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Using Cognitive Task Analysis to Observe the use of Intuition in
Engineering Problem Solving

Motivation and Background

This work-in-progress paper discusses ongoing efforts to examine how engineers use intuition in
problem solving. Engineering intuition, defined as “the ability to leverage past experience to
efficiently assess the present and predict the future” (Miskioglu et. al., 2023), is a
problem-solving tool used by practitioners when faced with pressure from constraints such as
limited time or resources. Intuition broadly is developed through experience and used by
individuals with a high level of domain expertise to solve problems and make decisions within
that domain (Dreyfus & Dreyfus, 1980), making it of great interest in engineering problem
solving. The overarching goal of this research project is to characterize how intuition emerges in
problem solving across new (zero to one years of experience) and mid-career (six to ten years of
experience) engineering practitioners. Additionally, we seek to identify how the application of
intuition varies when approaching “ill” versus “well” structured engineering problems and the
effects of problem-expertise domain alignment. Well-structured problems are typically
characterized by having a lower complexity as compared to ill-structured problems (Greeno,
1978; Mayer & Wittrock, 1996; Reed,2016). Well-structured problems have criteria for testing
the proposed solution and a mechanized process for applying criterion (Simon, 1973).
Alternatively, ill-structured problems are considered more complex, open-ended, non-routine and
ill-defined (Coyne, 2005; Lock, 1990; Lonngren, 2017; Mayer & Wittrock, 1996). These
problems are typically more vague in their goals and have no definite process for how to solve
them (Simon, 1973), such as engineering design problems.

In this paper, we share our initial efforts in developing the methods to pursue this research. We
are using Cognitive Task Analysis (CTA), to our knowledge a new method in engineering
education, to examine the use of intuition in engineering problem solving. CTA is a class of
observational protocols that surface tacit knowledge through engaging experts with a task
(Crandall, 2006). The purpose of CTA is to capture how the mind works through three primary
aspects: knowledge elicitation, data analysis, and knowledge representation. Many methods of
CTA exist, and best practices call for a combination of CTA methods. In this study we are using
two methods: 1) the Critical Decision Method (CDM), which assesses individuals decision
making in non-routine incidents through a set of cognitive probes (Klein, 1989), and 2) the
Knowledge Audit Method (KAM), which we use to guide our probing questions and identify
types of knowledge used, or not used, by the participant during the non-routine incident
(Crandall et. al., 2006).

We chose CDM for our interviews because this method is used to study cognitive judgment and
how individuals with varying levels of expertise make decisions in their career (Klein, 1989).
CDM has been previously used to elicit knowledge from urban and wildland fireground
commanders, tank platoon leaders, structural engineers, design engineers, paramedics, and
computer programmers (Klein, 1989). A key feature of the CDM protocol is the co-creation of
data between the interviewer and the participant through the development of an incident timeline
that identifies critical decisions. This timeline is initially drafted by the interviewer in real-time
and shared with the participant, at which point the participant adds modifications before the
interview proceeds.



Complementing the CDM method with KAM provides further structure to our interview through
a set of probes that elicit aspects of one’s knowledge and skill regarding specific tasks (Crandall
et. al., 2006). This pairing allows us to better understand the role of expertise in solving the
problem at hand. KAM probes posed during the interview are based on specific cognitive
elements that are characteristic experts in a certain knowledge domain. KAM probes are
organized into eight dimensions, which include 1) past and future, 2) big picture, 3) noticing, 4)
job smarts, 5) improvising/spotting opportunities, 6) self monitoring, 7) anomalies, and 8)
equipment difficulties (Crandall et. al., 2006). The role of probes within these dimensions is to
elicit and collect examples in order to identify skills, patterns, and strategies used by experts in
specific situations (Crandall et. al., 2006).

The focus of this paper is the ongoing initial pilot phase during which we developed, and are
testing and modifying our CTA protocols.

