
Paper ID #43394

A Project Based Learning Approach for development of an experimental
setup and a simulator for position and velocity control of a DC motor with
interactive and pre-calculated parameters.

Prof. Fernando Silveira Madani, Mauá Institute of Technology

Fernando Silveira Madani received the B.S (1998) in Mechatronics Engineering from the Univ. Paulista
– Brazil, the M.S. (2002) and Ph.D. (2010) from the Aeronautical Institute of Technology (ITA) - Brazil.
In 2002, he joined the faculty of the Dept. of Mechanical Engineering, Mauá Institute of Technology
– Brazil, where he is currently as a full professor and Head of the Mechatronics Engineering program.
His main research interests include, robotics, advanced manufacturing systems, embedded systems, and
autonomous mobile robots. Since 2014 is an INEP (agency linked to the Ministry of Education) advisor, to
promote the evaluation and improvement of undergraduate courses in mechatronics engineering in Brazil.

Mrs. Andressa Corrente Martins, Instituto Maua de Tecnologia

Andressa Martins is holds a master’s degree in Aerospace Systems and Mechatronics with a focus on
Robotics from the Aeronautics Institute of Technology and a degree in Control and Automation Engineering
from the Universidade Paulista. Currently, she is a professor at the Mauá Institute of Technology. She
has experience in the field of Control and Automation Engineering (Mechatronics), working mainly on
the following topics: Intelligent Systems, Digital Twin, Industrial Automation, Instrumentation, Robotics,
Mechanism Design, and Engineering Fundamentals.

Leonardo Oneda Galvani, Instituto Maua de Tecnologia

Student of control and automation engineering at the Maua Institute of Technology.

Dr. Anderson Harayashiki Moreira, Instituto Mauá de Tecnologia

Graduated in Control and Automation Engineering from Instituto Mauá de Tecnologia (IMT) (2008).
Master in Mechatronics Engineering from the Instituto Tecnológico de Aeronáutica (ITA) (2011). PhD in
Mechatronics Engineering from the Instituto Tecnológico de Aeronáutica (ITA) (2017). He is currently a
professor at the Instituto Mauá de Tecnologia. He develops activities and research in the area of mobile
autonomous robotics, control systems, industrial robotics and microcontroller systems.

Prof. Alexandre Harayashiki Moreira M.S., Instituto Mauá de Tecnologia

Alexandre Harayashiki Moreira received M.S. (2017) in multirobot system from UFABC Univ., Brazil.
Since 2016, he has been a Member of Control & Automation Research group at Maua Institute of
Technology focused on autonomous robots and smart cities.

©American Society for Engineering Education, 2024

A Project Based Learning Approach for development of an

experimental setup and a simulator for position and velocity control of

a DC motor with interactive and pre-calculated parameters

ABSTRACT

The project involves developing an experimental setup and an interactive simulator that

will control the angular position and velocity of an inertia wheel coupled to a DC motor.

The project was developed using the knowledge from the subjects studied in the 4th

year of the Control and Automation Engineering course at the Instituto Mauá de

Tecnologia, including Object-Oriented Programming, Database, Instrumentation,

Embedded Systems, and Control Systems. This work will allow for experimenting and

understanding important concepts related to these disciplines. To achieve this, this

project will have several phases, including the development of the virtual environment,

which will have two stages. The first stage involves interactive control of the gains of a

PID controller that will control the position in degrees (°) and the velocity in rotations

per minute (RPM). The second stage involves analyzing the system's behavior with pre-

designed controllers for controlling only the position in degrees (°). In both stages, there

will be the visualization of the simulation results. The second phase involves building

the necessary hardware to perform what the simulator requires, including specifying the

components and their interconnections, and finally, programming the system (firmware

and software-GUI) to operate according to the specifications provided by the simulator

user. At the end, examples of projects will be presented as well as their evaluation, and

focused on ABET, how these projects can be used to evaluate students' outcomes.

Keywords: Project Based Learning, Integrative project, multidisciplinary project,

control, instrumentation and simulator.

INTRODUCTION

The integration of Instrumentation, Microcontrollers and Control Systems I

disciplines in this technical project represents a significant milestone in the

interdisciplinary approach to engineering, allowing a practical and complete application

of the concepts learned throughout the course. A. Ribas Neto, M. Fiorin, and T.

Dequigiovani [1] highlight the value of project-based learning in technology degree

programs to deepen students' understanding and skills in the field. In this report, the

development of an interactive simulator designed to control the speed and position of a

motor coupled to an inertia wheel will be presented. This simulator not only provides

the opportunity to experience and understand fundamental concepts from these

disciplines, but also illustrates how the convergence of hardware and software can

create practical and educational solutions.

