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Abstract

Learning to code is becoming a popular subject for students and professionals of all ages, partly
for its career prospects, but also as a critical literacy for understanding how computing is shaping
society. Yet, educators generally agree that computer programming is difficult to teach and assess.
This poster presents an in-progress research that aims to address difficulties in assessing computer
programming by investigating critical characteristics of programming tasks using both response
process and product data.

Introduction

Learning to code is becoming a popular subject for students and professionals of all ages, partly
for its career prospects, but also as a critical literacy for understanding how computing is shaping
society. Yet, educators generally agree that computer programming is difficult to teach and assess.
This poster presents an in-progress research study that aims to address difficulties in assessing
computer programming by investigating critical characteristics of programming tasks using both
response process (e.g., key presses, mouse clicks) and product data (i.e., submitted codes).

Despite the progress made in understanding the difficulties in learning programming and in
instructional interventions, there has been little progress in assessing programming skills. The
assessment chapter by Fincher and Robins1 in a recent book surveying the entire field of
Computer Science education highlights this gap by noting a severe lack of research on designing



valid, reliable, and fair measures of programming knowledge. Some recent work includes
applying advanced psychometric methods to evaluate CS concept inventories2 and applying
modern validity frameworks3 to assess specific skills4. While this progress is meaningful, prior
work has overlooked the tensions between assessing the final program that a learner produces
versus the process that a learner followed to produce that program. An open challenge in CS
assessment and education is understanding the relationship between a learner’s process and the
programs resulting from that process5.

Research on student’s programming process mostly looks at consecutive snapshots of programs
under construction6,7. Akram et al.8 and Miao et al.9 identified snapshot features that could be
incorporated into constructive feedback to students as they are coding. While these studies
illustrate potential uses of programming process data, none of the existing literature is focused on
using that data to assess programming skills directly. This research addresses this gap by
explicitly analyzing process data to explore how student programming strategies and processes
are affected by programming task complexity and characteristics.

In this National Science Foundation sponsored collaborative research, we leverage the capability
to record students’ programming process using keystroke logs. One motivating factor for this
research is based on the discovery and progress made in the area of keystroke log analysis in the
domain of natural language writing10. We contend that learning and writing a programming
language is also an act of writing, sharing similarities to writing in natural human language
although with its own uniqueness. For example, just like writers, programmers often face an
optimization problem: They must decide which goals to prioritize because they simply do not
have the working memory to accomplish everything at once. In an assessment context, writing
natural language and codes are potentially even more similar: both are done in response to a
prompt that sets out expectations for the text to be produced, are evaluated according to specific
criteria and, if the required text is sufficiently complex, students are likely to create plans for
production that they then execute. Drawing from research on keystroke log analysis of natural
language writing, we ask the research question: how do task complexity and characteristics relate
to student programming process and performance? Fairness is a central concern of this research
as well. To what extent do those task characteristics contribute to the performance patterns
detected for students that vary along gender, ethnicity, and native language?

Methods

The first round of pilot data collection was recently completed with more than 170 students
participated on a compensated, voluntary basis from universities in North America. Most students
were enrolled in introductory Python programming courses at the time or prior to the
participation. Students were asked to provide demographic background information in terms of
their self-identified gender, ethnicity, and native language. All demographic questions were asked
in an open-response format. Our research team developed 21 Python practice coding tasks with
varying difficulty levels and targeted task characteristics. Each task included 7 or 8 test cases that
students can run their programs against to check the correctness of their programs. The tasks were
delivered from an online learning platform designed by researchers to facilitate research on
programming language learning11. While students were allowed to attempt any single task as
many times as they wanted, they were given two weeks in total to complete all tasks. Any



unfinished work was automatically logged by the system at the end of the 2-weeks window. All
students, after they finished the programming tasks, were further invited to participate in a
follow-up cognitive interview run by the research team. The cognitive interviews were
implemented to validate some programming task design choices, process features extracted from
keystroke logs, in particular, extended (long) pauses detected from the keystroke logs, as well as
to provide substantive evidence on the cognitive processes underlying programming. There were
42 students who participated in the cognitive interviews on a voluntary basis.

Results

Comprehensive statistical analyses and process feature extraction from the keystroke logs are
currently being conducted as of this writing. Preliminary qualitative analyses of the cognitive
interview data suggested some revision of the item stem (i.e., the statement of the programming
problem) to make the programming problems clearer to the students. Statistical and psychometric
analyses on the response data, so far, revealed that expert-determined item difficulty can be
largely confirmed by empirical evidence and only one programming task potentially favored the
men group (i.e., the dominant student population in CS education) as opposed to the non-men
group. Time spent on task analysis and efforts spent on code review, code revision or debugging
have positive relations to programming proficiency. We are also developing a pipeline to extract
meaningful process features from the keystroke logs. We plan to present analyses results at the
conference as they become available in the near future.

Discussion

In summary, this project aims to advance our understanding of the cognitive processes underlying
programming and inform ways to better teach, learn, and assess programming skills for all
learners. We will illustrate an interdisciplinary approach to collecting, treating, and analyzing
process data. That approach will help lead to a better understanding of how students’
programming processes differ by their proficiency level and how processes interact with task
characteristics.
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