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Toward Building a Human-Computer Coding Partnership: Using 
Machine Learning to Analyze Short-Answer Explanations to 

Conceptually Challenging Questions 
Introduction  
 
This NSF Grantee Poster Session paper describes work on an NSF-funded collaboration between 
engineering education and machine learning researchers to automate the coding of short-answer 
explanations written by students to conceptually challenging questions in mechanics and 
thermodynamics [1], [2]. Concept questions, sometimes called ConcepTests [3], are challenging 
multiple-choice questions that allow students to practice utilizing conceptual knowledge in new 
scenarios. These questions have been used within multiple active learning strategies to promote 
conceptual understanding and student engagement [4] - [11].  Furthermore, students can be asked 
to write short-answer explanations justifying their answer choice. Written justifications have 
been shown to improve student engagement and understanding and better prepare students for 
small-group collaborative work and whole-class discussions [12], [13], [14]. Evaluating these 
responses is helpful for instructors and researchers to understand student thinking; however, the 
amount of information can be daunting.  
 
Machine learning has been used in a variety of ways in education research. Work done to 
evaluate student-constructed responses has included automatic scoring, text classification, or 
pattern recognition of responses [15] - [20]. Various unsupervised and supervised learning 
techniques have been used to do this, but transformer models have not been widely used to 
analyze responses [21] - [26], even with their greater ability to analyze text. These methods have 
allowed for improved assessment of student responses and motivated our interest in using 
machine learning to analyze student explanations to concept questions.  
 
To accomplish this goal, we collect written responses available from consenting students in 
mechanics and thermodynamics courses through the Concept Warehouse (CW) [27], a web-
based online tool for active learning. These responses are then manually coded using emergent 
and inductive coding approaches [28], [29], [30]. Finally, the written responses are also analyzed 
using large language model (LLMs)-based coding methods like T5 (Text-to-Text Transfer 
Transformer) [31], OpenAI’s GPT-3, GPT-4 [32], Mixtral of Expert (MoE) [33], and ATLAS.ti 
AI Coding [34]. 
 
In our overall project, we aim to answer the following research questions:  

1. What ideas do students use to explain their reasoning when writing short answer 
responses to conceptually challenging questions?   

2. How well do transformer-based machine learning models replicate the human-coded 
data? 

3. For two isomorphic question pairs, how similar is the human coding of one question 
relative to the other? How well do the machine learning models trained on the first 
question’s explanations perform on the second question? 

 
Our end goal is to create a generative Artificial Intelligence (AI) tool that can supplement the 
CW and give instructors and researchers a way to understand patterns and trends in student 



responses that reveal their conceptual thinking and reasoning. This poster paper will provide an 
overview of our current progress in manually coding student responses and fine-tuning LLMs.  
 
Background 
Conceptually Challenging Questions and Short-Answer Explanations 
 
We use the term concept questions to describe qualitative, multiple-choice questions that require 
students to identify foundational concepts and then apply them in new situations. Concept 
questions are sometimes called “ConcepTests” [3] and are a common type of clicker question 
[35]. These concept questions are often used within active learning practices, like Peer 
Instruction [3], to help students process conceptual knowledge and develop conceptual 
understanding. Concept-based active learning has been shown to improve student performance 
and help students develop conceptual understanding and problem-solving skills [4], [7], [36], 
[37].  
 
In addition to concept-based active learning, instructors can ask students to write short-answer 
justifications for their answers to these conceptually challenging multiple-choice questions. 
Writing short-answer responses has been shown to improve student confidence, chances of 
picking a correct answer, and better prepares students for group and larger class discussions [12], 
[13], [38], [39], [40]. Thus, asking students concept questions and writing short answer responses 
has shown to be very beneficial to their learning; however, the large amount of written data can 
be too much for instructors to manage effectively.  
 
NLP in Education 
 
Machine learning has been used in education research in a variety of ways [15] - [20], including 
analyzing student writing and dialogue [41]. Various unsupervised and supervised machine-
learning methods have been used to assess student-constructed responses. For example, 
unsupervised support vector machines (SVM) and logistic regression have been used to classify 
text based on a human-coded rubric [15], [16], [42] - [45]. Additionally, supervised neural 
networks have been used to analyze texts [21], [46] - [49].  
 
