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Work in Progress: Metacognitive Intervention to Improve Problem Solving 

Skills in First-Year Engineering Students 
  

Introduction 

Engineers are trained to solve problems with different levels of complexity. Jonassen defined 

problem solving as “a goal-directed sequence of cognitive operations” essential for everyday 

situations [1-3]. In engineering courses, problem solving is a multi-step process in which 

students need to understand the problem, determine which equations and principles are necessary 

to solve the problem, devise a plan to solve the problem, execute the plan, and verify that the 

solution is correct. Depending on the complexity of the problem, a problem can have one or 

multiple solutions. Story problems, also known as word problems, are the most common form of 

problem solving in formal education [2, 3]. Story problems contain a quantitative problem 

embedded in a narrative or story. 

Metacognition refers to the processes used to plan, monitor, and assess understanding and 

performance. Zimmerman’s self-regulated learning (SRL) model is used as a framework in this 

study to understand self-regulation and metacognitive monitoring [4-9]. Seminal work has 

conceptualized metacognition and, in particular, monitoring, to comprise metacognitive 

knowledge, metacognitive experiences, goals, strategies, and interactions among these four 

phenomena [10, 11]. In this sense, both SRL and metacognition invoke environmental, personal, 

and behavioral influences, and learners must effectively regulate the reciprocal relations among 

these influences [12] to support strategic learning. For example, monitoring learning and 

performance in a task recruits one’s metacognitive knowledge, which supports the evaluation of 

their thought processes (personal factors) in relation to a standard (environmental and/or personal 

factors) [13, 14], and the outcome of such a comparison drives future cognition and 

behavior related to learning (behavioral factors).  

Metacognitive monitoring – defined as a learner’s real-time awareness of their task performance 

[15] – is included as a component in most models of self-regulated learning, including 

Zimmerman’s [6, 16]. Research has shown metacognitive monitoring to be linked with higher 

academic performance and learning during problem-solving [17, 18] and, more generally, the 

development of domain expertise [19]. A developing body of research has indicated an important 

role of metacognitive skills and strategies in engineering problem-solving. Some efforts have 

been made to understand how students judge their learning; prominent findings indicate that a) 

students are often not very accurate in their monitoring, b) higher-achieving students tend to be 

underconfident, while lower-achieving students tend to be overconfident, and c) learners may 

draw on myriad sources when judging their confidence [14, 20]. Yet, the nature of these sources 

and the explanations learners provide for their metacognitive judgments are still largely not 

understood. More broadly, efforts to promote students’ metacognition during problem-solving - 

particularly through prompts to support accurate monitoring - are nascent in engineering 

education. 

This work in progress paper summarizes the implementation of an intervention designed to 

promote students’ metacognitive monitoring during problem-solving. Specifically, the paper 

summarizes how metacognitive monitoring was incorporated in a problem-solving and reasoning 
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course to improve students’ ability to solve word problems. Implications of this work in the 

support of students that begin in engineering with deficiencies in math knowledge are discussed. 

Across two studies, we examined the effects of students’ engagement in an introduction to 

engineering reasoning course on key metacognitive, social-motivational, and problem-solving 

outcomes based on two comparisons. In the first study (Study 1a), we conducted a between-

group comparison based on students who did and did not complete metacognitive monitoring 

practice as part of the introduction to engineering reasoning course. We used this comparison to 

examine differences in students’ metacognitive monitoring accuracy (as indicated by scores on a 

measure of calibration bias [21]) and problem-solving performance based on the metacognitive 

monitoring practice. Study 1a was guided by the following research question: 

  

1a. Do students completing an introduction to engineering reasoning course with metacognitive 

monitoring practice obtain higher scores on course-embedded measures of metacognitive 

monitoring and problem-solving? 

   

In the second study (Study 1b), to understand the degree to which the effects of the introduction 

to engineering reasoning course transferred to students’ social-motivational outcomes, we 

compared students completing the introduction to engineering reasoning course with students 

(not enrolled in the engineering reasoning course) completing a first-year seminar in engineering. 

We used this comparison to examine differences in the following outcomes as students 

completed their first-year engineering coursework: social belonging, help-seeking motives, 

engineering efficacy, and mathematics efficacy. Study 1b was guided by the following research 

question:   

    

1b. Do students completing an introduction to engineering reasoning course obtain higher scores 

on established measures of social belonging, help-seeking, engineering efficacy, and 

mathematics efficacy? 

