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Re-Envisioning Materials Science Education Through Atomic-Level 
Computational Modeling 

 
Abstract: This paper presents a re-designed introductory materials science and engineering 
(MSE) course that uses computational atomistic modeling for nearly every topic. Computation is 
becoming ubiquitous in MSE, and it can help dramatically improve understanding of how macro-
level behavior emerges from atomic behavior. Just three modeling techniques—molecular 
dynamics, Monte Carlo, and random walk—can be used to model most topics in an introductory 
MSE course, and understanding conceptually how these techniques work is not very difficult. 
After providing background on computation in MSE and in education, we describe the structure 
of the course as a whole, provide detailed descriptions of two units in the course to illustrate how 
computational models can be used to teach core MSE concepts, and discuss how this approach 
differs from the traditional approach.   
 
1 Background: computation in MSE, ABM in education, and learning theories 
 
1.1 Computation in MSE 
 
Computational materials science and engineering (MSE) dates to at least the 1980s, and in the 
past 20 years the MSE community has begun to recognize the crucial importance of 
computational tools in accelerating the development, discovery, and design of new materials. 
There is widespread consensus among academics, national labs, and industry that computation 
will play an increasingly important role in MSE and that both undergraduate and graduate 
education should reflect that change [1], [2], [3]. This commitment to a shift in the educational 
approach within MSE departments is highlighted in the strategic plan of the National Science 
and Technology Council’s Materials Genome Initiative, which posits that the next generation of 
the MSE workforce will need to master three competencies: experimentation, data management, 
and computation [4]. 
 
MSE educators have worked to construct educational offerings that develop competencies in the 
areas identified by the Materials Genome Initiative. Several departments have developed 
computational courses or add-on computational modules for existing courses [5], [6], [7], [8], 
[9], [10]. However, while inroads have been made in MSE curricula at upper-level undergraduate 
and graduate courses, introductory courses are still largely taught with traditional diagrams and 
formulae approaches, leaving computational thinking, exploration, and modeling for later. This 
traditional approach misses an opportunity to leverage computational modeling as a core 
teaching and learning tool when students begin their study of MSE. According to the Open 
Syllabus project [11], which has collected over 230,000 engineering syllabi, the most popular 
introductory MSE textbook, authored by Callister and Rethwisch [12], is the second most 
assigned textbook across all engineering disciplines. This textbook has been through many 
editions, but it was originally written in 1985 and does not include any computational 
approaches.  
 
To maximize student learning, the integration of computation into introductory courses should 
use tools designed specifically for education. The existing computational MSE initiatives in 
upper-level courses focus mostly on using computational tools designed for research and 



industry to solve problems [5], [6], [7], [9], [10]. The value of this approach is that students learn 
to use tools they may encounter in professional settings. However, these tools are designed for 
efficient problem solving and do not usually help students to better understand the underlying 
phenomenon being modeled, making them suboptimal for an introductory setting.  
 
Here, we describe an introductory MSE course grounded in computational modelling from a 
complex systems perspective in which the interactions of large numbers of atoms lead to the 
emergence of larger-scale properties. Models showcasing emergence fit perfectly with the classic 
MSE paradigm which emphasizes that a material’s properties emerge from its structure which 
emerges from the processing the material undergoes. The course utilizes computational agent-
based or atomistic models (ABMs1) designed specifically for educational purposes. Beyond 
providing computational skills that students will need in their careers, these models will leverage 
a truly transformative aspect of computation in education: the ability of the computer to represent 
scientific phenomenon in new, powerful, and intuitive ways.  
 
1.2 ABM in Education and Restructurations 
 
Representing content in new ways can dramatically improve learning. For example, with the use 
of modern Hindu-Arabic numerals, elementary school children routinely learn to do long 
division and long multiplication. Using Roman numerals, these operations were considered so 
difficult that only trained professional were able to do them [13]. Similarly, the notation of 
algebra radically changed the difficulty of kinematics. It took Galileo, who did not have 
algebraic notation, a full page of text to prove simple relationships between distance, speed, and 
time, such as “if two objects travel at the same speed, then the ratio of their distances traveled 
equals the ratio of their times travelled,” but with algebraic kinematics, we can simply write, 𝑑 =
𝑠 × 𝑡 for each object, (where d is distance travelled, s is speed and t is time travelled) and divide 
them to see this result in one line of algebra: !!

!"
= "×$!

"×$"
= $!

$"
  [14].  

 
Wilensky and Papert call this kind of dramatic transformation in thought due to a new 
representational form a “restructuration” [13], [15]. They offer several criteria for evaluating a 
restructuration. For one, a successful restructuration can be more powerful than the old 
structuration, either by enabling new things to be done that weren’t possible under the old 
structuration or by bringing different phenomena, previously viewed as unconnected, under a 
shared framework. A restructuration can also have cognitive properties that make it easier to 
learn and reason with than the old structuration. Additionally, it might make learning more 
engaging, or accommodate different learning and thinking styles. 
 
