
Paper ID #43691

(Board 53/Work in Progress) Engaging the Next-Generation of IC Designers
with Puzzle-Solving Competitions

Prof. Daniel Limbrick, North Carolina A&T State University

Dr. Daniel Limbrick is an associate professor in the Electrical and Computer Engineering Department
at North Carolina Agricultural and Technical State University (NC A&T). As director of the Automated
Design for Emerging Process Technologies (ADEPT) laboratory, Dr. Limbrick investigates ways to make
microprocessors more reliable and secure through cross-layer design.

Laura Marcela Garcia Suarez
Deriech Cummings II, North Carolina A&T State University

©American Society for Engineering Education, 2024

WIP: Engaging the next generation of IC designers with
puzzle-solving competitions

Daniel Limbrick, Laura Marcela Garcia Suarez, Deriech Cummings
Department of Electrical and Computer Engineering

North Carolina Agricultural and Technical State University, Greensboro, NC 27411
Email: daniel.limbrick@ncat.edu, lmgarciasuarez,dlcummings@aggies.ncat.edu

1 Introduction
The traditional path to learning how to design integrated circuits (ICs) with very-large-scale in-
tegration (VLSI) requires undergraduate students to take courses in digital logic, introductory
circuits, electronics, and introductory VLSI design. If they are lucky, by senior year, they have
mastered the art of designing a logic primitive, e.g., a CMOS inverter or a simple circuit, e.g., a
full adder. With this knowledge, they have the foundation to pursue graduate studies in VLSI de-
sign, which, depending on the university, includes a course that introduces them to logic synthesis
and physical design. This approach to teaching VLSI has a lot of shortcomings: (1) students with
the desire to design a microprocessor from scratch have to delay gratification for several years, (2)
students must appreciate and have a strong aptitude for each step of the VLSI design process in
sequential order, (3) most universities do not offer the full sequence of courses needed, and (4)
exposure to skills needed is usually not available until the students have already committed to a
career path.

This paper describes an approach to expose students to advanced VLSI concepts and algorithms
needed to design a complex IC by having them compete in a puzzle solving competition. The game
requires a player to connect dots with lines while satisfying certain constraints. The objectives of
the game can be achieved using VLSI physical design concepts, creating a pathway for students of
all ages to discover VLSI design.

The remainder of the paper is organized as follows. Section 2 provides a background on Flow
Free. The objectives of the game are related to VLSI concepts in Section 3. Section 4 provides
a description of graph-based approaches to solving the game and explains how these approaches
relate to VLSI. The authors’ experience with using Flow Free as a teaching tool and a proposed
competition format is presented in Section 5. Section 6 summarizes the work.

2 Puzzle-Solving with Algorithms
There are many puzzles today that are in a classes of problems called NP-complete and NP-hard.
NP-complete problems are hard to solve efficiently, especially as the input size of the problem

1

increases. It is, however, easy to verify whether a solution is right or wrong. NP-hardness refers
to the complexity of decision problems for which no known polynomial-time algorithm exists to
solve them. The most popular versions of puzzles that fall in this class provide opportunities to
teach programming skills and engineering problems to students without needing to provide context
for the problem.

Minesweeper is one such game [1]. This game involves finding landmines in a grid using the
hints given at a particular tile. The hint given is the amount of mines around a certain tile. A player
must then select tiles using the hints uncovered after its selection, all while avoiding selecting a
landmine instead. Minesweeper-like solutions can be seen in some applications. Richard Kaye
proved that minesweeper in NP-complete by reducing the game to SAT. SAT is an NP-complete
problem that involves Boolean circuits and their respective inputs and outputs. The problem is cor-
rectly guessing a combination of inputs that, when fed into a Boolean circuit, outputs TRUE. Kaye
decided to show that minesweeper is NP-complete by making Boolean circuits with minesweeper
components. These “computers” resemble minesweeper grids, but had properties of logic gates
(NOT, AND, OR, etc). This way, any SAT problem could be converted into a minesweeper coun-
terpart. Becker used Minesweeper to teach first year computer science students about implement-
ing random numbers, 2-D arrays, and functions in C++. It was noted that the interest level of the
students was higher than with games used in previous years because they had strong familiarity
with the game prior to taking the course. Ben-Ari [2] showed solutions to minesweeper which
included step-by-step simulation of digital circuit elements required for proving NP-completeness.