  

 

Study 1a 

  

Method 

  

Participants and Procedures 

The study was conducted in a first-year engineering program at a land-grant institution in the 

Mid-Atlantic region. A total of 89 students (78 males, and 11 females) enrolled in and completed 

the introduction to engineering reasoning course. These students were enrolled in three course 

sections. We randomly assigned – at the course section level – one of these three sections (n=32) 

to a comparison condition; the other two sections (n=57) were assigned to an intervention 

condition based on strategy prompting and metacognitive monitoring practice. All students were 

enrolled in their first semester in college and began in engineering at the level of college algebra. 

Enrollment in the Introduction to Engineering Reasoning course occurred during the new student 

orientation events that were scheduled during the summer months prior to the beginning of the 

first school semester. 
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Metacognitive Intervention 

The metacognitive intervention was based on three major components: a conceptual 

introduction to important concepts related to self-regulated learning, prompting of metacognitive 

monitoring during problem-solving, and reflection-on-learning activities. The design and 

implementation of the intervention work was based on Zimmerman’s self-regulated learning 

model and established work prompting and promoting accurate metacognitive monitoring [21]. 

In the conceptual portion, three lectures were dedicated to introducing students to self-regulated 

learning, practice retrieval, and metacognition. Next, handouts with word problems were 

developed for the course to support the development of students’ monitoring of and reflect on 

their problem-solving performance. Learning strategy prompts were embedded in these handouts 

and were designed to elicit students’ judgments of confidence about their performance on each 

word problem, identification of specific questions students had about components of the 

problems, and reflection on the utility of specific problem concepts (e.g., the use of quadratic 

equations) in supporting their future work as an engineer. Students in the comparison condition 

were provided with handouts that sequenced the components of each word problem but did not 

contain the learning strategy prompts.  

    

Materials and Measures 

         Problem solving. Students problem-solving performance was assessed using a word 

problem included in the final examination in the course. The following word problem was 

implemented: 

For a chemical reactor with a rectangular base, Torricelli’s Law implies that the 

height h of a liquid in the reactor t second after it begins draining is given by: 

  

ℎ = (√ℎ𝑜  −  
2𝜋𝑑2√3

𝑙𝑤
 𝑡)

2

 

 

where l and w are the reactor’s length and width, d is the diameter of the drain, 

and ho is the liquid’s initial height (all measurements in inches). You completely 

fill a reactor with the liquid. 

 

The reactor is 60 inches long and 30 inches wide by 25 inches in height and has a drain 

with a two-inch diameter. Find the time it takes for the reactor to go from being full to 

half-full. Find the time it takes for the reactor to go from being half-full to empty. 

   

Students’ performance on the word problem was assessed using an established grading scheme 

based on a total of three points (ranging from 0 to 3 points in half-point increments). This 

problem was selected as the focus of the present study because it represents a level of complexity 

that requires the use of multiple concepts learned in students’ algebra-level coursework (e.g., 

rational expressions, radical expressions, quadratics).  

   

Metacognitive monitoring. We obtained a metacognitive judgment of performance from 

students on the word problem and used this judgment to compute a measure of metacognitive 

monitoring accuracy. Specifically, students were provided with a confidence judgment based on 

the following: “How confident are you that you identified the correct time it takes for the reactor 

to go from being full to half-full? Draw a slash (/) through the line below to indicate your level 
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of confidence.”. Students were provided with a continuous scale ranging from 0-Not at all 

confident to 100-Completely confident to support their metacognitive judgments. Students’ 

metacognitive judgments and performance on the word problem were converted to a decimal to 

facilitate the calculation of metacognitive monitoring accuracy. We computed calibration bias 

based on these judgments. The measure of calibration bias describes the direction and degree of 

students’ error in judging their performance during problem-solving. Specifically, calibration 

bias was obtained by taking the signed difference between the average confidence judgment and 

actual performance on each item. Based on the measure, positive values indicated 

overconfidence while negative values indicated underconfidence [21, 22]. Values that approach 

zero (0) indicate metacognitive judgments that are accurate; that is, values that are calibrated 

with students’ actual performance on the word problem. Values that approach ±1.00 indicate 

judgments that increasingly differ from students’ problem-solving performance. 

