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Work-In-Progress: Student Rocketry – Out of Class Learning 
Experiences from a Year-Long Capstone Project at Saint Louis 

University 

Every year, teams nationwide participate in rocket competitions such as the Spaceport America 

Cup [1] or NASA Student Launch [2]. These competitions have various altitude requirements that 
student-designed and built rockets must reach to qualify. Although most rockets meet the altitude 

requirement to qualify, they typically overachieve and fly beyond the threshold. Our senior design 
project aims to design, build, and test a Rocket Altitude Determination and Response System 
(RADARS) to reach within ± 50 ft of a given target altitude. To achieve this, my team and I will 

design, integrate, test, and validate an airbrake control system to decelerate the rocket during ascent 

using real-time data from onboard sensors.  

Saint Louis University (SLU) does not have any courses focused on rocket design; consequently, 
to complete this project, our team must seek information and learn outside the classroom. This 
paper will describe the steps we have taken to accomplish this (including where to seek the 

information, struggles, successes, and lessons learned) and document the process to serve as a 
roadmap for other student teams in similar situations at their universities.  

Predicting how rockets behave in flight can be challenging; however, it can be done using wind 

tunnel tests, Computational Fluid Dynamics (CFD) simulations, and physics-based dynamics 
simulations. Extensive topical knowledge is required to perform each of the tasks successfully. 
Moreover, rocket launches and flight tests require additional knowledge of procedures, operations, 

and safety considerations. This is readily available at many academic institutions with established 
experimental rocketry programs through coursework and institutional knowledge but is lacking at 

our institution due to many factors, COVID being a prime contributor to the loss of institutional 
knowledge.  

The student-run rocket lab at SLU used to be highly active, with students at all levels participating 

in rocket design, building, and tests; unfortunately, most of that information and experience was 
left with the graduating class in 2020. When I arrived the following year, the lab could not meet 
due to COVID restrictions. The lab remained inactive until this past summer when I contacted 

some alumni previously in the rocket lab at its prime about wanting to restart the lab. Our early 
meetings consisted of them teaching me the basics of rocketry. I quickly learned the essential 

components of a rocket by building a LOC-IV cardboard kit [3] ordered online. With guidance 
from the alums, I picked up old tips and tricks they used and insights into constructing much larger 
competition rockets. Parts such as bulkheads, couplers, motors, fins, and a nosecone are in all 

rockets, no matter the complexity, and are made with different materials and precision – depending 
on the mission. Larger rockets also require a specific certification level to launch them due to the 

larger motors.  

High Power Rocketry (HPR) certifications are granted by the National Association of Rocketry 
(NAR) [11] and the Tripoli Rocketry Association [12]. Three levels of certification correspond to 
the motor class. Rocket motors are designated on an alphabetic scale: A-G motors do not require 

any certification for their operation; H and I need a Level 1 HPR certification; J, K, and L require 
a Level 2, and M, N, O require a Level 3. A typical progression is from no certification through 

Levels 1, 2, and 3. To receive a Level 1 HPR certification, one must launch a rocket built from a 
kit or custom-built using an H or I motor. Once I received my motor, I was introduced to a program 



called OpenRocket [4]. OpenRocket is an open-source software program designed to simulate the 
flight and dynamics of custom-designed rockets. The program creates a 2D rocket model based on 

components added by the user. For instance, users can incorporate motor configurations from a 
commercial off-the-shelf (COTS) motors list. From this, the software simulates the flight of the 

rocket with seemingly reasonable accuracy – our firsthand experience in validating this claim of 
reasonable accuracy is still under development and was one of the skills we lost during the COVID 
era.  

 
Figure 1: LOC-IV OpenRocket Model 

The program takes each component’s weight and aerodynamic properties and calculates the center 

of gravity (CG) and center of pressure (CP). These two values can then be used to calculate the 
rocket’s Stability Margin (SM). This unitless number is an indicator of the stability of the rocket’s 
flight - the higher the number, the less likely the rocket will weathervane or be susceptible to wind 

gusts. It is calculated by subtracting the distance of the CG (blue dot in the sketch in Figure 1 
above) and CP (red dot in the sketch in Figure 1 above) to the nosecone and dividing by the 

diameter of the body tube. By measuring the components from the LOC-IV kit, I modeled the 
rocket in OpenRocket. I assembled the rocket as if it were ready to launch and then weighed and 
measured the CG location. The option to override the default values in OpenRocket allows for a 

more accurate simulation of how the real rocket will fly. 

