point numbers are not equivalent. This causes problems when students perform comparisons using
floating-point numbers. For example, a loop using a floating-point terminating condition (see
Figure 1) might result in unexpected behavior; (1) loop may fail to terminate, (2) Loop may not
perform as many iterations as expected (perhaps more or less).

total = 0.0;
threshold = 0.3;
while total <= threshold

disp(total);
total = total + 0.1;

end

Critiquer Feedback:
You used a floating-point comparison as the
end condition for a loop. This can cause
your loop to fall short of the number of
expected iterations or it can result in an in-
finite loop. To mitigate this problem, check
that the source value is within some tol-
erance range of the terminating value, i.e.
(total − threshold) ≤ tolerance

Figure 1: Code using a floating-point loop threshold.

3 Current Work

The following subsections highlight current work by our team of graduate students. This research
includes a Human Factors analysis, development of a visual representation tool for specifying
antipatterns using a visual representation of regular expressions, efforts to develop a common
Abstract Syntax Tree representation for multiple languages (in particular Java, MATLAB, and
Python), and work developing a Machine Learning algorithm to detect antipatterns.

3.1 Human Factors

A small study was conducted to examine the WebTA interface from a Human Factors (HF) per-
spective. Insights from the study reveal HF issues through the eyes of students.

We apply a blend of three HF viewpoints corrective, preventive, and prospective ergonomics. Cor-
rective ergonomics focuses on “the problem to correct” [7]. In terms of WebTA, the ‘problem’ is
the presence of antipatterns in students’ programs. Preventive ergonomics focuses on the system’s
design, usually about design choices that minimize the chance of human error by accounting for
human ability, or lack thereof. Prospective ergonomics is defined as “[an attempt] to anticipate
human needs and activities to create new artifacts that will be useful and provide positive user



experience”. This approach helps us analyze a learning environment, training process, in our case,
a critiquer system.

Figure 2: Current display of code critiques.

One result of the study was the determination
that the way WebTA displays critiques causes
excessive cognitive load for students. WebTA
users view a traffic light system to portray the
severity of antipattern(s) found within a stu-
dent’s program. A ‘Green’ light means no
antipatterns and/or a good pattern was found
within the code. A ‘Yellow’ light means a non-
critical antipattern or error was found. A ‘Red’
light means a critical error was encountered.
The design of the individual critique pages (i.e.,
the page shown after a student submits their
code) includes a summary section, a table that
breaks down the code in the file line-by-line
with corresponding critiques, and the student’s
submission printed in it’s entirety. This results
in a wall of text that can be confusing and frus-
trating to students. This is a frequent issue for
user interfaces [8]. It is necessary for the ap-
plication to format the information in a way
that accounts for the limitation. The ability to
hide/reveal extra information is a basic HF so-

lution. Figure 2 shows the partial display of a submission’s critique table.

Figure 3 shows a reworking of the the first critique on line 0 with a few improvements. Initially,
only the student’s line of code is shown with a stoplight indicating the presence of a critique and
it’s severity. The primary substance of the critique starts hidden and is only revealed by clicking the
‘Expand’ button. This is to avoid overloading the student with too much too soon and it provides
an opportunity for the student to identify the problem themselves.

Figure 3: Reworked feedback revealed as needed.

The use of the traffic light is well grounded as
the connotations of a traffic light and its asso-
ciated colors are known worldwide. The color
of the traffic light is always shown as antici-
pation to students’ desires (i.e., prospective er-
gonomics). Initially showing only a simple
icon with the severity of the message allows
students to visually dissect the page at a glance.
This, in turn, provides students with the ability
to work more proficiently. Additionally, a ‘Red
Light’ caption under the traffic light is added
in the rework, addressing the accessibility of

color-blind users.



Importantly, while reframing the issue as a corrective ergonomics problem, it became clear the cri-
tique messages function just as an error message does; to inform the user of a problem that requires
correcting. Good error messages are, among other things, relevant, actionable, user-centered, and
courteous [8]. This is motivating a review of our critique message to ensure they inform the stu-
dents in a way that is actionable and user-centered.

Our HF analysis also indicated a need for training pages to educate students on antipatterns and
associated terminology to assist students in the use of our critiquer system.

The analysis outlined above was an attempt to ensure that the development and design of WebTA
is centered on the student (aka the human part of the system) as well as to suggest possible amend-
ments to further the design for the better. In addition to motivating a user interface redesign effort,
conducting frequent cognitive walkthroughs or more structured, in-depth usability testing will help
us improve the system for students.