   

To describe and summarize students’ metacognitive monitoring accuracy across the comparison 

and intervention conditions, we also categorized students’ metacognitive monitoring accuracy 

based on three levels: inaccurate, somewhat accurate, and accurate using the absolute accuracy 

index. Absolute accuracy was obtained by taking the absolute value of the difference between 

the confidence judgment students provided on the word problem and their actual performance on 

the problem [22]. Absolute accuracy ranges from 0.00 to 1.00 and provides an assessment of 

students’ precision in their metacognitive judgments. Using this index, we defined inaccurate, 

somewhat accurate, and accurate monitoring as follows: the confidence judgment expressed by 

the student was considered to be “accurate” if the judgment was close (within 25%) to the actual 

score obtained in the problem, “somewhat inaccurate” if the judgment was between 25% and 

50% of the score obtained in the problem, and “inaccurate” if it was more than 50% off from the 

correct estimate.  

   

Results 

We first summarize students’ metacognitive monitoring accuracy in terms of levels and based on 

whether students did or did not complete the metacognitive monitoring practice. As shown in 

Table 1, for that problem analyzed, most of the students in the group that received the 

metacognitive intervention (63.2% of the students) were “accurate” at predicting the accuracy of 

their solution, versus 37.5% of the students enrolled in the control group. Students that were 

trained on metacognition and self-regulation showed a better calibration in comparison with 

those students that were not trained on metacognition.  

 

Table 1. Descriptive summary of students’ metacognitive monitoring accuracy by condition  

Metacognitive 

Judgement Accuracy 

% of students in Control 

Group 

n=32 

% of students in Experimental 

Group 

n=57 

Accurate 37.5 63.2 

Somewhat Accurate 25.0 21.1 

Inaccurate 37.5 15.8 

 

Additionally, a higher percentage of the students enrolled in the experimental group passed their 

college-level algebra class with a grade of C or better in the course, in comparison with the 

students enrolled in the control group.   
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Figure 1. Distribution of grades in the mathematics course (college-level algebra) for the control 

and experimental groups (yellow: DFW) 

 

In primary analysis, we implemented Bayesian methods to afford direct interpretation of the 

degree of support for the course in promoting students’ metacognitive and problem-solving 

outcomes. Analyses were conducted using JASP (JASP Team, 2024). We implemented diffuse 

priors in model estimation. We report Bayes factor estimates as a relative measure of evidence 

supporting course effects (i.e., BF10>1.00); we examine parameter estimates using the mean of 

the posterior distributions for the parameters we tested. We report and interpret 95% credibility 

intervals to demonstrate the range of values for the effects of the introduction to engineering 

reasoning course to further support inference about the significance of these effects [23]. 

  

To address the aim of Study 1b, we conducted Bayesian analysis of covariance to examine the 

effect of the introduction to engineering reasoning course on students’ metacognitive monitoring 

accuracy and problem-solving performance. We conducted two models: in the first model, we 

examined differences in students’ metacognitive monitoring accuracy – via calibration bias – on 

the word problem controlling for students’ engineering efficacy and their problem-solving 

performance; in the second model, we examined differences in students’ performance on the 

word problem controlling for their engineering efficacy and their average metacognitive 

monitoring accuracy. 

    

Table 2. Descriptive statistics based on metacognitive and problem-solving outcomes 

Measure M SD d 

Problem-solving performance   

  ENGR 151: Comparison group 1.20 1.33 
0.21 

  ENGR 151: Intervention group 1.47 1.28 

Metacognitive monitoring    

  ENGR 151: Comparison group -0.13 0.34 
0.56 

  ENGR 151: Intervention group 0.05 0.30 

Note. M=mean. SD=standard. d=Cohen’s d as a measure of effect size. 
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In the first model, students completing the metacognitive monitoring practice obtained scores on 

the measure of metacognitive monitoring that were more accurate (i.e., approached zero) and 

differed significantly from students who did not complete the monitoring practice. Compared 

with a null model that included both engineering efficacy and students’ problem-solving 

performance as covariates, moderate evidence was obtained supporting the effect on students’ 

calibration bias (BF=5.07). The effect of the course on students’ metacognitive monitoring 

accuracy, based on the posterior mean, was 0.09 (95% CI: 0.02, 0.15).  The model averaged R2 

was 0.15 (95% CI: 0.04, 0.27), indicating that the model explained moderate variance in 

students’ metacognitive monitoring accuracy. 

