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Transforming Pedagogical Assessment: AI and Computer Vision-Enhanced 

Classroom Observations for Experiment-Centric Learning Environments 

 

Abstract: 

This paper presents an innovative approach to revolutionizing STEM education by seamlessly 

integrating artificial intelligence (AI) into the assessment of experiment-centric pedagogy. Our 

research spans diverse disciplines, including biology, chemistry, physics, civil engineering, 

transportation engineering, mathematics, and computer science. We've transitioned from 

traditional teaching methods to an immersive approach, embedding experiments into core 

curriculum modules to convey essential concepts effectively. 

Initially, this study employed the Laboratory Observation Protocol for Undergraduate STEM 

(LOPUS) and later transitioned to the Classroom Observation Protocol for Undergraduate STEM 

(COPUS), relying on manual observations. Dedicated spaces on sheets were marked at two-

minute intervals to record student and instructor activities. 

This study proposes a transformative leap forward, introducing an AI-based model to automate 

the observation process. Our primary goal is to develop a sophisticated deep learning model 

capable of autonomously tracking and documenting a wide range of activities performed by 

students and instructors in the classroom. This model will recognize, and document 26 distinct 

activity constructs evenly distributed between students and instructors, encompassing student 

questioning frequency, instructor lecturing intervals, and student-led discussions. 

Leveraging state-of-the-art AI technologies, we aim to enhance the efficiency, precision, and 

scalability of pedagogical assessment, providing educators with invaluable insights into the 

dynamics of the learning environment. Our research extends beyond assessment to measure 

student engagement within experiment-centric classes, including the frequency of student 

questions, their predictive abilities concerning experimental outcomes, and participation in 

discussions. 

In conclusion, our research drives a transformative shift in STEM education, offering a novel 

framework for precise assessment, personalization, and instructional enhancement. This 

advancement empowers educators to refine teaching strategies, enhancing student engagement, 

and creating a dynamic and immersive learning environment. Furthermore, the AI-based model 

complements existing observation protocols, like COPUS, potentially serving as a valuable 

control measure for assessing classroom activities. 

Keywords: STEM education, experiment-centric pedagogy, artificial intelligence, deep learning, 

education assessment, student engagement, learning dynamics, classroom observation. 

 

 

 



 

Introduction 

Science, technology, engineering, and mathematics (STEM) education is shifting from 

traditional lecture-based methods to more immersive and experiment-centric pedagogy. This 

pedagogical approach aims to foster self-efficacy, critical thinking, and problem-solving skills 

among students and enhance their interest and motivation in STEM fields [1], [2]. However, 

assessing the effectiveness and impact of this pedagogy poses significant challenges, especially 

in measuring student engagement during the implementation of the pedagogy. This paper 

proposes a novel solution to address these challenges by leveraging the power of artificial 

intelligence (AI) and computer vision (CV) to automate and enhance the classroom observation 

process.  

Classroom observation is a widely used method for evaluating and improving teaching and 

learning practices in STEM education, as it provides rich and detailed information on the 

behaviors, interactions, and activities of students and instructors in the classroom. However, 

current observation protocols, such as the Laboratory Observation Protocol for Undergraduate 

STEM (LOPUS) [3] and the Classroom Observation Protocol for Undergraduate STEM 

(COPUS), rely on human observers who manually record and code the data using paper-based or 

digital tools [4]. This process is time-consuming, labor-intensive, subjective, and prone to errors 

and biases. Moreover, it limits the scalability and generalizability of the observation results, as it 

depends on the observers' availability, training, and reliability [5].  

To overcome these limitations, , this study developed an AI-based model that can autonomously 

observe, track, and document a wide range of student and instructor activities in the classroom 

using state-of-the-art CV techniques [6], [7]. Our model will be capable of recognizing and 

documenting at least 26 distinct activity constructs, evenly distributed between students and 

instructors, encompassing student questioning frequency, instructor lecturing intervals, and 

student-led discussions. These constructs are derived from the existing observation protocols, 

such as COPUS, but are extended and refined to capture the nuances and dynamics of the 

experiment-centric pedagogy.  

This model uses multiple cameras and microphones to capture the audio-visual data from the 

classroom, and then applies various CV algorithms, such as face detection, face recognition, 

facial expression analysis, gesture recognition, speech recognition, and natural language 

processing, to analyze and interpret the data. The model then generates a comprehensive and 

objective classroom observation report, highlighting the key patterns, trends, and insights on the 

teaching and learning process. This study spans diverse disciplines, including biology, chemistry, 

physics, civil engineering, transportation engineering, mathematics, and computer science.  