Sudoku is also an NP-complete problem [3, 4]. There are papers detailing various aspects of
using Sudoku for testing algorithms and solutions, from recreating Sudoku puzzles from a picture
of them (Image recognition) to ways to efficiently solve them (beta-hill climbing, genetic algo-
rithms, Monte-Carlo Tree Search). The ubiquity of games like Sudoku makes it a good starting
point for introducing students to problems that are solved by trying out different solutions and
comparing them to the already realized ones. This also means that finding a solution for Sudoku
that solves it efficiently can provide a gateway to solving other NP-complete problems, such as
path finding through the traveling salesman problem, cryptography with prime factorization, and
checking circuits with SAT.

This background motivates the use of Flow Free to introduce students to VLSI physical design
problems. Flow Free is a game that requires a player to connect dots with lines while satisfying
certain constraints. Such a game would instill VLSI physical design concepts and be accessible
to students of all ages. Flow Free (shown in Figure 1), runs on Android/iOS platforms. The
game’s objective is similar to the wire-routing problem in integrated circuit design. Flow Free
has three constraints: (1) dots of the same color must connect, (2) lines cannot overlap, and (3)
every space must be filled with a line. Flow Free, under certain constraints is also an NP-complete
problem; This was found by James F Lynch in his paper, ”The Equivalence of Theorem Proving
and the Interconnection Problem,” where he reduces a series of boolean logic (similar to SAT,
that we know is NP-complete) into an interconnection problem (similar to flow free) [5]. This
way, a solution to SAT can also be a viable solution to flow problems. Flow free can be used as
a foundation for VLSI routing problems, where processors need proper and efficient connection
points from one transistor to another. Because of its NP-completeness, a solution for any of these
problems leads to more efficient connections, which leads to better and more efficient computers,
something that would drastically change the way computers are made.

Figure 1: Flow Free

3 Connections to VLSI Education
The evolution of semiconductor technology has reached a critical point where traditional scaling
methods alone are no longer enough to meet the increasing demands for overall system perfor-
mance. While trying to make transistors faster by shrinking the dimensions of the circuit, the
performance of the system suffers because of cross-section scaling of on-chip and off-chip inter-
connects [6].

To solve this, new technologies have emerged and with them a large amount of routing chal-
lenges. This literature review explores the impact of emerging technologies on routing techniques,
and how these constraints map to versions of Flow Free. The focus will be in the following tech-
nologies: 3-D integration of CMOS-based ICs and graphene nanoribbons, each one impacting
routing methodologies and algorithms differently, based on their constraints and characteristics.

3.1 Planar CMOS Wire Routing
Routing is the process of selecting a path that connects two points and satisfies a set of con-
straints. There are multiple areas of circuit design that incorporate routing algorithms, including
the physical design of the interconnecting wires for transistor devices and mapping droplet paths
for biochips.

In electronic design automation, there are several steps that translate the high-level functional
description of a circuit design into a physical implementation of the circuit. In a typical EDA
design flow, design creation begins with a written hardware description at the register-transfer
level (RTL). This RTL description is then mapped to a specific technology library as a netlist in
a process known as logic synthesis. Exact locations for the circuit components in the netlist are
assigned during the placement step. Finally, the routing step adds the wires needed to properly
connect the placed components while obeying all design rules for the circuit.

An example of this design step can be seen in Figure 2. An active area of research is to
find ways to connect modern devices in a given space with wires. The length of the wire must
be minimized to reduce power and delay. Additionally, unrelated wires cannot intersect in order
to prevent shorted signals. Finally, the ability to route a design is influenced by the resources

5

4

6

1

4

Figure 2: Example of wire routing.

(open spaces) available. When not enough resources are available, routing congestion can occur,
preventing a solution. Routing congestion has already been established as a growing bottleneck to
transistor scaling in deep sub-micron transistor technologies due to the reverse scaling of wires [7].
The routing design problem is generally similar to classic puzzles that involve connecting similar
dots and specifically similar to FlowFree.

FlowFree is related to the wire routing problem in the following ways:

• Specific connections: Each puzzle contains one set of connections for each color. This
color-coded scheme is similar to a cell-level netlist in wire routing, which is also a fixed
input.