Methods

Pilot study participants are being recruited through convenience sampling with the inclusion
criteria of having at least ten years of experience in engineering. We chose this experienced
sample as they are most likely to use intuition in problem solving, and therefore most appropriate
for assessing whether we can observe the emergent use of intuition through the CTA protocol.

Interviews are conducted over Zoom and recorded with at least two interviewers present. The
primary interviewer leads the questioning while the secondary interviewer takes notes, asks
additional questions when appropriate, and creates the timeline that is part of the CDM protocol.
This role of the secondary interviewer has proved to be essential, as the CTA protocol is both
lengthy and cognitively taxing for the primary interviewer. Our first attempts at using the
protocol quickly revealed that it is difficult for one person to lead the interview, take notes,
choose the appropriate paths, and create the timeline that is part of CDM all at once.

The CDM protocol involves four sweeps, 1) identifying and selecting an appropriate incident to
discuss, 2) creating a timeline of the events in the incident, 3) sharing the timeline with the
participant and using probes to deepen understanding of co-identified decision points, and 4)
hypothetical queries and differences between experts and novices. CDM is well-suited to help us
discover differences in problem solving across experience and problem types as it requires
participants to deeply discuss and analyze how they approach solving problems.

In the first sweep (identify an appropriate incident), participants in the pilot are asked to come to
the interview having thought of a challenging problem they solved in their career. The
interviewers then determine whether the problem is appropriate by assessing if the participant
had a direct "doer/decision maker" role in solving the problem (Crandall et al., 2006). For
example, a participant who was the lead engineer for a project and spoke about a problem where
they had to make major tradeoft decisions between cost, schedule, and technical requirements
would be appropriate. However, the same incident with a junior engineer as the participant
simply observing the lead engineer make design decisions would not be appropriate. During this
first sweep, the interviewers also ensure that the problem involves a critical decision that has a



direct impact on the outcome, rather than just an unusual or dramatic event that does not involve
the participant's decision making. As the participant summarizes the event sequence, the
interviewers listen for turning points and meaningful distinctions in the event sequence. These
distinctions provide the overall structure to probe for further detail in subsequent sweeps. Sweep
one ends once an appropriate problem is identified.

In sweep two (incident timeline), the secondary interviewer creates the first version of the
timeline while the primary interviewer asks questions on the problem-solving process. The
primary interviewer asks about problem outcomes while the secondary interviewer adds the
outcomes to the timeline. The primary interviewer then summarizes the outcome to confirm with
the participant. At the conclusion of sweep two, a preliminary timeline is created but not yet
shared with the participant.

At the start of the third sweep (deepening probes), the interviewers share the preliminary
timeline with the participant to identify any gaps and add further details (Crandall et al., 2006).
The interviewer and the participant together highlight the decision points made by the
participant. CDM calls for probing deeper into all decision points during sweep three. However,
because of time constraints and the threat of interview fatigue, we have the participant rank their
decisions by perceived impact on the problem solution and proceed with the top ranked one or
two. The probing questions used to uncover the processes involved in these critical decisions fall
across eleven categories, 1) cues, 2) information, 3) analogs, 4) standard operating procedures, 5)
goals and priorities, 6) options, 7) experience, 8) assessment, 9) mental models, 10) decision
making, and 11) guidance, without introducing new information or leading the participant
(Crandall et al., 2006). For example, an information probing question could be “What
information did you use in deciding on aluminum rather than steel or composite materials?”” A
question on goals and priorities could be “What were the specific goals and priorities guiding
your decision to reduce product testing in order to meet the schedule?” After applying these
probing questions to the top-ranked decision point, the same types of questions are used to probe
the second decision point if time allows.

The fourth and final sweep of CDM involves hypothetical queries and expert/novice differences.
These questions are used to reveal even more aspects of the decision-making process that may
not have emerged organically (Crandall et al., 2006). The questions in the fourth sweep are
broadly divided into four categories, 1) expert-novice contrasts, 2) hypotheticals, 3) experience,
and 4) aids. Question prompts include, "Would a novice have noticed the same cues you did in
this situation?" or "How could additional training have offered an advantage here?"(Crandall et
al., 2006). Some of the prompts are skipped if they were covered in earlier discussions on the
problem.