The data gathering phase has begun, and we will be implementing and testing the AI-based 

model in several experiment-centric courses across seven STEM disciplines and comparing the 

results with the manual observation protocols. So far, surveys have been conducted, and 

interviews with the students and instructors who participated in the experiment-centric courses 

have been conducted to gather their feedback and perceptions on the pedagogy and the previous 

observation process (COPUS). This study presents research methodology, Preliminary result, 



and implications on the integration of AI and CV in revolutionizing STEM education classroom 

assessment. The benefits and challenges of using this AI-based model are discussed, as well as 

the ethical and social issues that arise from its implementation. Suggestions and 

recommendations for future research and practice in this emerging and interdisciplinary field are 

requested as this study will contribute to advancing knowledge and innovation in STEM 

education and inspire more researchers and educators to explore the potential of AI and CV in 

enhancing teaching and learning. 

Literature Review 

As Lombardi et al [8] described, active learning is a broad term among educators. They asserted 

that the existing comprehension from the literature on active learning is excessively broad and 

lacks precise particulars, impeding the ability to conduct effective research and enhance teaching 

methods. The authors suggest a revised interpretation of active learning as "a classroom setting 

where the teacher/instructor and educational activities deliberately empower students to take 

charge of their learning." This definition highlights the significance of student involvement and 

responsibility in the learning process [8].  

In the last decade, one of the emerging active learning strategies called experiment-centric 

pedagogy is an approach that emphasizes hands-on activities and experiments to convey essential 

concepts in STEM education. As with other active learning strategies, it also aims to foster 

student engagement, deepen conceptual understanding, and promote critical thinking skills [9]. 

Several studies have demonstrated the positive effects of active learning on student outcomes, 

such as academic performance, motivation, interest, and self-efficacy [10] [11], [12]. However, 

there is a dearth of accurate evidence on the kind of engagement the pedagogy provides and the 

extent to which these pedagogies allow the student to take ownership during the learning 

process. 

To investigate the kind and extent of student engagement during the implementation of active 

learning pedagogies, it is crucial to have reliable and valid methods of assessing the learning 

process and its outcomes. Several observatory frameworks have been developed to guide 

assessment within these environments, among which are the Laboratory Observation Protocol for 

Undergraduate STEM (LOPUS) [3] and the Classroom Observation Protocol for Undergraduate 

STEM (COPUS) [4]. These protocols are based on systematic observations of student and 

instructor activities in the classroom or laboratory, using predefined codes and categories. The 

observations are typically recorded on paper or electronic forms at regular intervals, such as 

every two minutes. The data collected can provide valuable insights into instructor-student 

interactions, student engagement, and instructional quality [4], [13]. 

However, these protocols have some limitations, especially concerning their efficiency, 

applicability, and scalability. Also, they rely on manual observations, which are labor-intensive, 

time-consuming, and prone to human errors. Second, they require trained observers, which can 

be costly and difficult to obtain, especially for large-scale studies. Third, they have the potential 

not to capture the full complexity and diversity of student and instructor behaviors or activities, 

especially in dynamic and interactive experiment-centric learning environments. Fourth, they 



may not provide timely and actionable feedback to instructors, as the data analysis and 

interpretation may take a long time after the observation [14]. 

The emergence of AI and computer vision technologies presents a compelling opportunity to 

overcome the limitations of traditional observation protocols and revolutionize pedagogical 

assessment. AI and computer vision are two technologies that enable machines to perform tasks 

that require human intelligence and vision, such as recognizing objects, faces, emotions, actions, 

and events in images and videos [15], [16]. Recent advancements in deep learning algorithms 

and image recognition have yielded powerful tools for automatically analyzing complex 

behavior and can provide objective data on classroom activities [17]–[19]. 

Several studies have shown promising results in applying these technologies to assess teacher-

student interactions and student engagement in various educational settings. For example, 

Kuromiya et al. [20] explored the feasibility of using a pre-trained action recognition model, 

SlowFast, to automatically label teacher’s behaviors in a junior-high school mathematics class in 

Japan. The model achieved high accuracy in identifying the teacher’s posture but low accuracy in 

detecting the teacher’s interaction with objects and students. The study suggests that the model 

could be improved by considering the specific features of the classroom environment, such as the 

whiteboard and the masks. The study also highlights the ethical implications and the potential 

benefits of using AI for teachers in action reflection.  

