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Year Two of Developing a New Dataset for Analyzing Engineering Curricula 

 

 

Abstract 

This paper discusses the developments during Year 2 of a project concerned with analyzing the 

curricula of engineering programs in the United States to understand the structural barriers 

embedded in degree requirements that could push out diverse groups of students. We are using 

an emerging method for quantifying the complexity of these programs called Curricular 

Analytics. This method involves treating the prerequisite relationships between courses as a 

network and applying graph theoretic measures to calculate a curriculum’s complexity. In Year 1, 

we collected 494 plans of study representing five engineering disciplines (i.e., Mechanical, Civil, 

Electrical, Chemical, and Industrial) across 13 institutions - spanning a decade. To ensure the 

dataset is as useful as possible to engineering education researchers, we have intentionally 

aligned our data collection with institutions available in the Multiple Institution Database for 

Investigating Engineering Longitudinal Development (MIDFIELD). One of the outputs of this 

project is an R package that will enable researchers and practitioners to explore and leverage the 

new dataset in their work by enabling the calculations to be completed at scale. With the efforts 

in Year 1, the package has the functionality to compute the necessary metrics for Curricular 

Analytics. We are currently conducting a systematic literature review of how Curricular 

Analytics has been applied and extended to search for other promising metrics to add to our 

package. This paper will provide an update on the preliminary analyses we have conducted using 

Curricular Analytics, an introduction to the R package, and updates from our systematic 

literature review. 

 

Context of the Project 

This project is a combination of two tools for understanding student progression in engineering: 

the Multiple Institution Database for Investigating Engineering Longitudinal Development 

(MIDFIELD) [1] and a framework for quantifying the “complexity” of a curriculum called 

Curricular Analytics [2]. The MIDFIELD dataset is a popular resource for studying retention 

across disciplines in engineering education research. In particular, the dataset contains the 

following “tables”: (1) a course table including each instance of a course attempted by a student; 

(2) a term table that captures the student’s academic standing and the program in which they are 

enrolled; (3) a demographics table describing student’s relevant background information; and (4) 

a degree table cataloging the graduating students’ term and the program they completed [3]. Of 

these data, however, the course table is relatively untouched. This collection of untapped data is 

where the opportunity for the second tool, Curricular Analytics, enters. Introduced formally by 

Heileman et al. [2] in its current iteration, the framework treats a plan of study for a degree 

program as a network, where each course is represented as a node and pre- and corequisites are 

given by edges that connect courses together. By representing curricula in a network data 

structure, it is able to be explored using a suite of network analysis techniques.  



Curricular analytics is most concerned with two metrics: the blocking factor and the delay factor. 

For each course, the blocking factor is a count of the number of courses that are inaccessible to 

the student if the course in question is failed. The delay factor concerns the length of the 

prerequisite chains flowing through the course; the length of the longest prerequisite chain that 

includes the course in question is the value of the delay factor. Adding the delay factor and 

blocking factor together yields what is called the cruciality. The cruciality provides a numerical 

indicator of how essential the course is to the plan of study with respect to completing program 

requirements [4]. 

Further summing the crucialities in a curriculum yields what is called structural complexity. This 

measure has gained attention for its relationship with completion rates; as structural complexity 

increases, completion rates decrease [2], [5], [6]. Another quantity, called instructional 

complexity, attempts to capture the latent factors in the curriculum, such as instructional quality, 

availability of peer tutoring, and other environmental factors contributing to student success. 

However, it has received much less attention because of the vast amount of data necessary to 

model successfully compared to the structural complexity, which only requires the plan of study 

and the requisite information to calculate. Moreover, little theoretical effort has been placed into 

scoping what data to collect, settling for pass rates of individual courses as the single variable to 

collect.  