I did not retain much of this information the first time I heard about it. However, the consistency 
of working in the rocket lab and meeting with alumni strengthened my knowledge. By the 

beginning of the fall 2023 semester, I had gathered enough knowledge (and confidence to run the 
student club) to recruit other students to get the lab on the right track. The same approach from the 
summer was used when teaching new members of the rocket lab. More LOC-IV kits were 

purchased and used to explain the basics of rocketry. We set up meetings with the alums to ensure 
I was teaching the correct information correctly, but mostly to pass down the alums’ experience to 

a larger population. New members asked the alum questions I never thought to ask, enabling me 
to learn even more. We started attending launch events in the local community once enough 
members built their Cert 1 kits. These events were day-long trips to remote farm fields with 

temporary no-fly zones and taught us the practical aspects of flight preparation, operations, and 
safety. 

Here, we launched and received our Level 1 HPR certifications. Attending these events enabled 

our lab to experience firsthand what the simulations of stability margin, impulse, recovery, and 
other factors meant. Not only did we see our work pay off, but we realized what we could build 



next. We experienced small A-level rockets made by kids and O-level rockets breaking the sound 
barrier built by experienced university clubs. These new opportunities also enabled my senior 

design group to understand what was required to design, construct our rocket, and implement an 
altitude control system. 

 

Figure 2: Rocket Component Design (all dimensions are in inches) 

 
Figure 2 displays the final rocket dimensions used within each section. Additional details on the 
design choices that led to this configuration can be found in our recent AIAA paper, Project 

RADARS Rocket Altitude Determination and Response System. [13] 

Our first step towards this goal was to explore the use of the open-source software program 
OpenRocket. Among other results, OpenRocket can estimate the stability margin of a rocket and 

how that affects its flight; this information is used to evaluate the placement of the airbrakes in the 
rocket as it changes the stability margin. As mentioned, the software is mainly developed for a 
niche segment and has advantages and shortcomings. The significant advantage is that it is open 

source – meaning it is free and provides access to its source code. Resource-strapped student teams, 
like ours, can leverage this to analyze preliminary designs. It also has a vibrant community of users 

and developers and can be a knowledge resource. On the other hand, a potential downside is that 
a volunteer user community develops this, and updates to the software and documentation happen 
on their schedule. For instance, as of this writing, the user manual was last updated in February 

2022. We have not yet encountered issues with this, but we anticipate doing so! 

 
Figure 3: R.A.D.A.R.S OpenRocket Model 

OpenRocket does not allow a wide range of structures, such as airbrakes. Our team explored the 
use of CFD simulations to determine the position of the airbrakes. We explored another open-

source software for CFD simulations, namely OpenFOAM [5]. While OpenFOAM simulations are 
useful, they are computationally intensive to be executed on standard desktop/laptop computers. 

To address this issue, I worked over the past summer to assemble a custom computing cluster using 
available hardware at SLU. This task brought with it its own set of challenges. While SLU offers 
high-performance computing (HPC) classes, they are taught from the perspective of developing 

and executing algorithms, and there are no classes to teach the actual building of a computing 

Upper Airframe Lower Airframe Nosecone 
Coupler 

https://www.timdrake.org/wp-content/uploads/2024/03/AIAA_Paper.pdf
https://www.timdrake.org/wp-content/uploads/2024/03/AIAA_Paper.pdf


cluster. This is another prime example of our need to learn outside the classroom to accomplish 
our goals. As most students do, we turned to Artificial Intelligence (AI)/ChatGPT [6] for help – to 

be used as an interpreter or editor rather than a coder. 

Following a tutorial from a website [10], I learned the basics of setting up a multiple-node cluster 
on Ubuntu. I checked that each PC had adequate RAM, a hard drive, and a simple graphics card. 