• Finite Resources: FlowFree can be played on a square grid of at least 5 squares by 5 squares
dimension (larger grids are available). Based on the number of nodes, the number of avail-
able spaces is fixed. This is similar to a placed chip, where the nodes and the channel
resources are given.

FlowFree is dissimilar to the wire routing problem because it requires that all empty spaces
must be filled in order to move to the next level. In traditional wire routing problems, the goal is to
minimize wirelength, not maximize it! For the competition, we relax this constraint in FlowFree
in order to more closely resemble wire routing.

3.2 3-D Integrated Circuits
3-D die stacking integration has been one of the most optimistic alternatives to the limitations
encountered in 2-D integration and the constant approximation to the ceiling of Dennard scaling
law. This technology consists of stacking layers of logic and connecting them through vertical
links. These vertical connections are most commonly Through-Silicon Vias (TSV). TSVs, how-
ever, come with a significant number of limitations that can be summarized in the presence of a
limited vertical bandwidth [8].

The idea of routing in 3-D systems began by tweaking the usual ways of directing traffic in 2D
setups. The initial approach was stretching the existing 2D routing tools to handle the complexities
of 3D layouts, or in other words, solving in a 2-D manner each layer and then performing the

Figure 3: Scattered Pack in Flow Free

vertical connections within the layers. This pseudo-3-D routing approach helped to get a basic
grasp of how 3D routing might work.

One example of pseudo-3-D routing algorithms was proposed in [8] where the problem of lim-
ited number of vertical links available is addressed. Given the high area consumption of TSVs, and
fabrication limitations, the bandwidth of vertical links is relatively smaller than that of horizontal
links. This constraint also applies for other vertical link methods. This approach is considered to
be one of the first ones to solve the before mentioned problem with a routing algorithm instead of
focusing on the hardware design of the chip.

The bandwidth of vertical links is low compared to that of horizontal links. [8] proposes a traffic
distributing routing algorithm that attempts to create efficient vertical links without changing the
structure of the TSVs, different to what was proposed by earlier algorithms like AdaptiveXYZ. This
approach innovated compared to other routing algorithms by taking highly probable congestions
in vertical links into consideration.

The algorithms needed to route the connections in 3D IC wire routing relates to the ”Scattered
Pack” in Flow Free (shown in Figure 3).

3.3 Graphene nanoribbon
Graphene nanoribbons (GNR) are one of the most promising forms of graphene for use in elec-
tronics because of their special electrical properties [9]. One of the most relevant properties is its
ability to change its electrical behavior by changing the shape of its edges: zigzag and armchair.
Both structures are formed with hexagonal shapes, but with different edge orientation. In order
to keep the same structure, thus same electrical properties, it is only allowed to bend 0°, 60°, and
120°. Bendings of 30°, 90°, and 150° would change the chirality of the GNR, and its behavior
from metallic to semiconductor, or vice versa. For that reason, it is necessary to use a routing
grid that only allows those three angles. Therefore, instead of using the traditional routing grid
for Steiner trees, [10] proposes a triangular grid where the before mentioned bendings are the only
ones allowed.

Like in traditional routing problems, the resistance depends on the length of the interconnect.

Figure 4: Hexes Pack in Flow Free

In this routing problem the bending angle of the interconnect also causes resistance. The resistance
cost varies depending on the number of bendings and their respective angles. The total resistance
cost due to interconnect length and bending is known as hybrid cost [10]. The goal of this algorithm
is then to find a minimal hybrid cost and replacing 120° bendings when possible.

The algorithm starts by selecting the sink terminal with the farthest distance from the source
and calculating its possible hybrid costs. Then the appropriate bending path is chosen based on the
average distances of the remaining sink terminals after selecting one of the bending paths. After
this, the grid is separated into clusters, which are formed depending on the position of the sink
terminals. The idea of clusters is expanded in [9], where a total of 4 clusters are formed. Then the
possible Steiner points of each cluster are found and selected.

In addition to the expansion of the clusters, [10] modifies this algorithm by adding a rerouting
function for hexagonal obstacles placed in the grid. By using the coordinates of the hexagon’s
vertices, it is possible to calculate an alternative route that surrounds the obstacle. However, both
of these algorithms do not consider crosstalk.