D’Mello et al., [21] developed a computer vision system to measure student engagement levels 

based on facial expressions, head poses, and eye gaze from webcam images. The system 

achieved a correlation of 0.74 with self-reported engagement scores and a classification accuracy 

of 75.6% for three engagement levels (high, medium, and low). 

However, integrating AI and computer vision technologies into the specific context of 

experiment-centric learning environments remains largely unexplored. There is a need for more 

research on how to develop and evaluate AI-based models that can autonomously track and 

document a wide range of activities performed by students and instructors in these environments, 

such as conducting experiments, making predictions, discussing results, and solving problems. 

Such models could potentially enhance the efficiency, precision, and scalability of student 

engagement assessment, providing educators with invaluable insights into the dynamics of the 

learning environment. Moreover, such models could complement existing observation protocols, 

such as COPUS, potentially serving as a valuable control measure for assessing classroom 

activities. 

Theoretical Framework 

A combination of well-founded theories and innovative technologies is built upon to develop and 

implement the AI-based model used in our study for assessing experiment-centric pedagogy in 

STEM education. The theoretical foundation integrates various perspectives and concepts from 

pedagogy and artificial intelligence, creating a coherent and comprehensive framework for our 

research. This theoretical foundation guides our development and implementation of the AI 

model, ensuring it aligns with the dynamic realities of these vibrant learning environments. 



Figure 1 shows an overview of the study’s theoretical framework, which consists of five main 

components: constructivism and active learning, social constructivism, and collaborative 

learning, learning analytics and hidden patterns, explainable AI and trustworthy collaboration, 

and human-in-the-loop for continuous improvement. Each component represents a key aspect of 

our research problem, objectives, methods, and contributions. Each component is discussed in 

detail in the following subsections. 

 

Figure 1: Overview of the Theoretical Framework 

1. Constructivism and Active Learning: At the heart of the present study’s framework lies 

the constructivist theory of learning, which postulates that knowledge is actively 

constructed through individual experiences and interactions within the environment [22], 

[23].Experiment-centric classrooms provide the perfect stage for this active construction, 

where students engage in a cyclical process of questioning, hypothesizing, 

experimenting, and analyzing, building upon their existing knowledge to solidify and 

refine their understanding [24]. The Present study’s AI model aims to capture the intricate 

dance of these phases, not just recording actions but also inferring cognitive engagement 

and knowledge construction based on subtle behaviors and interactions. 

Figure 2 shows a simplified diagram of the experiment-centric learning cycle, which illustrates 

the main activities and outcomes involved in this pedagogical approach. This study’s AI model 

will recognize and document these activities and outcomes using a set of predefined codes and 

categories, similar to the existing observation protocols such as LOPUS and COPUS [4]. 

However, unlike manual observations, this study’s AI model will use computer vision and deep 

learning techniques to automatically analyze the classroom videos and provide objective and 

timely data on the learning process. 



 

Figure 2: Experimental-centric Learning cycle. 

2. Social Constructivism and Collaborative Learning: Idaresit’s work [25] emphasizes the 

essential role of social interaction in constructing knowledge . Building on this, the study 

adopts the theory of social constructivism, acknowledging the significant role of 

collaboration and peer learning within experiment-centric classrooms [26]. Therefore, 

this study’s AI model will therefore go beyond individual analyses, utilizing graph 

convolutional networks to map and analyze the intricate networks of collaboration and 

knowledge exchange that drive collective understanding and skill development [27]. 

3. Learning Analytics and Hidden Patterns: The field of learning analytics provides a 

powerful lens for understanding and optimizing educational practices [28]. The present 

study’s research leverages this framework, integrating the AI model with learning 

analytics methodologies to uncover hidden patterns and correlations within the rich data 

generated by classroom observations [10]. By drawing insights from student engagement, 

question frequency, discussion dynamics, and interaction patterns, the aim is to inform 

educators about the effectiveness of their instructional strategies and provide data-driven 

recommendations for individualized learning support. The present study’s AI model will 

support and automate these steps and outcomes using a set of predefined algorithms and 

techniques, such as data collection, preprocessing, analysis, visualization, interpretation, 

and intervention [29]. The AI model will use computer vision and deep learning 

techniques to automatically extract and transform the relevant features and variables from 

the classroom videos, and to apply various statistical and machine learning methods to 

discover and display the meaningful patterns and trends in the data [30]. 