Given the robustness of the structural complexity measure in Curricular Analytics, we focus on 

examining the complexity of engineering curricula structurally. In fact, by combining curricular 

data with actual student course-taking trajectories as offered in MIDFIELD’s course table, there 

is a considerable opportunity to unpack student behaviors with respect to their course-taking and 

inform future research on how the curriculum itself can be a barrier to student success.  

Summary of Relevant Major Activities During Year 1 

Our previous annual update [7] described how the first year was almost exclusively focused on 

data collection and development. MIDFIELD is an existing dataset that is ready to be analyzed, 

but no complementary dataset comprised of the curricular information necessary to apply 

Curricular Analytics existed at the time. Thus, we collected the plans of study for five 

engineering majors (i.e., Mechanical, Civil, Electrical, Chemical, and Industrial) starting at their 

most recent entry in MIDFIELD and tracing back nine years – capturing a decade of curricular 

information for each discipline. The data collection process is detailed in [7], wherein a team of 

five undergraduate research assistants and one PhD student entered the relevant curricular data 

for 13 institutions in the MIDFIELD dataset. Preliminary analyses were conducted to explore the 

new data for correctness by sampling extreme cases (i.e., outliers) using boxplots. After 

exploring the outliers, such as those with comparatively low complexity scores of less than 100, 

we found hidden special characters that resulted from encoding errors after copying and pasting 

information from web pages. These special characters were interfering with our ability to create 

the plan of study networks and perform the network analysis, so we needed to spend additional 

time making corrections during Year 2. 



At the same time the data was being collected, we developed a package for the statistical 

programming environment, R, to scale the analysis of the curricular data and enable us to 

integrate more flexible analyses into our research design. After successfully replicating previous 

work in [8] using the package and unit testing the functions in the package, it was deemed to be 

appropriately validated for application in this project.  

Major Activities During Year 2 

 

The two activities in Year 1 directly led us to pursue three main strands of work in Year 2: 

verification of the plan of study dataset, expanding the R package through a systematic literature 

review, and mining curricular design patterns. 

 

Verification of Plan of Study Dataset. To ensure the dataset was as accurate as possible in its 

reflection of the curricular realities when the plan of study was created, we performed 

verification using Python to examine the internal consistency of prerequisite structures in two 

ways. This process lasted several months, from mid-summer 2023 to the end of Fall 2023.  

 

First, we explored whether courses with the same name in the same year were recorded as having 

the same prerequisites across different disciplines. In some cases, prerequisites could be recorded 

differently depending upon which page was being examined during data collection – e.g., the 

plan of study web page had one set of prerequisites that conflicted with the university catalog. 

Because different disciplines share a subset of courses, we took advantage of this fact to find 

instances where disagreement emerged during data entry. In cases of divergence in which 

prerequisites were recorded, the original plan of study documentation was revisited to resolve the 

discrepancy.  

 

Another type of error we explored was whether a course was listed as a prerequisite or 

corequisite but was not listed in the plan of study. Again, we revisited the plan of study to ensure 

the correct prerequisite relationship was recorded in the data. Unlike the consensus-based 

verification, it was possible for an “error” not to be caused by an oversight during data entry 

because the course did indeed not appear in the plan of study. These false positives were often 

found with courses in the first year, such as Calculus 1, which technically have prerequisites but 

students are intended to be placed in these through mechanisms like a math placement test. 

 

Once we completed the verification process, we analyzed the plan of study data (n = 494) with 

the conventional Curricular Analytics framework, primarily using descriptive statistics. This 

involved calculating the structural complexity of each plan of study and disaggregating them by 

discipline and institution. The average structural complexity was found to be 318, and the 

median was 300; these figures provide some of the first benchmarks for how engineering 

programs (i.e., Civil, Chemical, Electrical, Industrial, and Mechanical) compare in terms of 

complexity to one another. Chemical engineering has the highest mean structural complexity of 

436, followed by mechanical engineering with a structural complexity of 374. The remaining 

disciplines were more tightly clustered together: electrical with 293, industrial with 257, and 

civil with 242. Our verification process resulted in our initial estimates of structural complexity 

changing slightly upward by approximately 2%; this did not impact any previous inferences.  