The cluster hardware consists of 20 desktops, each with an Intel i7-4790 quad-core 3.60 GHz 
processor and 16GB of RAM, running Ubuntu 22.04.3 LTS connected to a 24-port gigabit switch. 
Once all PCs were in good condition, I connected each to the ethernet switch. I then began setting 

up the cluster by wiping all 20 desktops and installing the Ubuntu Linux distribution from a USB 
drive. With my previous experience and knowledge of building desktop PCs, everything up to this 

point was very familiar. However, the actual configuration of the cluster took many weeks since I 
had no experience with Linux. 

While I knew how to read and write code, I was not fluent in bash or C++. I wanted to understand 

what I typed into the command terminal, not copy and paste from a website. Using ChatGPT was 
vital in learning terminal workflows. For example, the line: $ mpirun -np 5 -hosts worker,localhost 
./mpi_hello was gibberish to me when I first read it. When I asked GPT, “What does this line do in 

an Ubuntu terminal?” it gave an overview of the Message Passing Interface (MPI) [7], as well as 
the structure of the command. Using ChatGPT was integral to my learning since I did not have to 

know what MPI was to understand the command now (in hindsight, it does appear that my learning 
would be more complete with an in-depth knowledge of MPI, but it does come at the cost of time 
and potentially missed deadlines). One of the computers on the cluster was designated as the main 

computer, which communicates with each node using Open MPI and shares directories using 
Network File System (NFS). The rest were given names such as acl_n1 and acl_n2 so they could 
be referenced later quickly. The IP address of each computer was also noted to configure the host 

file located on the main computer and the node. The user can access each node from the main 
computer using the Secure Shell Protocol (SSH). A script that calls each node to return the standard 

“Hello World!” greeting was used to test if the cluster works in parallel. Once all computers were 
able to run in parallel, I was able to begin working on OpenFOAM. 

Understanding the workflow for OpenFOAM consisted of reading the user guide and prompting 

ChatGPT to explain more topical questions (another learning experience in how to make the most 
of ChatGPT by giving it appropriate prompts – a brief foray into the field of “prompt engineering”). 
OpenFOAM has many tutorial cases that help understand how the software works and can be used 

to write custom simulations. I started running the airFoil2D tutorial case on the main computer, 
simulating airflow over a 2D airfoil in incompressible initial conditions. I asked ChatGPT to 

“Explain each file in a typical OpenFOAM case.” It would respond with the following response 
(shown in Figure 4 below) that I followed along with the airFoil2D case. 



 
Figure 4: Prompts and results from interactions with ChatGPT 

I could paste a single file from these initial definitions and get a line-by-line explanation of the 

code. Doing this taught me how meshing works for a 2D case and the solver, simpleFoam. 
Learning a new coding language and how to use command terminal-based software is an iterative 

process. Knowing if the simulation ran correctly took minutes to converge and return any values, 
which adds up. ChatGPT was used to read dense errors, as I could paste it in, ask where the problem 
is, and extrapolate from there. These problems were the extent ChatGPT was able to solve. 

ChatGPT only knew the scope of the problem I gave it, as it could not read my files and explain 
where I went wrong. Even though this sounds intrusive, it would be interesting to point ChatGPT 

to a specific directory and ask where the problem lies. 



The most challenging thing to figure out was where variables and functions were being called 
from. I had to navigate multiple files and lines of code to change initial conditions, mesh settings, 

3D models, post-processing settings, and others for a single simulation. Learning from the 
available information, I was able to write a script to simplify the process of testing cases and record 

the time the simulation takes to run. I relied heavily on ChatGPT for translations to bash script to 
write the script. However, the more I worked on the script, the less I relied on ChatGPT for basic 
syntax help. I decreased the time to set up a simulation by compiling all the essential information 

I would need to change into one file. This also made it less likely to make a mistake inputting new 
initial conditions, leading to less debugging.  