4. Explainable AI and Trustworthy Collaboration: Considering this would be adopted by 

educators, the study understands the critical importance of transparency and trust when 

integrating AI tools into the learning process [31]. Therefore, the principles of 

explainable AI (XAI) is embraced, ensuring that the model’s reasoning and insights are 



interpretable and accessible to educators [32]. These fosters open communication and 

collaborative analysis, empowering educators to make informed decisions based on the 

model’s recommendations while retaining ownership over their instructional strategies. 

Figure 3 shows a simplified diagram of the explainable AI framework designed by Khosravi et 

al., which illustrates the main components and processes involved in this explanatory approach. 

Our AI model will adhere to this framework using predefined methods and techniques, such as 

feature selection, attention mechanisms, saliency maps, and natural language generation. Our AI 

model will use computer vision and deep learning techniques to automatically identify and 

highlight the most relevant and influential factors and evidence for the model’s predictions and 

suggestions, as well as to generate natural and concise explanations and feedback for educators. 

 

Figure 3: Explainable AI framework by Khrovasi et al [32] 

5. Human-in-the-Loop for Continuous Improvement: Our research envisions a dynamic 

partnership between AI and educators, not a one-way street. The study also seeks to adopt 

a “human-in-the-loop” approach, where educators provide continuous feedback on the 

model’s performance, guiding its learning and refinement [33]. This feedback loop 

ensures the model’s ongoing adaptation to the specific nuances of each classroom and 

teaching style, fostering a collaborative environment where human expertise and AI 

capabilities combine to optimize the learning experience for every student. 



 

Figure 4: Simplified diagram of the human-in-the-loop system adopted by Eduardo et al [33] 

Research Questions: 

1. How can AI and computer vision technologies be integrated into pedagogical assessment 

to enhance the efficiency, precision, and scalability of classroom observations in 

experiment-centric learning environments? 

2. What is the impact of the AI-enhanced observation model on the measurement of student 

engagement within experiment-centric classes? 

3. In what ways can educators leverage AI-based assessments to refine teaching strategies 

and enhance student engagement in experiment-centric learning environments? 

Methodology 

The methodology used in our study consists of three main phases: model development and 

validation, implementation and assessment, and analysis and dissemination. A mixed-methods 

approach is employed in each phase, combining quantitative data analysis with qualitative 

inquiries. Figure 5 shows the overview of our methodology and its phases. 



 

Figure 5: Overview of our methodology and its phases. 

The following subsections describe each phase in more detail. 

Phase 1: Model Development and Validation: 

This phase is aimed at developing and validating a deep learning model capable of automatically 

identifying and documenting at least 26 distinct activity constructs in experiment-centric STEM 

classrooms. These constructs are derived from existing observation protocols, such as COPUS, 

but are extended and refined to capture the nuances and dynamics of the experiment-centric 

pedagogy. The model will leverage state-of-the-art AI technologies, such as convolutional neural 

networks (CNNs), object detection models, generative adversarial networks (GANs), and 

transformer models, to analyze the audio-visual data from the classroom and generate detailed 

reports on classroom activity and student engagement. The model will also incorporate the 

principles of explainable AI (XAI) and human-in-the-loop (HITL) to ensure transparency, trust, 

and continuous improvement. 

The steps involved in this phase are as follows: 

1. Data Collection: Datasets of high-resolution video recordings will be collected from 

various STEM disciplines within experiment-centric learning environments. The video 

recordings will capture the full duration of the classes, the interactions between students 

and instructors and the experiments conducted by the students. The video recordings will 

be obtained with the consent of the participants and in compliance with the ethical 

standards and regulations. 

2. Data Annotation: Human coders will be recruited and trained to annotate the video 

recordings, meticulously labeling each instance of the 26 pre-defined activity constructs. 

The coders will use a web-based annotation tool that allows them to mark each activity's 

start and end time, as well as the identity and location of the participants involved. The 

coders will also briefly describe the activity and its context. The annotation process will 

follow a rigorous quality control procedure involving multiple rounds of verification and 

reconciliation. 

3. Data Pre-processing and Augmentation: The raw video data will undergo pre-processing 

to extract relevant frames and activities. The pre-processing will include face detection, 

face recognition, gesture recognition, speech recognition, and natural language 

processing. The pre-processed data will then be augmented using GANs, which will 



generate synthetic yet realistic representations of classroom activities, enhancing the 

robustness and diversity of the dataset. 