The use of Transformer-based machine learning models [31], [50], [51], [52] in education 
research is an emerging method and even more novel for analyzing short answer responses [21] - 
[26]. For example, researchers have used BERT and RoBERTa [53] to automatically grade short 
answers [25], [26]. These models have been used to critique arguments in student essays and 
conduct essay scoring [22], [54]. Most of the earlier studies were focused on small encoder-only 
Transformer models, and they did not experiment with sequence-to-sequence and state-of-the-art 
decoder-only Large Language Models to assess students' written explanations in science 
education.  Based on this, we identify a need to apply Transformer-based machine-learning 
models to automate coding and analysis of short answer explanations to conceptually challenging 
questions. The benefits of automated coding would provide researchers and instructors a more 
efficient way to analyze student responses. This work can also provide machine learning 
researchers with a further understanding of handling limited labeled data.  
 



Below, we describe how we have leveraged the generative capabilities for sequence-to-sequence 
and larger decoder-only Transformer models to assess textual responses to conceptually 
challenging engineering questions written by students. Specifically, we used GPT-3 [50] and 
GPT-4 [32] via in-context learning and finetuned T5 [31] and Mixtral of Experts (MoE) [33] on 
a manually coded dataset to automate the qualitative coding of the student narratives of 
understanding. 
 
Methods 
Data Collection  
 
Participants in this study are students who consented to have their responses to short-answer 
concept questions used in research. Students are from a diverse array of two- and four-year 
institutions, which include minority-serving institutions, community colleges, teaching-centered 
universities, and R1 universities. Participating instructors are in varying research- and teaching-
focused faculty positions. Enrollment in these courses varies from 25 - 100 students.  
 
All data was collected through the Concept Warehouse (CW) [27], a web-based active learning 
tool. The CW serves as a content repository, a classroom response system to deliver content and 
collect student responses, and a learning analytics tool that provides data to instructors and 
researchers. We have collected and analyzed data on two different topics: mechanics and 
thermodynamics. We are actively collecting data in mechanics, while the analysis of 
thermodynamics responses comes from historical data collected in the tool. For the former 
source, eight common statics and dynamics concept questions were selected to ask across all 
institutions. The current common statics questions are related to the following topics:  

● Q1: Moment of Force 
● Q2: Trusses  
● Q3: Static Friction  
● Q4: Frames and Machines  
● Q5: Forces 
● Q6: 2-D Moments Concepts 
● Q7: 3-D Moments Concepts  
● Q8: Moment of Inertia  

 
Instructors choose their preferred method for question delivery and often include, but aren’t 
limited to, pre-class assignments, homework assignments, or in-class group work. In addition to 
the question, instructors also ask students three follow-ups: short answer justification, confidence 
rating, and question effectiveness, as shown in Figure 1. In the work involved in this project, we 
focus on the analysis of the short answer justification follow-up to understand how students 
utilize ideas to form narratives of understanding.  



 
Figure 1. Example of a student's view of a question asked in this study. The question text and 
figure are provided along with the multiple-choice options. Additionally, instructors utilized the 
explanation, confidence, and question-effectiveness follow-ups.   
 
For the mechanics data collection, we organized a Community of Practice [55], [56], which 
brought together participating instructors twice a term to discuss the use of the common 

Question 
Effectiveness 

Explanation 

Confidence 



questions and the implementation of the CW in their classrooms more broadly. During these 
meetings, it was often decided if concept questions should be revised or if we wanted to focus on 
a different concept question. Figure 2 shows an example of an activity done in a Community of 
Practice session with instructors where short-answer responses written by students were 
discussed amongst the group to evaluate what instructors and researchers could learn from them.  
 

 
Figure 2. Screenshot of interactive activity done during a Community of Practice meeting.  
 
Our work has recently expanded to analyze short-answer explanations to conceptually 
challenging questions in engineering thermodynamics. These questions test students on enthalpy 
and entropy, two commonly challenging concepts [57]. 
 