This project consists of developing an interactive simulator that will control the

angular position and speed of an inertia wheel coupled to a DC motor, because

according to [2] DC motor is one of the widest actuators utilized in various control

applications. The project was developed using knowledge from the subjects studied in

the 4th Series of the control and automation engineering course at the Mauá Institute of

Technology, namely: Object Oriented Programming and Database, Instrumentation,

Microcontrollers and Control Systems. This simulator will allow you to experience and

understand important concepts related to these disciplines. Undoubtedly, the importance

and stature of the field of control are evidenced by the number of annual national and

international meetings and conferences, publications (including textbooks) and, more

importantly perhaps, its impact on industrial applications that touch the lives of

everyone [3].

This simulator has the same objectives as mentioned [4]:

• Demonstrating/validating/motivating analytic concepts.

• Introducing real world control/modeling issues, such as saturation, noise,

sensor/actuator dynamics, uncertainty, etc.

• Providing facility with instrumentation and measurement tools.

• Exposing students to broader design issues from problem specification to

hardware implementation and economic considerations.

• Exposing students to professional practice that includes maintaining

engineering notebooks and report writing.

• Team learning and problem solving.

• Comparing theoretical results with real world results, thus validating the

theory

To achieve this, there will be some phases of this project, namely: the

development of the virtual environment, which will include two stages. The first part

consists of the interactive control of the gains of a PID controller that will control the

position in degrees (°) and the speed in revolutions per minute (RPM). In the second

stage, there will be an analysis of the system's behavior with pre-designed controllers to

control only the position in degrees (°), and in both stages there will be visualization of

the simulation results. The second phase of the project consists of building the

necessary hardware to perform what is required by the simulator, involving the

specification of the components and the structure between them, and, finally, the

programming for the system to function in accordance with what is specified by the

simulator user.

GOALS

a. Develop a simulation environment for different closed control loops on the same

device.

There are several types of controllers and controllers tuning methods, as you can

see in [5], but this project will address PID variations and a phase advance for

greater understanding.

The project aims to develop an effective simulation platform by allowing

interactivity and adjustment of PID controller gains, and by allowing

comparison of these with other types of controllers, through controlling both the

position and speed of an inertia wheel coupled to a DC motor.

This approach enables direct comparison between different control strategies,

providing information about the specific effects of parameters such as

proportional, integral, and derivative gain on system responses. This

comparative analysis capability contributes to the optimization of desired

control, and to the development of a deeper understanding of control principles

and their practical application.

b. Practical Application and Interdisciplinary:

The project focuses on the practical application of engineering concepts, to

provide a better understanding of theoretical knowledge, in addition to the

implementation and testing of important concepts for a professional in the

Control and Automation area, such as mathematical identification of systems,

PID control and microcontroller programming.

In parallel, the interdisciplinary integration between the areas of

Instrumentation, Microcontrollers, Control Systems and Object-Oriented

Programming allows for an in-depth understanding of how these areas relate and

collaborate in complex engineering projects. This develops critical thinking and

develops skills that focus on solving problems and facing real-world demands,

where solutions require collaboration between different areas of knowledge.

JUSTIFICATION

The development of the interactive simulator to control angular position and

speed is a highly relevant initiative in the context of the control and automation

engineering course. This project is a practical response to the knowledge acquired in the

4th Series subjects, allowing students to understand how this knowledge translates into

real solutions and promoting a deeper understanding of the concepts and theories

learned.

Furthermore, the construction and operation of the simulator requires the

development of complex technical skills, such as dealing with sensors, motors,

encoders, microcontrollers, programming dynamic system controllers, graphical

interfaces for simplified human interaction, among other technical skills developed.

The project structure, divided into progressive phases, reflects common steps in

real-world engineering projects. Conceptualizing a system, simulating it, and validating

it is an integral part of developing a project, from conception to implementation,

emphasizing practical experimentation in a controlled environment.

Finally, the development of this simulator is justified by its educational and

typical use benefits, as it is a functional and effective control tool. The simulator has the

potential to serve as a resource for students and professionals, allowing for virtual

testing and experimentation before implementation in real systems.

THEORETICAL FOUNDATION

Before entering in the studies of the control theory involved in the project, the

functioning of the steps involving the virtual environment, the components present and

the logic between them will be discussed.

HARDWARE

As discussed previously, the principal component of the project is the DC motor,

in which an inertia wheel is coupled to the output shaft of a reduction box. The reason

for its inclusion in the system is to create an additional load, providing a greater

challenge in controlling the engine. In the same motor assembly, we find the motor

rotor coupled to the reduction box input shaft, as well as a Hall effect encoder, as

illustrated in the following image:

Figure 1 — DC motor with flywheel.

However, in addition to the engine, all the electronics that make the use and

control of the system possible, this set is called the plant, with the following image:

Figure 2 — Complete Control Plant

When it comes to control, the first consideration is given to analog quantities.