4. Model Training and Optimization: The pre-processed and augmented data will be used to 

train and optimize a deep learning model to automatically identify and document 

activities from future video recordings. The model will consist of several components, 

such as CNNs for feature extraction, LSTMs for temporal dependencies, object detection 

models for specific activities, and transformer models for contextual understanding. To 

ensure interpretability and adaptability, the model will also incorporate XAI and HITL 

techniques, such as attention mechanisms, saliency maps, and feedback loops. The model 

will be trained iteratively to evaluate and improve its performance using various metrics 

and methods, such as accuracy, precision, recall, F1-score, cross-validation, and transfer 

learning. 

5. Model Validation: The trained and optimized model will be validated using a separate set 

of video recordings not used for training. The model’s predictions will be compared with 

the human annotations and the manual observations using COPUS. The model’s accuracy 

and reliability will be rigorously evaluated using statistical tests and measures, such as 

Cohen’s kappa, inter-rater agreement, and confusion matrix. The model’s explainability 

and usability will also be assessed using qualitative methods, such as interviews and 

surveys with potential users and stakeholders. 

Phase 2: Implementation and Assessment: 

In this phase, implementing and assessing the AI-based model in real-world experiment-centric 

STEM classrooms is the focus as the model will be integrated into pilot courses across seven 

diverse STEM disciplines and use it to monitor and document classroom activities and student 

engagement. Data-driven insights and recommendations will be provided to the educators 

participating in the experiment and solicit their feedback and perceptions on the AI-based 

assessment system then, a comparative analysis will be conducted between the AI-based model 

and the traditional assessment methods, such as COPUS, to validate the model’s effectiveness 

and impact. 

The steps involved in this phase are as follows: 

1. Model Deployment: The validated AI model will be deployed on edge computing devices 

within the pilot classrooms. These edge computing devices will consist of cameras, 

microphones, and processors that can run the model locally and in real time. The devices 

will be installed with the consent of the participants and in compliance with ethical 

standards and regulations. 

2. Model Inference: The deployed model will continuously monitor and document 

classroom activities and student engagement, using the audio-visual data captured by the 

edge devices. The model will generate detailed reports on the frequency, duration, and 

distribution of the 26 activity constructs, and the patterns, trends, and insights on the 

teaching and learning process. The model will also provide real-time feedback and 

suggestions to the educators and students, such as highlighting areas of improvement, 

encouraging participation, and facilitating discussions. 



3. Model Evaluation: The model’s performance and impact will be evaluated using both 

quantitative and qualitative methods. Qualitative methods will include conducting 

interviews and surveys with the students and educators to gather their feedback and 

perceptions on the AI-based assessment system, as well as its benefits, challenges, and 

implications. 

Phase 3: Analysis and Dissemination: 

This phase aims to analyze and disseminate the research findings and implications of the AI-

based model for pedagogical assessment in experiment-centric STEM education. The data and 

insights from the previous phases would be synthesized, conclusions and recommendations 

would be deduced for future research and practice. The study’s outcomes and contributions will 

be communicated and shared with the academic and educational communities, showcasing the 

potential of AI to revolutionize pedagogical assessment and enhance learning experiences. 

The steps involved in this phase are as follows: 

1. Data Analysis: A comprehensive data analysis will be performed using various statistical 

and thematic techniques, the quantitative data from the model’s assessments and 

traditional methods, will be analyzed to assess their alignment and identify any 

discrepancies. The qualitative data from the interviews and surveys will be analyzed to 

understand the perceived impact of the AI system on teaching and learning practices, as 

well as the ethical and social issues that arise from its implementation. 

2. Report Writing: Data analyzed in the previous step will be synthesized into a 

comprehensive report outlining the research objectives, methodology, results, discussion, 

and conclusion. The report will highlight the efficacy of the AI-based model in enhancing 

pedagogical assessment and student engagement within experiment-centric STEM 

education, as well as the challenges and limitations of the approach. The report will also 

provide recommendations and suggestions for future research and practice in this 

emerging and interdisciplinary field. 

3. Dissemination: as a final step, the findings and contributions of this study will be 

disseminated through various channels and platforms, such as peer-reviewed 

publications, conference presentations, and workshops. This will target both academic 

and educational audiences, aiming to raise awareness and interest in the potential of AI to 

revolutionize pedagogical assessment and enhance learning experiences. Feedback and 

collaboration from other researchers and practitioners in the field would be collected to 

foster a community of inquiry and innovation. 

By carefully and intently putting together these various elements, the methodology of the study 

endeavors to create a robust, adaptive, and ethically sound AI-based model for classroom 

observations, assured to redefine the prospect of pedagogical assessment in STEM education. 