 



 

Prior to this effort, it was not clear what the typical value of structural complexity would be for a 

given program. With this new dataset, we now better understand what this typical value may be 

for engineering programs.  

 

Expanding the R Package through a Systematic Literature Review. In our first year, we 

developed a package for the statistical programming environment, R, to conduct Curricular 

Analytics at scale. During our second year, after discussing the application of the package with 

researchers in engineering education and other disciplinary areas, we found it prudent to explore 

additional metrics that could be used to analyze the dataset. Although it was not our original 

intention to add more metrics beyond the essential few in Curricular Analytics, this new 

direction was pursued to bolster the usability of the R package developed in the project's first 

year.  

 

As a pragmatic study within the context of the larger project, we are conducting a systematic 

literature review (SLR) on how researchers have attempted to analyze a curriculum 

quantitatively using Curricular Analytics. We posed the following research questions: “What 

metrics do researchers use to quantify curricula that build off the premise of Curricular 

Analytics?” and “What kind of methodologies are used in conjunction with their metrics?” In 

other words, we were interested in finding what other network-based measures were being used 

to explore the complexity of engineering programs. We are also interested in how the framework 

has been extended, such as how the measures were being used in a broader methodology. 

 

The first step of collecting data in this SLR involved determining the inclusion criteria [9]. We 

were most interested in papers that analyzed the curriculum as a whole using quantitative 

methods. Because of the nature of our data, we focused on applications that expand on the ideas 

presented in Curricular Analytics. Moreover, considering our study’s context is in engineering, 

we also focused on similar applications in engineering programs.  

 

Thus, our inclusion criteria were as follows:  

• Must use quantitative or mixed methods 

• The curriculum is the unit of analysis  

• Must use or build upon the curricular analytics framework (e.g., network analysis)  

• Must be written in English   

• Context of the study includes engineering  

 

To form our sample, we identified papers that cited the foundational papers on Curricular 

Analytics using Google Scholar’s citation tracking feature. These are detailed in Table 1. 

A total of 307 papers were extracted on August 30th, 2023. After accounting for duplicates, 159 

papers remained.  

 

 

 

 

 

 



Table 1. Source papers used in the systematic literature review 

 
Source Author Paper Citations 

Gregory L. Heileman Restructuring Curricular Patterns Using Bayesian Networks. 1 

Gregory L. Heileman Efficient curricula: The complexity of degree plans and their 

relation to degree completion 6 

Gregory L. Heileman Crucial based curriculum balancing: A new model for curriculum 

balancing 8 

Gregory L. Heileman Guiding early and often: Using curricular and learning analytics 

to shape teaching, learning, and student success in gateway 

courses 12 

Gregory L. Heileman Does Curricular Complexity Imply Program Quality? 18 

Gregory L. Heileman Characterizing the complexity of curricular patterns in 

engineering programs 32 

Gregory L. Heileman The complexity of university curricula according to course 

cruciality 34 

Gregory L. Heileman Curricular analytics: A framework for quantifying the impact of 

curricular reforms and pedagogical innovations 37 

Gregory L. Heileman Curricular efficiency: What role does it play in student success? 38 

Gregory L. Heileman Employing Markov networks on curriculum graphs to predict 

student performance 43 

Ahmad Slim Curricular analytics in higher education 23 

Ahmad Slim Network analysis of university courses 33 

Ahmad Slim The Impact of Course Enrollment Sequences on Student Success 22 

 

We are currently reviewing the full texts of the 159 papers and have processed 122 of them so 

far. Of the 122 papers, 61 papers met the inclusion criteria. We are extracting the research 

questions, methods employed, and metrics introduced as part of the analysis from each of the 

papers. Much like how duplicate papers appeared during the search process, some metrics 

appeared multiple times – occasionally with different names. For example, the blocking factor 

and delay factor appear several times because they are core features of Curricular Analytics.  