For example, it was necessary to adjust the voltage applied to a motor due to its

different speeds. For this, an H bridge is used, which manages the voltage and direction

of the motor through two digital signals and a PWM (Pulse Width Modulation). The

specific H-bridge configuration used in the project is illustrated below:

Figure 3 — H Bridge

Since digital pins and a PWM are needed to control the voltage and direction of

the motor, a microcontroller, the PIC16F18877, was included in the project. It will

control the H bridge by sending the data according to the implemented controller. In

addition to being connected to the H bridge, the microcontroller will also be responsible

for counting the pulses generated in the encoder and identifying, through channels A

and B, the direction of rotation of the motor and finally assigning its value correctly.

At this point, the hardware would already be capable of executing the control, but

the idea of the project is to create a simulator. To do this, existing hardware must be

connected to the computer. Thus, serial communication was used between the

microcontroller and the computer.

INSTRUMENTATION

For the Instrumentation part of the discipline, in addition to the project proposal,

the sensor used was the motor's own hall effect encoder, therefore it was necessary to

understand how the motor encoder used works and how it is read.

A Hall effect encoder is a device used to measure the position, speed, and

direction of rotation of a shaft in mechanical systems, particularly in electric motors,

such as DC (direct current) motors. This type of encoder is based on the hall effect,

which is a physical phenomenon in which an electrical voltage is generated in a

conductor when it moves through a magnetic field.

In the context of hall effect encoders, there is usually a magnet mounted on the

rotating shaft of the motor. These sensors sensitive to magnetic fields are strategically

placed around the magnet. When the shaft rotates, changes in the magnetic field are

detected, and generates electrical signals proportional to the variations in the magnetic

field.

The encoder has two output channels called Channel A and Channel B. The phase

relationship between the signals in channels A and B is used to determine the direction

of rotation.

These encoders are essential for applications where it is necessary to precisely

monitor and control rotary movement. They are especially useful in systems where

position feedback is crucial, such as robotics, industrial automation, speed control

systems, among others. The use of Hall effect encoders contributes to more precise and

efficient control of the rotary movement, being a key part in many modern systems.

DEVELOPMENT

USER INTERFACE

The process begins with user interaction through a graphical interface. The menu

screen features three distinct buttons, each intended for a specific control: position

control, speed control and comparison between phase advance, PD and PID controllers.

The structure developed using object orientation in the Python language, and the

PyQT5, with auxiliary from the book [6] allows easy navigation between pages. The

“Menu” screen is displayed to the user as in the figure below.

Figure 4 — Interface menu.

There, the “Position” and “Speed” options open windows that allow you to

configure and view the simulation. On the first two pages, for position and speed

control, it is possible to enter parameters such as KP, KI and KD to configure the PID

controller, in addition to the setpoint of the system. The simulation is started using a

button that sends information to the microcontroller through serial communication,

which will later be used to control the motor. The position and speed PID control

screens are shown in the following figures:

Figure 5 — Interactive simulation environment for the position.

The fields to be completed refer to the proportional, integrative, and derivative

parameters of a PID, and the Setpoint represents the control target value, as detailed

below:

• KP (Proportional): The proportional parameter controls the system's

proportional response to the difference between the system output and

the reference value (setpoint). A larger KP value results in a stronger

proportional correction, meaning the system output adjusts more quickly

to the change in setpoint. However, a value that is too high can lead to

instability or unwanted oscillations.

• KI (Integral): The integral parameter acts to correct errors accumulated

over time. It is responsible to reduce steady-state error and improving

system accuracy. A larger value of KI increases the influence of the

integral and reduces the accumulated error but can also lead to slow

responses and oscillations.

• KD (Derivative): The derivative parameter controls the response of the

system to the rate of change of the controlled variable. It works to

prevent large oscillations and smooth the system response, providing

stability. A higher KD helps prevent spikes and dampen oscillations, but

an excessively high value can introduce delays in the system's response.

• Setpoint: The Setpoint represents the desired value or reference for the

controlled variable. In the context of a PID control, the objective is to

adjust the system output to achieve and maintain the setpoint. The

control loop continuously compares the actual system output to the

Setpoint and adjusts the PID parameters to minimize error.

Inserting the parameters, it is possible to simulate the system. Using the

“Simulate” button, a graphical response is generated of the behavior of the

motor/flywheel assembly in relation to the parameters entered. This can be done from

both the “Position” screen and the “Speed” screen.

Finally, the “Controllers” screen allows comparison between PD, PID and phase

advance controllers, the first being calculated with the help of MatLab software and the

last two calculated manually and detailed throughout the project. This screen has only

one input data, setpoint. Once completed, simply click on one of the controller buttons

for the motor to be evaluated and the response to appear graphically to the user on the

screen.

An example of full test comparing the previous and current simulation is

demonstrated below:

Figure 6 — Complete simulation example.

So, it is possible to save a specific test to reopen it in the future. This function is

important for making comparisons between tests conducted at various times and

recording them for future analyses.