  

In the second model, students completing the metacognitive monitoring practice obtained higher 

scores on the problem assessing understanding of fluid dynamics. Compared with a null model 

that included both engineering efficacy and students’ average metacognitive monitoring accuracy 

as covariates, moderate evidence was obtained supporting the effect on students’ performance on 

the word problem (BF=4.89). The effect of the course on students’ problem-solving 

performance, based on the posterior mean, was 0.33 (95% CI: 0.05, 0.61). The model averaged 

R2 was 0.22 (95% CI: 0.09, 0.36), indicating that the model explained moderate variance in 

students’ metacognitive monitoring accuracy. 

  

Study 1b 

  

Method                                                               

  

Participants and Procedures 

To understand the effects of the introduction to engineering reasoning course on students’ social-

motivational outcomes, we compared all students completing the course with students 

completing a first-year seminar in engineering at West Virginia University. To do so, we 

matched students on measures of prior academic achievement (i.e., high school GPA, ACT/SAT 

scores), enrollment in an algebra-level mathematics course, and key demographic characteristics 

(i.e., gender and first-generation status). Students in both the introduction to engineering 

reasoning course and the first-year seminar completed the measures of social belonging, help-

seeking motives, and engineering and mathematics efficacy at the conclusion of the fall, 2023 

semester. 

   

We matched students completing the same introduction to engineering course (from Study 1a) 

with students from a larger sample (N=637) that completed a general first-year seminar in 

engineering. We implemented propensity score matching, using priority for exact matches and a 

match tolerance of 0.01, to identify a close comparison sample of first-year engineering students. 

Based on the measures of prior academic achievement, enrollment in an algebra-level 

mathematics course, and select demographic characteristics, we identified a comparison sample 

of 68 first-year engineering students. The total analytic sample for Study 1a was 175; 107 

students represented those completing the introduction to engineering reasoning course and 68 

students represented the matched subsample. Based on the analytic sample, there were no 

differences in prior academic achievement, students’ identification as low-income or a first-

generation student, gender, or rates of algebra-level mathematics coursework based on whether 

students were or were not enrolled in the introduction to engineering reasoning course. 
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Using this comparison sample, we examined differences in students’ end-of-semester social 

belonging, help-seeking, engineering efficacy, and mathematics efficacy based on their 

enrollment in the introduction to engineering reasoning course. Institutional review board 

approval was obtained for the study; ethical standards and principles as governed by the 

American Psychological Association were followed across study implementation. 

   

Course Design and Implementation   

The introduction to engineering reasoning course was developed with the support of an NSF 

IUSE grant (Award # 2236126). Components of the “Introduction to Engineering Reasoning” 

course have been summarized in previous publications [24-26]. The course is taught using the 

Paul-Elder framework of critical thinking. The course has a strong problem-solving component 

and each week students are introduced to engineering concepts that are associated with the topics 

discussed in their math course. The course is taught using problem-based learning.  

  

Materials and Measures 

         Social belonging. We implemented four items assessing students’ perceptions of their 

social belonging based on established work [27]. The items were applied to students’ intended 

major in engineering (e.g. “I feel accepted in engineering”). Scores on the measure of social 

belonging demonstrated adequate internal consistency reliability based on McDonald’s ⍵ 

(⍵=0.90). 

         Help-seeking motives. We administered seven items that assessed students’ help-seeking 

motives [28]. The items were implemented using a 5-point scale (1-Strongly disagree to 5-

Strongly agree) and assessed both approach (e.g., “If I needed help in my science classes, I would 

ask someone for assistance.”) and avoid (e.g., “If I didn’t understand something in my science 

classes, I would guess rather than ask someone for assistance.”) motives for seeking help. Items 

were contextualized to engineering and mathematics coursework. Items measuring help-seeking 

avoidance were reverse-coded prior to analysis. Scores on the measure of help-seeking motives 

demonstrated adequate reliability (⍵=0.77). 

         Engineering efficacy. Six items assessed students’ general engineering self-efficacy 

based on the work of Mamaril and colleagues [29]. Consistent with prior use of the scale, the 

items assessed students’ perceived capability to master the content and coursework in 

engineering. Scores on the scale demonstrated adequate reliability (⍵=0.94). 

         Mathematics efficacy. Adapted from the measure of general engineering self-efficacy, 

we assessed students’ general mathematics efficacy using the item structure and approach in 

Mamaril and colleagues [29]. The items assessed students’ perceived capability to master content 

and coursework in applied mathematics. Scores on the scale likewise demonstrated adequate 

reliability (⍵=0.88). 