 

 

 

 



Discussion 

 

By leveraging the power of AI and computer vision, it is anticipated that this study will help 

move beyond the limitations of traditional methods and provide educators with rich, objective 

data on classroom dynamics. The AI-based model’s ability to capture the intricate interactions 

accurately and reliably between students, instructors, and the learning environment offers several 

key advantages, as highlighted below: 

Enhanced Efficiency and Scalability: Manual observations of classroom activities are time-

consuming and cumbersome, limiting their applicability to large classes or frequent assessments. 

The AI model, on the other hand, can process vast amounts of data rapidly, allowing educators to 

conduct ongoing, real-time assessments without compromising valuable teaching time.  

Precision and Objectivity: Human observations are inherently subjective and prone to bias. The 

AI model, trained on meticulously labeled data, delivers objective and consistent assessments, 

minimizing the influence of personal interpretations and ensuring fairness in evaluating 

classroom dynamics. Previous studies have also demonstrated that AI and computer vision can 

achieve high accuracy and reliability in recognizing and documenting classroom activities, 

comparable or superior to human observers [34], [35]. 

Deeper Insights into Learning Dynamics: The AI model’s ability to track and analyze various 

activities simultaneously provides educators with a holistic understanding of classroom 

interactions. This data can reveal hidden patterns and correlations that traditional methods often 

lack, enabling educators to identify areas for improvement and tailor their instruction to address 

individual student needs. For example, the model can provide insights into the frequency and 

quality of student questions, the level and type of student engagement, the effectiveness of 

instructor feedback, and the impact of experiments on student learning. 

Personalized Learning and Improved Engagement: The data-driven insights generated by the 

model can be used to personalize learning experiences for each student. Educators can provide 

targeted interventions, scaffolding, and differentiated instruction to maximize student 

engagement and knowledge acquisition by identifying individual strengths and weaknesses. 

Previous studies have also shown that personalized learning can enhance student motivation, 

interest, and self-efficacy in STEM fields [36], [37]. 

This study acknowledges the limitations and challenges of the approach to be used, and the 

ethical and social implications of using AI for classroom observations. Some of the potential 

issues that will be addressed in our research are: 

Data Privacy and Security: The collection and processing of video data from the classroom raises 

concerns about the privacy and security of the participants, especially the students. Strict 

protocols to anonymize and protect the data will be observed, as well as to obtain the consent of 

the participants and comply with ethical standards and regulations. The model will also be 

deployed on edge computing devices, minimizing the need for data transmission and storage on 

external servers. 



Bias and Fairness: The training and validation of the AI model may introduce biases in the data 

and the predictions, affecting the accuracy and fairness of the assessments. Continuous efforts 

will be made to mitigate biases in the data collection, annotation, and augmentation processes, as 

well as in the model training, optimization, and evaluation processes and various metrics and 

methods will be used to measure and monitor the model’s performance and ensure its alignment 

with human observations. 

Trust and Transparency: Integrating the AI model into the teaching and learning process may 

affect the trust and transparency between the educators and the students, as well as between the 

educators and the model. The principles of explainable AI will be actively embraced, ensuring 

that the model’s reasoning and insights are interpretable and accessible to educators. Hence, a 

collaborative and communicative environment will be fostered, where the educators can provide 

feedback and guidance to the model, and the model can provide suggestions and 

recommendations to the educators. 

This study will contribute to advancing knowledge and innovation in the field of pedagogical 

assessment in experiment-centric STEM education, benefitting educators and students by 

providing them with valuable data and insights to enhance their teaching and learning 

experiences. Feedback and suggestions from other researchers and practitioners in the field, as 

well as from the audience, on the study’s objectives, methodology, and expected outcomes, are 

sought after.  

Conclusion 

In conclusion, this study focuses on a transformative shift in STEM education by seamlessly 

integrating AI into the assessment of experiment-centric pedagogy. The AI-based model provides 

a framework for accurate, personalized, and data-driven assessment, enabling educators to tailor 

their instruction to individual student needs and preferences. This advancement enhances student 

engagement, motivation, and learning outcomes, creating a dynamic and immersive learning 

environment. Moreover, the model supplements existing observation protocols, such as COPUS, 

offering a reliable and objective measure for evaluating classroom activities. By constantly 

improving and validating the AI model, this study envisions a future where assessment is an 

integral part of the learning process, providing educators with timely and actionable feedback 

and students with the personalized support they need to achieve their full potential. 
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