 

We are categorizing these metrics at two levels: (1) whether the metric is related to instructional 

or structural complexity and (2) whether the metric is at the student level, course level, or 

curriculum level. For example, one structural complexity factor, curriculum rigidity, refers to the 

number of prerequisites divided by the number of courses in the plan of study [10], [11]. 

Curriculum rigidity is a curriculum-level measure that attempts to directly quantify the level of 

connectivity in the requisite structures, where a value less than 1 would indicate a simpler 

structure and a value greater than 1 implies the network is more intricate. In fact, those familiar 

with graph theory will recognize this as the beta index, just applied to the context of a 

curriculum. On the other hand, an instructional complexity factor at the course level would be 

course grade anomaly, which is the mean difference between the overall GPA of a student and 

the students' grades in the course of interest [12].  

 

We plan to integrate this package with the existing "midfieldr" [13] and “midfielddata” [3] 

packages, which empower researchers with more streamlined functions to analyze student 

course-taking trajectories in MIDFIELD. We will integrate appropriate additional metrics and 



functionalities based on the SLR we are conducting. These new metrics will further enrich the 

analytical capabilities available to researchers, enabling them to gain deeper insights into various 

aspects of curricular complexity and engineering student experiences in higher education. 

Currently, the package contains the following functions and draws from the igraph package [14] 

to handle network-based calculations (Table 2). 

 

Table 2. Current functionality in R package implementing Curricular Analytics 

 

Function Name Functionality 

admissibility_test Automatically checks for data entry issues that would impact the 

Curricular Analytics measures. 

blocking_factor Calculates the number of courses inaccessible to a student if a 

course is failed.  

create_plan_of_study Accepts the curricular data imported from a .csv as a dataframe, 

then converts it into an igraph object. 

delay_factor Calculates the longest prerequisite chain through a given course. 

find_inbound_courses Finds all courses connected to a given course that are direct or 

indirect pre- or corequisites. 

Find_outbound_courses Finds all courses that have the given course as a direct or indirect 

pre- or corequisite.  

plot_plan_of_study Plots the plan of study (as an igraph object) with the courses 

ordered by term. 

structural_complexity Calculates the overall structural complexity of a plan of study and 

outputs a table of the blocking factors, delay factors, and 

crucialities for each of the courses. 

subcomplexity_graph Creates a subgraph based on a user-selected course. The subgraph 

will contain any courses connected to the specified course, 

directly or indirectly. 

what_if Calculates the result of deleting or adding a user-defined course, 

prerequisite, or corequisite. 

 

Mining Curricular Design Patterns. Once we verified the dataset, we began parsing the plan of 

study data into curricular design patterns [15]. These curricular design patterns concern the 

arrangements of courses, such as the Calculus sequence or a First-Year Engineering Program. 

Just like we can calculate the structural complexity of the entire curriculum, the structural 

complexity of curricular design patterns can be calculated as well (by using the 

subcomplexity_graph and structural_complexity functions in our package); the negative 

relationship between complexity and completion rates still holds. By isolating these curricular 

design patterns and treating them like atoms that make up larger molecules – i.e., the curriculum 

– we can better understand how to reduce unnecessary complexities for future engineering 

students.  

 

To mine the design patterns, we labeled courses with a generalized category to better fetch 

courses from the plan of study dataset. This process was necessary because similar courses like 

Calculus I are not called by the same name everywhere (e.g., Calculus I, Calculus of a Single 

Variable, and First Year Calculus). We employed the large language model, GPT-4, through its 



API to standardize the names of the courses [16]. As with using any large language model, 

hallucinations are possible; therefore, the output was manually checked and corrected as needed. 