  

Results 

The overall analytical approach implemented in Study 1b was the same as that implemented in 

Study 1a. Specifically, to address the aim of Study 1b, we conducted Bayesian t-tests on each of 

the social-motivational outcomes: social belonging, help-seeking motives, and engineering and 

mathematics efficacy. Students completing the introduction to engineering reasoning course 

obtained higher scores on the measures of engineering efficacy (BF=2.37) and mathematics 

efficacy (BF=3.24) than students in the first-year seminar; analysis of Bayes factor robustness 

indicated moderate support for the effect of the introduction to engineering reasoning course in 
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both models. Enrollment in the introduction to engineering reasoning course explained a small 

amount of the variance in engineering (d=0.36) and mathematics (d=0.39) efficacy. Effects of 

the course on students’ social belonging and help-seeking were not observed, BF<1.00. 

   

Table 3. Descriptive statistics for post-survey social-motivational outcomes   

Measure M SD d 
ω 

95% CI 

Social belonging  

  Comparison group 3.79 0.81 
0.13 

0.90 

(0.87, 0.93)   ENGR 151 3.90 0.89 

Help-seeking motives  

  Comparison group 3.68 0.76 
0.26 

0.77 

(0.70, 0.83)   ENGR 151 3.87 0.73 

Engineering efficacy  

  Comparison group 3.94 0.82 
0.36 

0.94 

(0.92, 0.95) 
  ENGR 151 4.24 0.81 

Mathematics efficacy  

  Comparison group 3.81 0.85 
0.39 

0.88 

(0.85, 0.92)   ENGR 151 4.11 0.72 

Note. M=mean. SD=standard. d=Cohen’s d as a measure of effect size. ω=McDonald’s omega as 

an estimate of internal consistency reliability for each measure. 95% CI: 95% credible interval 

for the estimate of reliability. 

     

Discussion 

  

In the present work, we sought to examine the effects of a metacognitive monitoring intervention 

- embedded in an introduction to engineering reasoning course designed for non-calculus ready 

students - on students’ metacognitive, social-motivational, and problem-solving outcomes. 

Students completing the metacognitive monitoring intervention in the course obtained more 

accurate estimates of metacognitive monitoring on an open word problem assessing knowledge 

of fluid dynamics. They also obtained higher scores, indicating stronger performance, on this 

problem implemented at the end of the course. These findings provide initial evidence of the 

possible benefits of incorporating structured opportunities for students to monitor their problem-

solving performance.  

      

We also examined the degree to which completion of the introduction to engineering reasoning 

course transferred to select social-behavioral outcomes in engineering. More broadly, students 

who completed the course also reported higher engineering and mathematics efficacy at the 

conclusion of the semester compared with students in a general first-semester engineering 

seminar. End-of-semester differences were not observed on measures of social belonging and 



9 

help-seeking, suggesting specific effects of the problem-solving and metacognitive monitoring 

activities implemented in the course on the promotion of students’ efficacy beliefs. Overall, the 

findings of this in-progress work suggest that an embedded and sequenced intervention designed 

to scaffold first-year engineering students’ metacognition during problem-solving may promote 

shorter-term improvements in their monitoring and efficacy-related skills and beliefs. Existing 

research has demonstrated the importance of these skills in promoting longer-term achievement, 

persistence, and success in engineering. At the same time, existing work has documented the 

challenges associated with promoting students’ metacognition in authentic and problem-based 

contexts [30].  

       

Monitoring processes in metacognition have typically been examined using confidence ratings. 

Students rely on confidence judgments to determine if they want to double check a problem in an 

exam or to move on to the next problem. Therefore, proper metacognitive judgment is essential 

to support student success in problem solving, which is an important component of the training 

received by engineers.  

      

Conclusion 

     

To be a self-regulated learner, students must make proper and accurate judgments of their 

learning. Students must also use that information to make meaningful decisions about how to 

proceed when they are solving problems. This project shows that it is possible to improve 

students’ metacognitive monitoring and performance during problem-solving and, in particular, 

in their work with open and complex problems. It also demonstrates the potential for curricula 

focused on engineering reasoning to promote stronger perceptions of efficacy in both 

engineering and mathematics, particularly among students who may be under-prepared for and 

are often under-represented in engineering.  
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