Data Analysis: Qualitative Coding 
 
Coding approaches have evolved throughout this project; however, the basis of our processes has 
utilized a combination of a priori and emergent approaches [28], [29], [30]. Coding involved 
generating an “ideal” response to implement aspects of a priori coding and thinking about how 
students may use concepts in the question of interest. These preliminary ideas and other 
emergent codes from written explanations were then iteratively refined to create a stable 
codebook that described the resources students used to formulate a narrative of understanding. 
We grouped these codes into three categories:  

● Identification: The student identifies a concept or other piece of information.  
● Comparison: The student compares a concept across two different system states.  
● Inference: The student concludes about the system's state based on the information in 

their response.  
 



Data Analysis: Machine Learning  
 
Analyzing short-answer responses was defined as a sequence labeling problem where the spans 
of the students' responses were coded with manually coded labels.  Instead of training the large 
language model from scratch, we leveraged transfer learning via fine-tuning, and in-context 
learning. In fine-tuning, we use a pre-trained model and train it further on the coded responses. 
The pre-trained model is a language model that initially has undergone training on a large corpus 
of free text. In in-context learning, we prompt the model with a few samples and task it to 
generate the coded response for a new student response instance. We do not train the model in 
in-context learning. We’ve utilized the following models throughout this work:  
 

● T5 (Text-to-Text Transfer Transformer): A sequence-to-sequence model that was 
used to formulate a task into a text-to-text format and fine-tuned T5-base (220M 
parameters) and T5-large (770M parameters) [31] with 20 to 240 manually coded 
responses. 

● GPT-3 and GPT-4: A transformer decoder model with 175B and more parameters 
trained using a “causal” language modeling approach. We present the model with a 
prompt consisting of an instruction, a few examples, and a new set of inputs. It then 
outputs a coded response. GPT-4 [32] is an advanced version of GPT-3 [50] that is better 
able to understand and generate natural language text. 

● Mixtral of Expert (MoE): A 47B parameter model with eight distinct groups of 
parameters called “experts.” For every token, the model chooses two out of eight experts 
and combines their output additively. This results in 13 billion active parameters for each 
token the model processes. It is a large decoder-only transformer-based language model 
that we finetuned on the manually-coded dataset using Huggingface’s transformer library 
[33], [58].  

● ATLAS.ti AI Coding: An automated coding feature on the ATLAS.ti qualitative data 
software that uses OpenAI to prompt qualitative coding [34].  

 
To understand the effectiveness of the machine learning models, we compare model-generated 
codes to human-written codes. We use an Exact Match metric to compare the model-predicted 
coded response to the ground truth response, which involves counting the number of codes in the 
model-generated responses that match exactly with the codes in manually coded responses. We 
also compute Precision, Recall, and F1 scores for each model. Precision is the percentage of 
correct model-generated codes relative to the total number. Recall is the percentage of human 
codes that the model could generate correctly. The F1 score is the harmonic mean of precision 
and recall. Additionally, since some models generate new codes to apply to responses, we 
analyze those newly generated codes to see if they are reasonable to include in the codebook or 
not applicable.  
 
Qualitative Coding Challenges and Limitations 
 
Manual coding to train models takes a substantial amount of time, and to improve credibility, 
additional coders could be involved for the data described below. Additionally, students are on 
different paths toward utilizing disciplinary concepts when writing responses, so some students 
describe concepts with language closer to their everyday language. It is still important to capture 



this within manual and automated coding as it can help instructors and researchers learn about 
the cognitive resources and associated language used by students to describe challenging science 
and engineering concepts. This is a challenge as human coders need to code all instances of 
everyday language and disciplinary language associated with the same concept, and there are 
usually a small number of samples within an already limited data set that have instances of 
everyday language to describe disciplinary concepts. 
 
Machine Learning Challenges and Limitations 
 
In our study, we used LLMs, which are multi-layer neural networks with billions of parameters 
trained on large amounts of free text. These models learn to predict the next word based on the 
context, and for this reason, they also pick up biases present in the text on which they are trained. 
For example, they might favor certain writing styles seen during training, potentially affecting 
how they annotate student narratives. No identifiable information or protected attributes such as 
gender or race are included in our training data, precluding the introduction of additional biases. 
However, the biases associated with LLMs remain an issue to address. Rather than looking at the 
machine as an authority, we look at it as a partner. That puts us in a better position to evaluate 
biases, but with any collaborative project, there are some things that we will not be able to attend 
to. 
 