3.2 Regular Expression Builder

Regular expressions, or regex(ex), are a form of programming language to match patterns found
within text/characters. In this day and age, regexes are a staple in the computing world. From data
pack inspection [9] to text parsing to search engines, its uses are vast [10] and it is utilized fre-
quently [11]. However, regular expressions are known to have poor readability and comprehension
[12], lack generalizability to other languages in a number of scenarios [13], and differs from the
standard Object Oriented Programming way of thinking [14].

Figure 4: Regex Builder Help Page. This part of
the application defines every usable block.

Antipattern specification are represented using
Regular Expressions (Regex) within WebTA.
While regular expressions provide an excellent
tool for text capturing, they are perceived to
be unintuitive and often pose a steep learning
curve for instructors when inputting new an-
tipatterns. As part of a class project, a team of
undergraduate and graduate students developed
a proof-of-concept system that utilized a visual
representation (a’la Blockly [15]) for entering
regular expressions. This tool, WebTA’s Regex
Builder, aims to be a soft, visual introduction to
novices of regular expressions. It takes the ap-
proach of ”blocky” code, much like many popular applications (e.g. Scratch [16], NetLogo [17],
Lego Mindstorms [18], etc.). The Regex Builder can allow professors or teachers regex knowledge
to report new antipatterns to the database without hassle.

Overall, we found that the application shows a lot of potential. There were multiple participants
who were able to create correct regular expressions having not known regex beforehand. With the
recommended improvements, we strongly believe that this application will achieve its purpose(s).



3.3 Identifying Problematic Code using ML

Interest in machine learning algorithms has exploded in recent years. Their usefulness relating to
identifying coding problems is therefore incredibly relevant, as outlined by a literature review of
various machine learning models detecting code smells [19]. Machine learning algorithms repre-
sent a promising avenue for automating the identification of antipatterns. A proof-of-concept pro-
gram was developed targeting Python as the language being critiqued. By leveraging the Random
Forest, SVM, Logistic Regression, and other classification machine learning algorithms we en-
deavored to identify two antipatterns: Syntax Error in Select Statement Condition,a parsing issue,
and Crowded Operator, a style issue. The aim was to systematically assess various classification
models for each distinct antipattern, employing an ensemble approach to discern the optimal model
that exhibits superior performance in identifying coding anomalies.

Figure 5: An example of a visual regular expres-
sion.

Data: The dataset utilized in this study consists
of 900 Python code snippets in a dataset down-
loaded from Kaggle [20]. Some of these snip-
pets come injected with antipatterns, while oth-
ers adhere to correct coding practices. Prepro-
cessing efforts were undertaken to enhance the
dataset’s suitability for machine learning anal-
ysis. Initially consolidated into a unified file,

each code snippet underwent individual extraction, resulting in separate files for granular analysis.
Subsequent meticulous labeling associated each file with specific antipatterns, establishing a ro-
bust ground truth for supervised learning. The dataset was then strategically divided into training
and testing subsets, with the former serving as the foundation for model training. This bifurcation
allowed for the independent evaluation of model performance on the testing set.

Figure 6: Confusion Matrix for Crowded Opera-
tors SVM Model

The project’s approach is to use different clas-
sification methods, such as Random Forest,
SVM with Scikit-learn library for model im-
plementation. All the models listed below are
implemented on crowded operators and syn-
tactical check for conditional code (if condi-
tion).

Method 1 Random Forest: The algorithm
random forest [21] was selected for its robust-
ness in handling diverse and complex datasets,
making it well-suited for our task of classifying
various antipatterns. Leveraging the labeled
dataset, the model was trained on a training set,
allowing it to discern patterns associated with
different coding anomalies. Subsequently, the
model’s performance was assessed on a dedi-
cated testing set, drawn from the same dataset,
to evaluate its ability to generalize to unseen



data. For the crowded operator antipattern, the hyper-parameter chosen for depth of the Ran-
dom Forest is 15 and the accuracy achieved for this model is 81%. The accuracy is noted after
running the same model multiple times. For the syntactical error with conditional code, the hyper-
parameter chosen for depth of the Random Forest is 1 and the accuracy achieved for this model is
93%. The accuracy is noted after running the same model multiple times.