PROJECT STRUCTURE AND COMMUNICATION

In user-program interaction, the system can be configured to control the position

and speed of a motor. The project structure diagram is presented in the following figure

to facilitate the visualization of each element within the project and how they are

interconnected:

Figure 7 — Project block diagram.

Communication between the computer, where the interface is located, and the

microcontroller occurs via a USB TTL cable, using the UART communication protocol.

UART, Universal Asynchronous Receiver/Transmitter, is a method of

communication between electronic devices that involves the transmission and reception

of data in series, one bit at a time, through two wires: one for transmitting (TX) and the

other for receiving (RX).

This is asynchronous communication, which means that there is no clock signal

shared between the devices. Instead, devices must agree on a baud rate, called Baud

Rate, which determines the speed of transmission. Before and after each data packet a

start and stop are added to indicate the beginning and end of the transmission.

The microcontroller, upon receiving the information package, reads this data,

processing it through the code developed in MPLAB, which contains the system control

software.

After treatment, a PWM (Pulse Width Modulation) signal is transmitted to an H-

bridge. Compared to analog control methods, PWM is energy efficient as the device is

on or off, minimizing power losses.

The H bridge, with “INA” and “INB” inputs, controls the direction of the motor,

determining the clockwise or counterclockwise direction of movement. The resulting

signal is converted into voltage (V) and transmitted to the motor to conduct the desired

movement, whether for position or speed control, according to the settings previously

entered by the user.

To close the control loop, an encoder monitors the motor through two channels,

A and B, providing information about the direction of rotation. This data is sent back to

the microcontroller, allowing effective closed-loop control. The reading and

interpretation of signals transmitted by channels A and B can be better understood by

the image below. By combining the rising edge times of the two channels, it is possible

to infer whether the motor rotates clockwise or counterclockwise:

Figure 8 — Quadrature of an encoder

Thus, encoder feedback is integrated into the control process. This allows the

PIC to send commands to the engine and receive constant information about its status.

Based on this feedback, the PIC dynamically adjusts the PWM signals sent to the H-

bridge, optimizing efficiency, and ensuring real-time corrections to maintain the desired

motor position.

With the system in closed loop, its response can be relayed to the computer, so

that the user can graphically visualize the system's response to the previously entered

parameters. It is noteworthy, therefore, that communication between the microcontroller

and the computer is bidirectional. The information processed by the microcontroller is

returned to the computer, completing the communication cycle.

MICROCONTROLLER PROGRAMMING LOGIC

Before starting to develop the microcontroller programming, it will be necessary

to determine which model will be used, this depends entirely on the requirements

necessary for the project. Some of these requirements were mentioned previously, the

microcontroller peripherals, these are the digital outputs and the PWM output, the

UART communication and interruptions, both external and by timer present in the

microcontroller. All these peripherals are in the PIC studied in Microcontrollers classes,

the PIC16F1619, being a very versatile microcontroller as it is also compatible with the

MCC (MPLAB® Code Configurator) of the microchip, however one of the project

requirements was not covered by this model, its SRAM memory was smaller than

necessary to store the simulation information, therefore for the project it has to be a PIC

with the same peripherals, compatible with the MCC and has a memory greater than

2KB, this being the PIC16F18877, thus meeting all the project requirements.

With the microcontroller model determined, the next step is to begin developing

the program. For this, MPLAB and the microchip's own MCC were used. The first step

is to configure the microcontroller in the MCC and then the peripherals in the same

environment.

Clock was configured, choosing the internal 32 MHz oscillator without any

divider and without watchdog.

The first peripheral to be configured is the UART, called EUSART (Enhanced/

Addressable Universal Asynchronous Receiver Transceiver), just add it and configure

it. A Baud Rate of 9600 was chosen due to the low error and the use of STDIO

commands was enabled.

The next peripheral is the PWM output, adding which it is necessary to

configure a timer together, defining its period to correspond to the frequency of the

PWM signal. This period was chosen because the values used in the timer configuration

correspond to an 8-bit value (0-255). And the frequency is lower than the maximum

frequency of the motor driver.

And the last peripheral is the timer that will execute the interruption when it

overflows. In the settings it is possible to determine the overflow period, this being the

value of the controllers' sampling time of 10 ms.

And the last part within the MCC is choosing and configuring the pins used,

these are those of the peripherals such as the UART and PWM, the digital outputs for

the H bridge (outputs) and the input pins (Input) for the encoder, which must be

configured to have interrupt on the rising edge, IOC (Interrupt On Changing).

Figure 9 — Datasheet PIC16F18877

At this moment, the microcontroller has the capacity to do what was planned,

however, to facilitate the development of the program, some functions were developed

following the logic diagram:

Figure 10 — Microcontroller block diagram I.

The first block is responsible for receiving the information coming from the

simulator in serial form, the message sent has a standard format containing the mode,

setpoint and, if necessary, the gains separated by commas, so the readMessage function

has to be able to read the entire message, separating information and assigning it.