In addition to biases, creating effective prompts was also a challenge. Each machine learning 
model requires a different input and output format for optimal performance. Therefore, one 
challenge was to methodically design the input and output prompts, through repeated testing and 
adjustments, specific to a given machine learning model. 
 
Findings  
 
In this section, we describe the findings of our work based on our activities as mentioned above.  
 
ASEE 2022 
 
Our first ASEE collaboration [1] investigated the use of a Text-to-Text Transformer (T5) [31] 
and GPT-3 [50] to automate the coding of 290 short-answer explanations to a statics conceptual 
question. This conceptual question, shown in Figure 3, asked students to calculate the force of 
friction on a block after a pushing force was applied. A combination of a priori and emergent 
coding methods was used to manually code the responses, where coders identified cognitive 
resources students used to construct their narratives of understanding for this question. These 
responses were then automatically coded by two large pre-trained generative sequence language 
models: T5 [31] and GPT-3 [50]. 



 
Figure 3. Concept question 5703 asks students to think about the force of friction on a block.  

 
We found that T5 performed better than GPT-3, as the former would produce new codes not 
present in the training examples, as shown in Table 1. Through this preliminary work, we found 
potential for analyzing short-answer explanations using pre-trained text models like T5 [31] and 
GPT-3 [50]. Table 1 shows the results of this work. 
 
 
 
 
 
 
 
 
 
 
 
 



Table 1. GPT-3 and T5 Model Performance on Concept Question 5703. Table reproduced from 
[1]. 
 # 

correct 
codes 

No. 
of 

codes 

Precision Recall F1 Incorrect 
but 

makes 
sense 

Does not 
make 
sense 

Codes 
missed 

Ground 
truth 

175 NA NA NA NA NA NA NA 

t5-base-f020 0 0 0 0 0 0 0 175 
t5-base-f050 40 49 0.82 0.23 0.36 2 7 126 
t5-base-f100 60 90 0.67 0.34 0.45 14 16 85 
t5-base-f150 80 92 0.87 0.46 0.6 7 5 83 
t5-base-f200 93 126 0.74 0.54 0.62 19 14 49 
t5-base-f240 105 133 0.79 0.6 0.68 14 14 42 

t5-large-
f150 

107 118 0.91 0.61 0.73 6 5 57 

gpt3-
davinci-
Instruct 

89 189 0.47 0.51 0.49 52 48 -14 

 
ASEE 2023 
 
Our second ASEE collaboration [2] utilized unsupervised machine learning techniques to 
analyze 160 short-answer responses to a mechanics conceptual question. As shown in Figure 4, 
this question asked students to determine if a solid or hollow cylinder would make it to the top of 
the ramp first. Similar manual coding processes were conducted as previously described [1]. 
Then, we used text summary, text modeling, and a Naïve Bayes Classifier to understand how 
common unsupervised machine learning techniques could be used to understand student 
narratives of understanding in short-answer responses. Within this work, we began to integrate 
principles of Linguistic Justice in our coding and machine learning processes. Linguistic justice 
is a conceptual framework that aims to ensure that all have equitable access to political or social 
life through language [59], [60]. To promote linguistic justice in our work, we established ideas 
of involving a human-computer partnership that can work together to analyze student responses.  
 



 
Figure 4. The concept question was used in the preliminary work of this study. 