At the conclusion of the CDM, the interviewers determine if enough information has been
collected to satisfy the eight dimensions of KAM. Reflecting on the results of the interview so
far, the interviewers determine which of these dimensions require additional probing that was not
covered elsewhere in the interview. For example, when reflecting on the big picture, the
interviewers could ask, "What are the major elements you have to know and keep track of?"
which may be covered in sweep three of CDM. Again, the role of the second interviewer in



note-taking and mapping emergent data to the KAM dimensions in real-time is critical to the
success of the interview.

The interview closes with the participant recalling their relevant expertise and experience that
guided decisions, providing feedback to improve the interview process itself if it was confusing
(as this was a pilot), sharing any additional insights into drivers of their decision making that
may not have already been covered, and consenting to potential follow-up contact during the
analysis phase with clarification questions that may arise.

Pilot interview data is auto-transcribed via zoom, and after the transcript is checked the data is
anonymized before analysis. Analysis consists of deductive coding (Salanda, 2021) of the
interview by applying a previously developed codebook for engineering intuition (Miskioglu et
al., 2023). Application of this engineering intuition codebook allows us to discern whether our
protocol has elicited themes associated with intuition and assess any modifications that should be
made to the protocol. Each interview is coded by at least two members of the team, one who was
present during the interview and one who was not.

Summary of Lessons Learned from Pilot to Date

Our pilot interviews to date confirm that CTA is an appropriate method for collecting rich data
on engineers’ approach to problem solving. We also recognize that our use of CTA with CDM
and KAM is limited by participants’ memory of the incident, their perception of the relative
importance of the key decision points, and the practical limitation of not being able to probe
every aspect of the incident. We accept the trade-off between these limitations and the benefits of
CTA.

A key takeaway from our pilot work is the importance of a trained research team of at least two
interviewers when conducting a CTA interview. The essential role of the secondary interviewer
cannot be overemphasized, as it gives the primary interviewer the cognitive space to focus on
conducting the interview. This need for at least two interviewers with sufficient CTA experience
is also a limitation of the protocol. We have found that the time invested in becoming
comfortable with a CTA protocol is greater than other qualitative methods. If a trained team
member takes a leave of absence data collection may have to pause until they return.

In addition to the pilot interviews, we also benefited greatly from conducting “pre-pilots,” where
we simulated an interview using the protocol with trusted colleagues outside of our target sample
population. In this simulated interview, we paused to discuss the purpose of each sweep and any
awkward or unclear moments, and we learned how we need to organize ourselves to navigate the
sweeps. For example, creating simple graphic organizers for real-time data documentation that
allow us to quickly assess whether a sweep is complete, or the KAM dimensions are satisfied,
was a key outcome of the “pre-pilot.”



Anticipated Results and Significance

The overarching goal of this research is to provide a better understanding of engineering intuition
and a foundation for the explicit application of intuition in engineering problem solving. More
specifically, the initial pilot interviews support our ability to use CTA effectively in gathering
high quality data that supports this research goal.

We anticipate this ongoing work will allow us to understand more about the role intuition plays
in engineering. Ultimately, the differences in problem-solving approaches between new and
mid-career engineering practitioners will illuminate how we approach teaching problem solving
in undergraduate engineering education. This insight can help to restructure engineering
education in a way that promotes expertise development and aligns with real-world applications
of engineering (Metcalfe & Wiebe, 1987; Bolton, 2022; Bolton et. al., 2021; Miskioglu et. al.,
2023). In turn, this insight will be beneficial in onboarding new engineering hires in industry
because students will graduate with more agility and adaptability in expertise development at
their disposal. Overall, applying intuition in both academia and industry will benefit the
engineering field by increasing the ability to creatively address society’s greatest needs and
challenges.
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