With the assigned data it is possible to move forward, the next step is to control

the motor, for this it is necessary to develop 3 function, the first is a function that will

receive an integer value, negative or positive, which will control the direction and PWM

signal of the motor, in addition to controlling the motor dead zone.

Another function involves two ISR (interrupt service routine) of the encoder's

external interrupt pins, these functions were designed in the following diagram to

determine the amount and direction of rotation, adding, and subtracting a value from the

variable.

Finally, it is necessary to develop another ISR, but now to interrupt the timer

overflow, this function must be very brief and therefore cannot contain all the

controllers’ calculations. The following logic was developed, in which the interruption

“locks” another function of the loop, which can only occur every 10ms, the sample

time.

Figure 11 — Microcontroller block diagram II.

At this moment the basis for being able to control the plant is made, however the

controllers have not been implemented, these will be implemented in the PID function,

depending on the mode read in the serial, in readMessage , it will determine which

controller will calculate the output from the error, using the value of the encoder and

setpoint, applying it to the motor using moveMotor and at the same time saving the

current state of the motor and updating the timer's ISR locking logic.

At this moment, the motor is being controlled, now, as the last step, just send all

the data to the serial to display on the interface, for this we used sendMessage, which

reads all the data stored during the control and the time of each moment.

In this the microcontroller programming was implemented successfully.

ENGINE MODELING AND SIMULATION

SYSTEM IDENTIFICATION

The first step in designing a controller is knowing what it should control. In

mathematical terms, we must know the transfer function that will be worked on. In the

case of the project, the transfer function of the motor system and the flywheel must be

found.

As it is a DC motor, its modeling is well developed, and it is possible to find

complete diagrams, such as the one shown in the following figure:

Figure 12 — Diagram of a plant with a DC motor.

Figure 13 — Block diagram of the plant with the DC motor.

By studying the model and its simplifications, it is possible to approximate the

engine model for speed control in a first-order system, and for position control in a

second-order system, described below:

𝐺𝜔(𝑠) =
𝛺𝑇(𝑠)

𝐸𝑉(𝑠)
 =

𝐾𝑤

𝑇𝑠 + 1

𝐺𝜃(𝑠) =
𝜃𝑃(𝑠)

𝐸𝑉(𝑠)
 =

𝐾𝜃

𝑠(𝑇𝑠 + 1)

There are several ways to acquire this transfer function. One of them is through

modeling the motor, using its physical and electrical characteristics to find the desired

function. However, the engine in question does not have the necessary information for

this modeling, making this method unfeasible for the application in question. Therefore,

it was decided to obtain the transfer function through the test method, that is, surveying

the engine curve. For this test, it was decided that 5 steps will be conducted with the

following values:

Table 1 — Test input data.

PWM (8-bit) Percentage (%)

50 19.6%

100 39.2%

150 58.8%

200 78.4%

255 100%

With this data, it is possible to define the test input (U).

The values were selected based on the microcontroller's PWM resolution. Once

the inputs are defined, the experiment can be conducted. The proposal consisted of

recording the number of encoder pulses over 3 seconds, a period sufficient to stabilize

the system. Data analysis will be approached in four ways: two analytical analyses,

using position and velocity data, and two computational techniques, using MatLab

software with the same data sets. At the end of the tests, the following data were

recorded:

Figure 14 — Graph of position tests.

With the recorded data, the units of the quantities were defined to reduce the

processing needed in the microcontroller. Thus, the speed unit will be pulses per second

(pulses/s) and position in pulses (pulses).

Starting with the speed analysis, the data was processed, arriving at the

following graph:

Figure 15 — Graph of speed tests.

With this data, a separate analysis of each output was conducted, following the

model:

Figure 16 — Calculation model for speed tests.

Using the data and concepts in the example above, we obtain the following

transfer functions and their average model:

Table 2 — Velocity transfer functions by the analytical method

Transfer Function Time constant(s) Gain

𝐺50 =
20

0.3𝑠 + 1
 0.3 20

𝐺100 =
34

0.3𝑠 + 1
 0.3 34

𝐺150 =
26.67

0.27𝑠 + 1
 0.27 26.67

𝐺200 =
23

0.19𝑠 + 1
 0.19 23

𝐺255 =
21.176

0.18𝑠 + 1
 0.18 21.176

𝐺𝑀 =
24.97

0.248𝑠 + 1
 0.248 24.97

Using another method of obtaining, using the MatLab software and its system

identification part, we arrive at the following functions:

Table 3 — Software speed transfer functions

Transfer Function Time constant(s) Gain

𝐺50 =
20.128

0.321𝑠 + 1
 0.321 20.128

𝐺100 =
33.697

0.353𝑠 + 1
 0.353 33.697

𝐺150 =
26.26

0.295𝑠 + 1
 0.295 26.26

𝐺200 =
22.776

0.21𝑠 + 1
 0.21 22.776

𝐺255 =
21.04

0.16𝑠 + 1
 0.16 21.04

𝐺𝑀 =
24.7802

0.2678𝑠 + 1
 0.2678 24.7802

When analyzing the results obtained, the average transfer functions of the two

methods exhibit similar parameters, with a percentage error of 0.76% for the gain and

7.4% for the time constant. This way, it becomes possible to consider an average model

through velocity analysis.