 

The curriculum design patterns were extracted iteratively by selecting a course as a focal point 

and finding its associated courses through prerequisite or corequisite relationships. From there, 

these curriculum design patterns were abstracted to general course numbers (i.e., 1,2,3…) and 

clustered by type of courses (e.g., Calculus, Statics, Introduction to Engineering). The results of 

this effort are described in Padhye et al. [17]. Moreover, the functionality to extract sequencing 

has been integrated into the R package so that users can query specific courses and calculate 

quantities of interest about the sub-network of courses. To illustrate how different curricular 

design patterns emerge, consider the two following examples focused on the course, Statics, a 

common bottleneck in engineering curricula [18].  

 

In Figure 1, the curricular design pattern on top has two direct prerequisites, three indirect 

prerequisites, and one corequisite. Moreover, Statics has 12 courses that are blocked if it is 

failed. However, the curricular design pattern on the bottom presents a more direct path, with 

only 1 prerequisite. Although nearly as many courses are blocked (i.e., 11 courses), the overall 

structural complexity represents a difference of 79 points (242 versus 163, respectively) – this 

represents a 48% increase in complexity from the bottom curricular design pattern to the top. 

These are the kinds of data we can leverage to understand bottlenecks in the curricula with a 

finer-grained analytical method like Curricular Analytics. Our Year 3 activities will be focused 

on filtering through the curricular design patterns.  

  
 

Figure 1. Two curricular design patterns focused on Statics (circled) 

 

 



Planned Next Steps 

Beyond completing the analyses described for our Year 2 activities, there are two primary 

activities that we expect to take place in Year 3: using association analysis to extract student 

course-taking trajectories to compare to the codified curricula and expanding access to the 

dataset and package.  

 

Association Analysis of Student Course-Taking Trajectories. For Year 3, we plan on building 

functions to manipulate course-taking trajectories of actual student data so that they can be 

compared using association analysis. Association analysis is a data mining technique that enables 

a researcher to extract patterns of items, like courses, that are frequently taken together or in 

sequence. The classic example of association analysis is based on transactions in a grocery store, 

where the problem is to determine which items customers frequently purchase together. Thus, we 

can use the technique to build common course-taking trajectories for different groups of students.  

Association analysis will enable us to mine common course-taking patterns disaggregated by 

strata like institution, discipline, first-generation-status, and transfer-status and reconstruct them 

as networks to complement the plan of study data. This is the last step in our research design to 

complete the integration of the new curricular data with the student course-taking data in 

MIDFIELD.  

 

Expanding Access to the Dataset and Package. We plan to engage the broader community in 

exploring the new dataset and package we created as part of this effort. At a future American 

Society for Engineering Education, American Education Research Association, and Frontiers in 

Education conference, we will host workshops to engage researchers across disciplines with 

these new tools. Moreover, we will provide an overview of how to intersect these data with 

MIDFIELD. Through interactions with others who share research interests within this area, we 

anticipate that collaborations can be formed to interrogate the data from different perspectives 

and increase the diversity of the institutions and disciplines in the sample.  

 

We have begun distributing the package by request to researchers and will be making the dataset 

available as well. To increase accessibility to the dataset and package, an R Shiny application 

will be created with appropriate documentation to guide users on the intended uses of the tools 

and limitations to note when working with them (e.g., five engineering disciplines represented 

that are not offered at each institution). 

 

Conclusion  

Comprehending the intricacies of the curriculum can aid in optimizing programs for students and 

ensuring their timely graduation. By scrutinizing the influence of the curriculum on student 

progress with Curricular Analytics, supplemented by the dataset we created, researchers can 

uncover the barriers students encounter as they advance through their studies. These insights 

enable the identification of unnecessary complexities within the curriculum or areas where 

students may veer off course. Interventions based on the results might entail adjustments to 

curricular guidelines, enhanced academic advising, or the implementation of novel programs and 

initiatives to bolster student progress. As this project continues to evolve, we expect to deliver 



new analytical potential to the community and create new strands of inquiry to connect to 

existing persistent problems in engineering education.  
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