The algorithms needed to route the connections of graphene nanoribbons relates to the ”Hexes
Pack” in Flow Free (shown in Figure 4).

4 Solutions from the Electronic Design Automation Domain

4.1 Solutions Based on Graph Theory
The definition of the game, provided a grid with empty cells (with potential to be used as paths for
connections) and a set of cells of different colors make it possible to define it as a graph structure.
By providing attributes to each color, this game becomes a very versatile representation of VLSI
concepts. For example, recognizing available vertical and horizontal cells for a specific dot would
allow us to represent a connectivity graph. Figure 5 shows an example representation.

In the connectivity graphs the routing regions are represented with vertices that contain vertical
and horizontal weights. These weights show the routing availability of that region. This step is
important to identify high congestion regions and be able to rearrange the design as required.

Figure 5: Graph-based representation of Flow Free

Shortest path algorithms are valuable tools for determining the shortest routes between two
nodes within a routing graph. Also, these algorithms are characterized for having optimization
capabilities. Djikstra’s algorithm is well known for its low-cost updates. This means that the
addition of a new node requires little computation, because information previously obtained can
be used to find the traversal cost of the new node. Also, Djikstra’s weights can not only represent
paths but also a variety of objectives like electrical properties and routing congestion, as long as
they are represented by positive weights.

The A* algorithm performs similarly to Djikstra’s, except that only the most promising nodes
are calculated. Given an estimated distance for two nodes, only those that seem to be able to
provide the shortest distance are calculated. It reduces computation by eliminating large part of
the search space.

4.2 Limitations
It is also important to recognize the characteristics and limitations of the game to properly connect
these concepts together. VLSI wire routing aims to minimize the wires needed to connect compo-
nents in order to reduce the delay of the traveling signal. It is evident that wirelength minimization
is not a goal in Flow Free. One of the rules of the game consists in occupying every single cell of
the grid, meaning that “snaking” or de-routing to longer paths may be necessary if the provided
solution has empty cells in it.

Additionally, modern VLSI circuits are routed using multiple metal layers that build in the z
direction. However, there is no multi-layer representation of the game. Normally in a 2-D circuit,
each cell has a vertical and horizontal capacity. In Flow Free, however, each cell can only be
occupied once ignoring whether it is part of a vertical or horizontal connection. This means that
3-D ICs are also a difficult concept to visualize using Flow Free. The closest alternative to this is
the ”Bridges Pack,” which allows for connections to be made over other connections. There are no
multi-pin connections. Each puzzle consists of a set of paired colored dots, meaning that only two
pin sub-nets can be visualized.

Finally, in the game there are no prioritized nets. Starting with any connection does not alter
the final result. However, this diverges from the realistic constraints of timing-driven wire routing,
where nets have specific timing and length requirements.

5 Competitions and Teaching Exercises

5.1 High School Group Implementation
The algorithm design competition was implemented in the high school outreach program, STEM
Scholars. STEM Scholars was an academic year-long program composed of bi-weekly hour-long
seminars that teach students (see Figure 6) through hands-on training of Ubuntu Linux, bash shell
programming/scripting, and gnuplot data plotting software. Additionally, the students compete in
teams to design an algorithm that solves a puzzle in Flow Free.

Figure 6: High school students developing their routing algorithm

This program aimed to engage high school students by using example problems that are rele-
vant to their current studies. Therefore, math problems were taken from a Scholastic Aptitude Test
(SAT) workbook as well as a Calculus textbook. An additional goal is that the students continue
the exercises independent of the seminar. To this end, the puzzle game can be accessed from a
smart phone and the tools that are used in the seminar are freely available.

The students use the knowledge they acquired (e.g., algorithms, technical presentation) from
the bi-weekly seminar to develop an algorithm to solve the puzzles in the game. The algorithms
consist of a series of written steps to solve the puzzle without knowing the layout of the puzzle in
advance. The students compete to create the best algorithm based on the following criteria: (1) the
highest number of puzzles solved, (2) the fewest number of steps in the algorithm, and (3) the best
presentation of the algorithm. The team with the best overall algorithm will received a $25 gift
certificate for each team member.