𝐺(𝑠) =
24.8751

0.2579𝑠 + 1

In addition to analyzing the speed data to estimate the transfer function, this

project proposes an additional approach to obtain the characteristic curve. The engine

position data will be used, allowing subsequent comparison of the results obtained by

both methodologies. The process will follow a similar approach to that conducted for

speed, followed by the analysis in MatLab, according to the model presented below:

Figure 17 — Calculation model for position tests

Table 4 — Position transfer functions by analytical method and software.

Analytics Software

Transfer Function Cte. Of time Gain Transfer Function

 𝐺50 =
19.93

𝑠(0.3𝑠+1)

0.3 19.93
 𝐺50 =

63.67

𝑠2+3.342𝑠+4.64∗10−9

 𝐺100 =
33.68

𝑠(0.31𝑠+1)

0.31 33.68
 𝐺100 =

88.53

𝑠2+2.748𝑠+1.368∗10−9

 𝐺150 =
26.17

𝑠(0.27𝑠+1)

0.27 26.17
 𝐺150 =

74.97

𝑠2+2.978𝑠+2.315∗10−7

 𝐺200 =
23.4

𝑠(0.2𝑠+1)

0.2 23.4
 𝐺200 =

97.9

𝑠2+4.43𝑠+2.003∗10−9

 𝐺255 =
20.78

𝑠(0.16𝑠+1)

0.16 20.78
 𝐺255 =

135.7

𝑠2+6.521𝑠+4.108∗10−10

 𝐺𝑀 =
24.794

𝑠(0.248𝑠+1)

0.248 24.794 𝐺𝑀 =
92.154

𝑠2+4.002𝑠+4.8∗10−8

The first important conclusion observed from the comparison of the methods is

the transfer function without the free integrator obtained using MatLab tools, different

from the simplified model obtained analytically. The model without the free integrator

will be used for the analytical calculation of the PID controller, which will be discussed

in the future.

The second possible conclusion is: considering that the integrated velocity

transfer function results in the position transfer function for the same input, we arrive

with similar transfer functions, with a time constant error of 3.8% and gain of 0.33%.

With all the data obtained and calculated, it is possible to obtain an average

model of the engine studied:

𝐺(𝑠) =
24.8345

𝑠(0.2579𝑠 + 1)

SYSTEM VALIDATION

By obtaining the transfer function that describes the system mathematically, it is

possible to make a comparison between the simulated response and the real response of

the system. Below are some tests that include the curves corresponding to simulations

and practical execution.

Figure 18 — Comparison of position and real models.

Figure 19 — Comparison of speed and real models.

The blue curve represents what the engine performed, and in dashed red is the

simulation using the transfer function obtained in the tests.

SYSTEM CONTROL PROPOSAL

The primary purpose is to compare the calculated controllers and those designed

with the help of MatLab. These include a phase advance controller, a PID controller and

a PD controller, the latter being designed in MatLab.

Firstly, all controllers must follow the same block diagram:

Figure 20 — Block diagram

The first controller designed will be the phase advance for controlling the motor

position. For this, the project requirements were determined: a settling time (𝑇𝑆(2%)) of

1 second and an overshoot (𝑀𝑝𝑡(%)) of 1%. Knowing this, it is possible to start

designing the controller. Knowing that:

𝐺𝑐(𝑠) =
𝑘𝑐 (𝑠 + 𝑧𝑐)

𝑠 + 𝑝𝑐
, 𝑧𝑐 < 𝑝𝑐

The following controller was obtained from the parameters obtained by the tests

and requirements:

𝐺𝑐(𝑠) =
0,2632(𝑠 + 4)

𝑠 + 8,46

To evaluate whether the calculated controller meets the design parameters, it is

possible to simulate its response in MATLAB.

Figure 21 — Controlled system response

Another proposed controller is the PID, but for this it will be necessary to use

another model, one that contains two poles other than 0, as mentioned previously:

𝐺𝑀 =
92,154

𝑆2 + 4,002𝑠 + 4,8 ∗ 10−8
=

92,154

(𝑠 + 4,002)(𝑠 + 1,2 ∗ 10−8)

The PID controller can be written as seen below, and at the end of the process

the values of Kp, Ti and Td must be defined.

𝐺𝑃𝐼𝐷 = 𝑘𝑝 ∗ (1 +
1

𝑇𝑖𝑠
+ 𝑇𝐷𝑠) = 𝑘𝑝 (

𝑇𝑖𝑇𝐷𝑠2 + 𝑇𝑖𝑠 + 1

𝑇𝑖 𝑠
)

The first step is to find the values of Ti and Td to “cancel” the plant poles.