Figure 7: Confusion Matrix for syntactical errors
in conditional code SVM Model

Method 2 SVM: Support Vector Machines
(SVMs) are chosen for their effectiveness in
high-dimensional spaces, making them well-
suited for tasks like identifying antipatterns
in code snippets. SVMs exhibit robustness
to overfitting, particularly in scenarios with
numerous features, preventing a loss of gen-
eralization. Their versatility in employing
various kernel functions allows for capturing
non-linear relationships within code structures.
The clear objective of maximizing margins be-
tween different classes enhances generaliza-
tion, while their consistent performance across
domains, including text classification, suggests
applicability to diverse coding patterns. With a
focus on small to medium-sized datasets and
a proven track record in classification tasks,
SVMs present a compelling choice for discern-
ing complex relationships inherent in code analysis. The SVM model was built on train data and
then validated on validation dataset and then tested for various statistics on test data.

For crowded operators the SVM model performed the best as compared to Random Forest and
other models with highest accuracy rate of 96/For the syntactical error with conditional code, the
accuracy achieved for this model is 98%. The accuracy is noted after running the same model
multiple times. Although, the accuracy seems high, it might not be the best matrix to consider
here, as specificity and sensitivity are not being considered, which may impact the performance of
the model. The confusion matrices in Figures 6 and 7 can help looking in to this missed aspects.
below is the confusion matrix for both the antipatterns with SVM model.

Logistic Regression: Logistic regression is a statistical method that is used for binary classifica-
tion problems. Despite its name, logistic regression is primarily used for classification tasks, not
regression tasks. It’s a type of generalized linear model that uses the logistic function to model
the probability that a given instance belongs to a particular category. As for antipattern classifica-
tion, the dataset code snippets either have antipattern of the particular kind or it doesn’t, hence this
could be a good data to try out logestic regression model. For the crowded operator antipattern,
the accuracy achieved for this model is 98%. The accuracy is noted after running the same model
multiple times. For the syntactical error with conditional code antipattern, the accuracy achieved
for this model is 97%. The accuracy is noted after running the same model multiple times.

Ensemble Model: An ensemble model combines the predictions of multiple individual models to



improve overall performance and robustness. Ensemble methods are particularly useful as individ-
ual models have different strengths and weaknesses or when dealing with noisy or uncertain data.
We used ensemble method with random forest and gradient boost models.

Figure 8: ROC curve for crowded operator an-
tipattern’s ensemble model

For the crowded operators antipatterns, the en-
sembles method with above mentioned models
picked random forest as the best model with ac-
curacy 96 % and another statistics that gives
insights in to models overall performance with
consideration of sensitivity and specificity is
AUC (area under curve) represented with the
help of ROC graph. Figure 8 shows the ROC
plot for the crowded operator antipattern for the
ensembled model.

The best performing model for the syntacti-
cal error with conditional code antipatterns was
also Random Forest model with accuracy of
98%. To see overall performance of the model,
we need to look at ROC curve if Figure 9.

While this project showed a preliminary
method for identifying antipatterns in Python
code, there are areas that could be enhanced.

The process of parsing the Kaggle dataset into individual Python scripts using a custom algorithm
might have introduced errors. Additionally, the automated labeling process for ground truth may
not have been completely accurate, impacting the model’s performance. Future work will focus on
refining the parsing process and thoroughly checking ground truth labels for accuracy.

Figure 9: ROC plot for syntactical errors in con-
ditional code antipattern’s ensemble Model

A major limitation was the relatively small
dataset. To enhance model generalizability, ob-
taining larger and more diverse datasets, such
as code written by novice students, could pro-
vide a more realistic scenario where code qual-
ity is often a concern. Larger datasets may lead
to more accurate and robust antipattern detec-
tion models.

Lastly, as we show from the ROC curve, and
confusion matrix, we can see that the data is
imbalanced with true positive and true nega-
tive values. This is due to the imbalanced data
and small size of original dataset. To rectify
this, we need to use a larger dataset and ex-
pose the models with more balanced samples
to have accurate training and prediction mech-
anism.



4 Future Work

The RICA project embodies the significant potential of immediate feedback systems in enhancing
learning outcomes. The project underscores the transformative power of automated code critique
tools in addressing common antipatterns and fostering a deeper understanding of programming
concepts among novice learners.

Looking ahead, the project will extend its scope to include a broader range of programming lan-
guages beyond Java and MATLAB, with Python identified as an immediate next step. This ex-
pansion aims to validate the system’s effectiveness across different programming paradigms and
educational contexts. Additionally, future iterations of WebTA will incorporate AI-based mecha-
nisms to enhance the tool’s adaptability to various pedagogical strategies.

The ongoing development and research will continue to be guided by educational theories on
feedback and learning, with an emphasis on creating inclusive, supportive, and engaging learning
environments for all students. The ultimate goal is to contribute to the broader discourse on edu-
cational technology and programming education, providing insights and tools that can be adopted
and adapted by educators worldwide.
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