5.1.1 Interactive Exercises

In order to teach the students the value of giving explicit instructions the students were required to
navigate their peers across the room. One student volunteered to be blindfolded and two students
volunteered to give instructions. The blindfolded student had the objective of traveling from one
side of the room to the other side based purely on the instructions of his/her peers. This exercise
emphasized the level of precision necessary to describe a sequence of steps.

The students were asked to stand in two rows, forming walls. Six students volunteered to stand
at specific locations between these walls. Their position was meant to mimic the colored dots from
Flow Free. Another student volunteered to solve the puzzle blindly (i.e., without looking at the
other students). The information for the position of the students was given to the “blind” student

Figure 7: Example of terms given to participants

through an oral description by the other students. After solving the puzzle, the students discussed
what they learned about defining a problem for a computer to understand (e.g., specifying positions
relatively).

5.2 High School Individual Implementation
A group of 6 high school students were invited to compete in a Flow Free solving competition
individually. Each student was tasked with creating a flowchart that solved the puzzles generally.
To facilitate common language, they were given a glossary of terms and coached on it’s usage
(shown in Figure 7).

The flow charts were evaluated on their ability to solve 10 puzzles at random based on three
criteria:

• Accuracy: How many puzzles can it solve? If the algorithm cannot find the final solution of
a puzzle, then it will count as not solved. The algorithm must provide a ”legal solution”.

• Efficiency: How many steps does it take for the algorithm to complete a puzzle? These steps
are divided in search and traversal. Search is the action of checking a group of cells until the
evaluators found one that meets the requirements of the instruction. The traversal is making
the step from one cell to another.

• Clarity: In how many ways can we interpret each instruction? If the instructions were
unclear, the evaluators attempted to choose the least convenient way to follow them.

Of the six students, only two were able to submit a flow chart. Feedback from the participants
was that in-person activities was preferred to individual effort. Additionally, the evaluation cri-
teria proved to be too ambiguous to provide deterministic scores. Future iterations will require a

graph-based representation of the board to connect solutions to graph algorithms with well-known
performance.

6 Summary
This paper outlined the connections between VLSI physical design algorithms and a popular puzzle
game, Flow Free. By using a popular game that is accessible on computers and smart phones,
students can engage with a familiar problem to learn unfamiliar concepts in VLSI that would not
be seen until the graduate level. The experiences incorporating this game in the classroom provide
evidence that Flow Free would be useful in many settings.

References
[1] R. Kaye, “Minesweeper is np-complete,” The Mathematical Intelligencer, vol. 22, pp. 9–15,

Mar 2000.

[2] M. M. Ben-Ari, “Minesweeper as an np-complete problem,” SIGCSE Bull., vol. 37, p. 39–40,
dec 2005.

[3] G. Kendall, A. Parkes, and K. Spoerer, “A survey of np-complete puzzles,” ICGA Journal,
vol. 31, pp. 13–34, 03 2008.

[4] T. YATO and T. SETA, “Complexity and completeness of finding another solution and its ap-
plication to puzzles,” IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences, vol. E86-A, 05 2003.

[5] J. F. Lynch, “The equivalence of theorem proving and the interconnection problem,” SIGDA
Newsl., vol. 5, p. 31–36, sep 1975.

[6] E. Beyne, “The 3-d interconnect technology landscape,” IEEE Design & Test, vol. 33, no. 3,
pp. 8–20, 2016.

[7] D. Sylvester and K. Keutzer, “Rethinking deep-submicron circuit design,” Computer, vol. 32,
pp. 25–33, 1999.

[8] M. Zhu, J. Lee, and K. Choi, “An adaptive routing algorithm for 3d mesh noc with limited
vertical bandwidth,” in 2012 IEEE/IFIP 20th International Conference on VLSI and System-
on-Chip (VLSI-SoC), pp. 18–23, 2012.

[9] S. Das and D. K. Das, “Steiner tree construction for graphene nanoribbon based circuits in
presence of obstacles,” in 2018 International Symposium on Devices, Circuits and Systems
(ISDCS), pp. 1–6, 2018.

[10] S. Das, S. Das, A. Majumder, P. Dasgupta, and D. K. Das, “Delay estimates for graphene
nanoribbons: A novel measure of fidelity and experiments with global routing trees,” in 2016
International Great Lakes Symposium on VLSI (GLSVLSI), pp. 263–268, 2016.