 
ASEE 2024  
 
In this study, we shifted our focus to analyzing two related engineering thermodynamics concept 
questions and using new LLMs. GPT-4, Mixtral of Expert (MoE), and ATLAS.ti were used to 
analyze responses. Questions were manually coded and included an enthalpy of mixing questions 
(1396 responses) and an entropy of mixing questions (1387 responses), shown in Figure 5. We 
utilized coding processes similar to the previous two years to code the responses manually; 
however, we began to integrate a resources-based framework into the overall analytical 
framework [61], [62], [63]. Through comparison of these LLMs, we achieved an F1 score of 
62% on the thermodynamics test set when MoE was trained on the thermodynamics training set. 
Table 2 summarizes the various model performances on the thermodynamic combined test set 
(which includes both enthalpy and entropy-balanced test samples) when trained on a combined 
training set. GPT-4 achieved its highest F1 score of 48% on the test set, with entropy in-context 
examples. When we trained MoE on the statistics training dataset and evaluated on the 
thermodynamics test set, we observed an F1 score of 32%. ATLAS AI Interactive coding scores 
lowest at an F1 score of 10%.   



 
Figure 5. Thermodynamics concept questions that were used in this study. 
 
Table 2. Comparison of ground truth and model-generated responses on enthalpy and entropy 
combined test set. The highest value is in bold. 

Model No. of 
correct 
codes 

No. of 
codes 

Precision Recall F1 

Ground truth No. of codes 1244     
MoE trained on Enthapy+Entropy 

datasets 
931 1746 0.53 0.75 0.62 

MoE trained on 
Enthalpy+Entropy+Statics 

917 1719 0.53 0.74 0.62 

MoE trained on Enthalpy dataset 782 1670 0.47 0.63 0.54 
MoE trained on Entropy dataset 902 2459 0.37 0.73 0.49 

MoE trained on Statics dataset 383 1176 0.33 0.31 0.32 

GPT4 (enthalpy examples as in-
context examples) 

522 981 0.53 0.42 0.47 

GPT4 (entropy examples as in-
context examples) 

570 1146 0.50 0.46 0.48 

ATLAS AI Interactive Coding 221 3094 0.07 0.18 0.10 
 



In summary, this work found that MoE trained on a thermodynamics dataset achieved the highest 
F1 score on both datasets. We also found that the entropy dataset is more challenging for MoE 
and GPT-4 than the enthalpy dataset. Additionally, our study shows that the model can tackle 
other tasks better when trained or prompted with examples from a more challenging dataset. 
 
 
Implications and Future Work 
 
This work contributes to machine learning in education research by showing that LLMs can be 
utilized to analyze short-answer responses in the few-shot approach. As we plan to form a 
human-computer partnership to create an AI assistant tool for the CW, we want to iterate our 
qualitative coding and use of machine learning tools before we create and launch our final tool. 
Regarding our qualitative coding, we have begun to integrate a resources-based framing [61], 
[62], [63] into the coding scheme, which can help us further investigate how students use pieces 
of knowledge in specific contexts. This will require more manual annotation of a few thousand 
samples and fine-tuning a large language model (LLM) on this data. Regarding machine 
learning, we formulated the problem in our study as a sequence labeling problem, where the 
spans of the student responses are manually coded with labels. The Exact Match metric provides 
some insight into the model's performance. However, as expected – and as our qualitative 
analysis confirms – this metric falls short in cases where the model predicts codes that are 
semantically similar, but not exact matches. In our study, we performed a manual qualitative 
analysis to gain a better understanding of the models’ capabilities. In follow-up work, we expect 
to shift to model-based evaluation metrics such as BERTScore [64] that can account for lexical 
variation. The work highlighted above showed that LLMs can generalize to new student 
responses to the same questions. We aim to extend this work to ensure that models can 
generalize to new questions and generate response summaries. 
 
Furthermore, we aim to create an AI assistant tool for the CW, which will be offered as a plugin 
or a separate interface to the existing CW platform. The tool will annotate student responses, 
capturing the student’s thinking process. The tool will allow the instructors to consolidate the 
insights from student responses, generating reports and graphs to represent differences in 
students’ thinking around a given concept question, which they can then use to inform their 
teaching practices. Additionally, through this tool, researchers can further understand student 
thinking by having coded student responses on a scale that is not possible with manual coding. 
Through tool development, we aim to ensure that our qualitative coding and ML processes 
account for disciplinary and everyday language in students’ responses. This can help us make the 
tool a more inclusive generative AI tool that understands the various language students may use 
to explain their thinking. In turn, instructors and researchers will be more aware of the diverse 
language and thought patterns students use to wrestle with challenging concepts in the discipline.  
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