Admitting the designed controller, we have the following controller and the response

simulated in MatLab:

𝐺𝑃𝐼𝐷 = (1 +
1

83375000 ∗ 𝑠
+ 0,2499 ∗ 𝑠)

Figure 22 — Controlled system response

The result obtained is satisfactory for the controller design. In addition to the

phase advance and PID controllers mentioned, a comparison will be presented with a

PD controller developed using MatLab tools, specifically RLTOOL.

The optimization of the result was conducted according to the project

requirements, considering the sensitivity to the controller's gain. The results obtained

include the specific configuration of the controller and the corresponding output of the

plant controlled by that device.

𝐺𝐶(𝑠) = 0,17016 ∗
(1 + 0,25𝑠)

(1 + 0,024𝑠)

Figure 23 — MatLab tool for designing the controller.

EMBEDDED CONTROL

To integrate a controller into a microcontroller or PLC, for example, it is

necessary to discretize the designed controller in continuous time. This discretization

implies that the controller will be updated at specific intervals defined by T, called

sampling time. Below is an example of a discretized system:

Figure 24 — Representation of the discrete system

To do this, the transfer function of our controller will be used, and the

discretization will be done using the Z transform and the simplification of the diagrams

with the analog/digital and digital/analog converters, as in the image and equation

below:

Figure 25 — Block diagram of a discretized system.

With 𝐻(𝑧) = (1 − 𝑧−1) Ƶ [
𝐺(𝑠)

𝑠
]

Using this method and MATLAB’s "2d" tool we arrive at the following discretized

controllers:

Haf(z) =
0,2632 ∗ z − 0,2531

z − 0,9189

HPD (z) =
1,772 ∗ z − 1,715

z − 0,6592

HPID (z) =
1,509 ∗ z2 − 2,94 ∗ z + 1,431

z2 − 1,607 ∗ z + 0,6065

The next step is to find the difference equation using algebraic manipulations

and the delay property. Ƶ{𝑢[𝑘 − 1]𝑇} = 𝑧−1𝑈(𝑧). Using the mentioned property, it is

possible to obtain the following difference equations:

yaf(kT) = 0,2632 u[kT] − 0,2531u [(k − 1)T] + 0,9189yaf[(k − 1)T]

𝑦𝑃𝐷(𝑘𝑇) = 1,772𝑢 [𝑘𝑇] − 1,715 𝑢[(𝑘 − 1)𝑇] + 0,6592𝑦𝑃𝐷[(𝑘 − 1)𝑇]

𝑦𝑃𝐼𝐷(𝑘𝑇) = 1,509𝑢[𝑘𝑇] − 2,94𝑢[(𝑘 − 1)𝑇] + 1,431𝑢[(𝑘 − 2)𝑇] + 1,607𝑦𝑎𝑓[(𝑘 − 1)𝑇] − 0,6065𝑦𝑃𝐼𝐷[(𝑘

− 2)]

With “u” being the input, the error, and “y” being the system output, the PWM,

applied to the motor.

With these difference equations it is possible to implement them on the

microcontroller and evaluate them to compare them with the simulated results, as

demonstrated in the following graphs:

Figure 26 — System comparison in Phase Advance

Figure 27 — Comparison of the system in Proportional and Derivative

Figure 28 — System comparison in PID

The dashed red line represents the simulated curve, and the blue line represents

the real system curve.

Another discretized control that is important to mention is included in the first

part of the project, in which the gains of a PID controller are interactive. In this part,

there is a controller implemented as follows:

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡
𝑡

0

+ 𝐾𝑑

𝑑

𝑑𝑡
𝑒(𝑡)

The integrative component is obtained by the sum of the product of the error and

the time variation (∆t), while the derivative component results from the difference

divided by the same time interval. Typically, this difference is calculated between the

current and previous error, but this approach can lead to a derivative that tends to

infinity. To overcome this problem, we chose to vary the process variable, using

difference between the position instead of the difference between the errors. Thus, the

subtraction is conducted between the current position and the previous position,

inverting the behavior of the derivative. To correct this inversion, the derivative portion

is subtracted instead of added, as evidenced in the following comparison:

Figure 29 — Comparison of methods

This way, the following function is obtained:

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡) 𝑑𝑡
𝑡

0

 + 𝐾𝑑

𝑑

𝑑𝑡
𝑃𝑉(𝑡)

RESULTS AND DISCUSSION

When looking at the finished project, the application of both the analytical

method and the software method for speed or position analysis resulted in obtaining

engine models that are close, presenting small deviations, as previously mentioned.

Therefore, both approaches demonstrated effectiveness in meeting the proposed

objective, which was to obtain the engine model through the tests conducted.