By the above criteria, ABM can serve as a restructuration for a large swathe of MSE content. 
While traditional equation-based modeling techniques naturally treat more simple material 
systems, such as perfect crystals, computational techniques that model large number of atoms 
allow scientists to model “real, complex materials as they are” [16]. This powerful property of 
atomistic modeling results from the fact that the basic entities of the model are individual atoms 

 
1 We will use ABM to refer to all computational modeling techniques that model individual entities, including 
atomistic techniques such as Molecular Dynamics and Monte Carlo methods. Although the “A” of ABM usually 
represents “agent,” in the context of MSE it should perhaps be interpreted as “atom.” 



which can interact to produce complex aggregate patterns. In contrast, traditional equations 
usually represent aggregate quantities directly and require simplifying assumptions about the 
material system to be tractable, often to the point that they do not represent any real material 
system at all. Atomistic models can also help researchers “to gain insight into a physical system 
and then obtain a new theoretical understanding” [17], showcasing their cognitive properties.  
 
Bringing restructurations to educational settings can have a profound impact. No amount of 
improved pedagogy would have improved children’s ability to do arithmetic as much as 
switching from Roman to Hindu-Arabic numerals. Similarly, bringing computational ABM to 
students can profoundly impact their learning about complex systems of all kinds, including 
materials systems studied in MSE [13], [15]. First, the rules that individual agents follow are 
often more intuitive to learners than equations representing aggregate quantities, giving students 
a solid grasp of the mechanisms from which scientific phenomena emerge. Second, ABMs are 
usually much easier to adjust and modify than equation-based models, allowing students to 
engage in authentic modeling practices. Students are very good at plugging values into equations 
but adjusting the equation itself to model a different phenomenon is much more difficult.  Third, 
with the right software, ABMs can produce rich visualizations to help learners interpret and learn 
from the output of a model. 
  
1.3 Learning Theories: Model-Based Learning 
 
Model building is at the core of scientific practice [18], [19]. Modeling theory itself began as an 
investigation of how science works and has since grown into an educational theory of its own 
with many taking the stance that modeling should be at the core of science education [20]. The 
goal is for students to learn disciplinary knowledge while also gaining procedural knowledge of 
how to use, create and assess models. 
 
Our discussion of modeling in science refers to the creation of external, sharable models. There 
are many kinds of external models including visual representations (e.g., a map is a model of a 
place), mathematical models that relate various observable quantities together, and emergent 
models in which some aspect of a system emerges from the interactions of modeled objects [21], 
[22]. A long history of research has investigated the use of computational tools to help students 
engage in various types of modeling and learn through model-based inquiry (for reviews see 
[23], [24]). 
 
One class of learning environments known as microworlds [25] use interactive computational 
environments to enable students to actively explore a topic. Dynaturtles, an early microworld, 
allowed students to “kick” computational objects following Newton’s laws of motion to gain a 
more intuitive understanding of Newtonian motion [26]. In an emergent systems microworld, 
many computational agents (or atoms) interact to produce a phenomenon which students can 
explore [27]. For example, interactive molecular dynamics models have been used to help 
middle and high-school students inquire into how the phases of matter emerge from atomic 
interactions [28]. Similarly, microworlds of gas molecules have been used to help students 
understand how the ideal gas laws emerge from the aggregate behavior of many particles [29]. 
Explorations of microworlds can constitute an authentic modeling activity. After all, a large part 



of the work of a computational scientist is experimenting with their computational models to 
understand their behavior.  
 
Emergent systems sandboxes (ESS) are an approach to engaging students in model construction 
without having to write code [30]. In an ESS, the learner can construct models from ready-made 
entities that already follow rules governed by a core scientific model. For example, students 
could add particles of different sizes to a molecular dynamics model to see how they interact. In 
this way, students can construct the initial conditions of a model and run experiments, even if 
they are not coding the micro-level behaviors themselves. 
 
With the right tools, it is also realistic for students, even at an introductory level, to engage in 
computational modeling through writing code. NetLogo [31] is an agent-based modeling 
environment designed specifically to have a “low threshold” to make it easy for novices to start 
modeling, while still having a “high ceiling” of what is possible [32]. To start, students can 
engage in inquiry through modifying small amounts of code in existing models. This can either 
be a form of open-ended “tinkering” with the code to explore what happens, or more directed 
modifications to model a new phenomenon [33]. There have been many successful examples of 
high school and college students learning to use NetLogo and successfully building incisive 
models in subjects such as biology [34] and MSE [35], [36].  
 
Prior research has shown increased student understanding of core concepts in MSE through the 
use of computational models [36] as well as in related fields of chemistry and physics [29], [37], 
[38], [39]. As discussed above in the context of restructurations, starting with the micro-picture 
is a qualitatively different way of thinking about these phenomena compared to equation-based 
approaches and often leads to deeper conceptual understanding.  
 