Our team used the cluster to simulate how our rocket would fly. Knowing how OpenFOAM 
operates, we utilized the open-source code to run highly accurate cases in less time than other 
standard CFD programs such as ANSYS [15].To calculate the correct airbrake deflection angle 

that will apply adequate drag force on the rocket, we simulated the change in the drag coefficient 
(𝑪𝑫) for each deflection angle at different airspeeds. We can calculate the drag produced using the 

basic drag equation:  

𝑫 = 𝟏

𝟐
𝝆𝑽

𝟐
𝑺𝒓𝒆𝒇 𝑪𝑫      Eq. 1 

The reference area (𝑺𝒓𝒆𝒇) of a rocket is the cross-sectional area of the body tube. Using simple 

trigonometry, we can calculate the added reference area for different deflection angles: 

𝑺𝒓𝒆𝒇 = 𝝅𝒓𝑩𝑻
𝟐 + 𝒘𝑨𝑩 𝒍𝑨𝑩 𝐬𝐢𝐧 (𝜽°)    Eq. 2 

Using OpenFOAM, we wrote a script that iterates through each rocket model and simulates the 
drag coefficients and forces at varying airbrake deflection angles. These values will then be stored 
in a lookup table, which the algorithm will reference during flight. The cluster drastically decreased 

the time since multiple simulations were run simultaneously on different nodes. Figure 5 illustrates 
the velocity values on a 60° airbrake deflection model at 205 m/sec (671 ft/s or 457.5 mph).   

 
Figure 5: Paraview Post-Processing of Model with 60° Deflection of the Airbrakes (m/s) 



My team manufactured most of the rocket’s structures, such as the lower airframe, fins, centering 
rings, motor mount, and airbrake mechanism. SLU offers introductory CAD and basic machining 

courses on lathes and mills. Taking these in previous years helped us with the initial design of our 
rocket. However, we were never taught the multiple manufacturing methods needed to produce 

parts.  

Our rocket lab uses an X-Winder [14] carbon fiber winding machine to wind the lower airframe 
and motor mount. The tubes are wound with carbon fiber filament around multiple foam circles  

stacked on a steel bar. We worked with our lead technician in our department, who runs the 
department’s water jet, to cut these circles from 2” thick pink insulation foam. From him, we 

learned what file type the water jet needed and how to format the file. The alums showed us how 
to use the X-Winder to wind our motor mount and we later wound our body tube. We designed our 
centering rings and retaining tail cone to be machined on a lathe and mill. With the SolidWorks 

drawings, the operator advised us on what tooltips to use and how to set up the lathe and mill. 
Figures 6 and 7 below show some of the manufacturing processes mentioned here. 

 
Figure 6: Tail Cone Manufacturing 

 
Figure 7: X-Winder Lower Airframe Tube Winding 

From what I learned over the summer, I instructed my team on how the airframe should be 
constructed. The fin can was constructed by epoxying the motor mount, centering rings, and fins 

inside a jig, ensuring the fins were perpendicular. While the fin can was curing, the lower body 
tube was prepped by cutting slits into the bottom for the fins to slide into. All internal parts in the 
avionics sled were designed and 3D printed using the rocket lab’s Bambu Lab X1 Carbon 3D 

printer [16]. The sled was limited to a 3.91” diameter and 12” long section of the rocket since it is 
housed inside the coupler. With such a small space, 3D printing parts enabled my team to quickly 
design, print, and test fit a part in the sled. 



 
Figure 8: Fully Assembled Avionics Sled  

 

 
Figure 9: Avionics Sled Cross-Section 

The sled is comprised of the airbrake mechanism, flight computer, StratoLogger [8], two voltage 
regulators, 9v battery, 2000mAh 3S LiPo battery, Raspberry Pi Zero [9], GoPro Session video 
camera, and screw switches for each computer and main power. The LiPo battery was selected for 

its long battery life since it needs to power the servos, flight computer, and Raspberry Pi Zero. 
Learning from experienced practitioners about operational safety also taught us to have separate 

power sources on the rocket. Consequently, we used a separate 9V battery to power the 
StratoLogger, the primary recovery computer.   



To prepare for the first test flight, my team wrote a checklist of essential items to do up to launch. 
The list was detailed; however, we found it must be detailed enough so we do not have to think 

about anything and check it off. We also did not account for any setbacks when setting up. The 
main flight computer shorted before it could fly, with the recovery system being the most likely 

source of the issue, as when in test mode, the flight computer fires the pyros from any slight 
movement. Future flights will use two StratoLogger computers for dual deployment to prevent any 
shorting of the main flight computer.  