A crucial point identified in the analyzes is the presence of disparities in the

system's response, influenced by a variety of factors, among which the slack in the

reduction box stands out. This slack has a significant impact on the dynamics of the

system. Considering the impossibility of eliminating this effect, it is suggested the

evaluation and adoption of an alternative reduction box, aiming to improve the

agreement of the results obtained with the established expectations.

Another relevant aspect addressed refers to the motor's dead zone, characterized

by a voltage range between 0V and a specific value. During this interval, the engine

remains inert due to mechanical considerations, associated with static friction and

moments. This identification provides valuable insights for understanding and

improving the system's behavior in specific situations.

Despite the subtle discrepancies observed, the project fully met expectations,

allowing efficient comparison of efficiency between different controllers and methods.

Furthermore, it provided a comprehensive understanding of the concepts covered in the

relevant disciplines, thus consolidating the success of the research in achieving its

objectives and contributing to the advancement of knowledge in the area in question.

CONCLUSIONS

The project covered in this report represents a significant advance in the

practical and interdisciplinary application of the concepts learned in the disciplines of

Instrumentation, Microcontrollers, Control Systems I, Object Oriented Programming

and Database. The creation of an interactive simulator to control the speed and position

of a motor coupled to an inertia wheel is a milestone that highlights the convergence of

hardware and software in engineering, providing a practical and holistic experience for

students.

The primary objectives of the project were successfully achieved, highlighting

the creation of a virtual environment that enables the practical application of the

theoretical concepts studied. The use of the PIC16F18877 to control the engine,

together with the implementation and validation of the speed and position control

systems, demonstrates the effectiveness of the approach adopted. The project phases,

from the development of the virtual environment to the construction of the hardware,

were structured in a logical and coherent manner.

The developed simulator provides an effective platform for experimentation and

understanding key concepts such as PID control, mathematical system identification and

microcontroller programming. The ability to simulate different closed control loops in

the same device is a valuable contribution, allowing direct comparison between

different control strategies. This comparative analysis is crucial to optimizing desired

control performance and deepening understanding of control principles.

The development of this interactive simulator represents not only the practical

application of acquired knowledge, but also highlights the importance of

interdisciplinary integration in the training of engineering professionals. The approach

adopted not only provides a deeper understanding of theoretical concepts, but also

prepares students to face real-world challenges, where collaboration between different

areas of knowledge is essential.

REFERENCES

[1] A. Ribas Neto, M. Fiorin and T. Dequigiovani, "Projeto Integrador na Engenharia de

Controle e Automação", in III Seminário Integrado de Ensino, Pesquisa e Extensão do

IFC, Santa Catarina, Brazil, 2016-06-24. Santa Catarina: Instituto Federal Catarinense,

2016, pp. 1–8. [Online]. Available:

https://eventos.ifc.edu.br/seminariointegrado/wpcontent/uploads/sites/4/2017/06/Projeto

-Integrador-Na-Engenharia-De-Controle-EAutoma%c3%a7%c3%a3o.pdf [Accessed

2022-04-12].

[2] A. Said, ‘Comparison between FLC and PID Controller for speed control of DC

Motor’, 03 2022.

[3] N. A. Kheir et al., “Control systems engineering education,” Automatica, vol. 32,

no. 2, pp. 147–166, Feb. 1996, doi: https://doi.org/10.1016/0005-1098(96)85546-4.

[4] R. Heradio, L. de la Torre, and S. Dormido, “Virtual and remote labs in control

education: A survey,” Annual Reviews in Control, vol. 42, pp. 1–10, 2016, doi:

https://doi.org/10.1016/j.arcontrol.2016.08.001.

[5] S. Balamurugan and A. Umarani, “Study of Discrete PID Controller for DC Motor

Speed Control Using MATLAB,” 2020 International Conference on Computing and

Information Technology (ICCIT-1441), Sep. 2020, doi: https://doi.org/10.1109/iccit-

144147971.2020.9213780.

 [6] HARWANI, BM Qt5 Python GUI Programming Cookbook Building responsive and

powerful cross- platform applications with PyQt. [sl.] Birmingham; Mumbai Packt July 2018.

[7] LIN, Paul-l-Hai; HWANG, Sentai; CHOU, J. Comparison on fuzzy logic and PID controls

for a DC motor position controller. In: Proceedings of 1994 IEEE Industry Applications

Society Annual Meeting, Denver, CO, USA, 1994. p. 1930-1935 vol.3. DOI:

10.1109/IAS.1994.377695.

[8] MAHMUD, M.; MOTAKABBER, SMA; ALAM, AHMZ; NORDIN, AN Adaptive PID

Controller Using for Speed Control of the BLDC Motor. In: 2020 IEEE International

Conference on Semiconductor Electronics (ICSE), Kuala Lumpur, Malaysia, 2020. p. 168-171.

DOI: 10.1109/ICSE49846.2020.9166883.