We were able to fly to 7314 ft. without the airbrakes deployed and used the StratoLogger to collect 
altitude and velocity data. From this data, my team found that our MATLAB flight simulation 

algorithm was more accurate (predicted altitude of 7361 ft) than OpenRocket (predicted altitude 
of 6448 ft). We could attribute this to the fact that the values of the drag coefficient 𝑪𝑫 used in our 

algorithms were derived from OpenFOAM simulations, and OpenRocket assumes a 𝑪𝑫 of 0.6. 
This leads us to believe that the 𝑪𝑫 values derived from OpenFOAM simulations will represent 

the drag values on the rocket when flying with airbrakes. My team expected four launches to test 

and modify the airbrake algorithm. Figure 10 plots the simulated flight and actual altitude with no 
deflected airbrakes.  

 
Figure 10: Flight Data vs. OpenRocket and Custom Simulations 

Our second flight test revealed some flaws in our initial design. The initial acceleration from the 

motor caused the flight computer’s screw switch wires to come loose from the terminal blocks, 

disabling the airbrakes. Both pyros were blown at apogee, causing a large enough pressure 

difference in the avionics bay to turn off both Stratologgers temporarily. This power loss led to 

both Stratologgers not blowing the pyros at 1000 feet, which would allow the main parachute to 

deploy. Luckily, our airframe only suffered a minor crack on a fillet between the fin and body from 

the high impact. Once recovered, the avionics bay had minor damage to some printed parts, and 

one servo was broken from the impact. The Stratologgers both blew at apogee because I forgot to 

change the delay in the PerfectFlite software [17]. They are programmed by changing the apogee 

delay and the main deployment altitude. I changed the redundant computer to have a 5s delay and 

deploy at 800 feet, while the main computer had a 0-second delay and deployed at 1000 feet. The 

crack was sanded down and epoxied over, and the servo was replaced. 



         
        Figure 11: Flight 2 Liftoff                      Figure 12: Flight 2 Burn 

Unfortunately, our luck ran out on our third flight test. 1.5s after liftoff, the forward closure in the 
motor was blown upwards out of the casing and into the avionics bay. This had enough force to 

shear the lower airframe pins to the coupler and eject three propellant grains out of the motor. The 
lower airframe was left in a free fall since the shock chord attaches to the forward closure. The 

Stratologgers detected the sideways acceleration and blew all four charges to deploy the 
parachutes, but the main charges did not shear the upper airframe from the coupler. The upper 
airframe and coupler were too close to the ground for the drogue to fully deploy, causing it to hit 

the ground at around 100 ft/s (~70 mph). This led to the coupler cracking in half, the nose tip 
snapping off, and the avionics in pieces.  

 

 

Figure 13: Upper (left) & Lower 

(right) airframe damage 
Figure 14: Avionics Bay Damage 



While we quickly blamed the manufacturer, Aerotech, we found that we put the motor together 
incorrectly. The forward and aft closures are screwed in to hold the grains and nozzle in the motor 

casing. When we put it together previously, there was a small gap between the aft closure and the 
casing and no gap between the forward closure and casing. Although not specified in the 

instructions, this is how it should be put together. In preparation for our third flight, we left a gap 
between the forward closure and casing, which led to its failure. 

 

Figure 15: Example of an Aerotech  High Power Rocket Motor 

Conclusion 

A university rocket lab allows students to understand the challenges of designing, manufacturing, 

and flying something they created. My professor likes to say, “Designing a plane is more of an art 
than a science.” The same can be said for designing rockets. The initial airframe design affects the 
center of pressure. Later, adding avionics such as batteries, flight computers, recovery devices, and 

epoxy shifts the center of gravity, affecting the rocket’s stability. Balancing these variables takes 
time, effort, and creativity. While it is optimistic to expect a project to work perfectly the first time, 

mistakes happen. Making mistakes allows students to learn and grow, even if it causes total failure. 
I can accept that this 8-month project is in pieces, and I am more grateful for everything I have 
learned because of it. Experiencing the entire design process as an undergrad will enable me to 

make more educated decisions when I enter the workforce. I plan to present the learning 
experiences between my Level 1 LOC-IV kit and Project RADARS rocket at the conference this 

summer.  
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