Prior work on computation in MSE education analyzed the way MSE phenomena are 
traditionally represented and then compared student understanding under the traditional approach 
with an ABM-based approach [35], [36]. Most traditional class time was spent on deriving and 
analyzing equations. These derivations usually start with a qualitative description of atomic 
behavior paired with a schematic picture of atoms. Then, multiple simplifications and 
assumptions are made to transform the qualitative picture into a statement about aggregate level, 
continuous patterns that can be handled by differential equations. Because of the complexity of 
MSE phenomena, multiple equations and derivation steps must be related to one another to 
model a single phenomenon, and students can easily get lost in the math without gaining 
conceptual understanding [36]. Additionally, the final equations no longer refer directly to 
atoms, hiding the mechanisms which give rise to the phenomenon in the first place. This results 
in an “epistemological gap” between the equations and conceptual understanding of the 
phenomenon [36].     
 
In contrast, a single computational model of atomic interactions can exhibit multiple emergent 
properties. For example, a molecular dynamics model of atoms exerting forces on one another 
and moving according to Newton’s laws can exhibit crystal structure, thermal expansion, phase 
transformations and more. The “one-to-many” [36] property of many computational models, in 
which a single model can represent many phenomena, helps students gain deeper understanding 



of core MSE ideas, because multiple phenomena are connected by a small number of principles, 
such as atoms moving stochastically but tending towards lower energy positions.  
 
2 The Structure and Delivery of the Course  

 
Our course surveys the standard topics covered in an introductory MSE course. Approximately 
one broad topic is covered each week. There are two 80-minute class periods on Tuesdays and 
Thursdays and one 50-minute TA section on Mondays. Over the course of the design, we have 
authored our own interactive textbook hosted on a website2 designed and created by the first 
author which can contain interactive models, diagrams, and questions for students to answer 
within the website. Before each class, students are assigned pre-lecture exercises that typically 
take between 30-60 minutes. These pre-lecture questions usually consist of interacting with one 
or more computational models and answering questions. Tuesday and Thursday class periods 
usually consist of three segments of 20-30 minutes: a lecture on the topics covered in pre-lecture 
exercises, an active-learning period in which students explore another model and answer 
questions on the website, and a final short lecture on the topics covered.  
 
2.1 The MSE Topics Covered  

 
Table 1 lists the main modules of the course and the computational techniques used in them. 
Brief conceptual descriptions of these modeling techniques are included in Appendix 1. There 
are a few topics covered in the course which currently do not have computational models 
accompanying them: composite materials, biomaterials, materials selection, and broader impacts.  
 
Table 1: List of topics and the computational techniques used to model them. 

 
 
 
 

 
2 https://www.morfli.com/ - if the full course is unavailable at the time of reading, contact the first author for access.  

Module Computational technique(s) 

Interatomic potentials and bonding  MD (molecular dynamics) 

Crystal structure  MD 

Energy of Point defects MD  

Diffusion Random walk 

Energy Distributions and Vacancy Concentrations MC (Monte Carlo) on lattice 

Polymer structure Random walk  

Phase diagrams  MC 

Mechanical properties (including dislocations) MD 

Electronic properties – metals & semiconductors MD 

https://www.morfli.com/


3 Example Units 
 

Due to space constraints, the entirety of even a single unit cannot be fully described in this paper. 
Instead, the focus will be on describing the computational models used in each unit and the 
activities students engage in using the models. Appendices 2 and 3 include the complete text of 
the questions students answer in these units. It should be assumed that there is some amount of 
lecture and explanation following each student activity with a model.  
 
3.1 Atomic Bonding to Crystal Structure  

 
Atomic bonding and crystal structure are covered in three chapters in our text: (1) Atomic 
Bonding, (2) Modeling Interatomic and Intermolecular Interactions, and (3) Bonding to Crystal 
Structure. Our Atomic Bonding chapter begins with an exploration of a model of just two atoms. 
The student can click and drag the atoms around in 2D and see how they interact. They discover 
that the atoms do not interact at large distances, attract at short distances, and repel at very short 
distances. These three facts are then labeled “the atomic hypothesis”. In the words of Richard 
Feynman: “the atomic hypothesis [is] that all things are made of atoms—little particles that move 
around in perpetual motion, attracting each other when they are a little distance apart, but 
repelling upon being squeezed into one another” [40]. These facts need to be explained. To this 
end, the chapter introduces the electrostatic interpretation of atomic bonding [41]. This 
interpretation of the bond emphasizes three key similarities of all bonds, including secondary 
bonds. First, it is the attraction between the nuclei and electrons of different atoms that cause 
bonding. Second, this attraction leads to increased electron density between the nuclei of two 
bonded atoms compared to their unbonded state. One could perhaps even say that the increased 
electron density between the nuclei of bonded atoms is the bond. Third, if the atoms are squeezed 
too close together, the repulsion between the nuclei push the atoms apart.3 This approach to 
conceptualizing bonding has been recommended by a number of chemistry education researchers 
because it explains why atoms bond in terms of fundamental physical forces, instead of heuristics 
like the octet rule, and unifies all the bond types under one overarching physical explanation 
[42], [43], [44].  
 
This is not the approach taken in the most popular MSE textbook [12] which explains primary 
bonds as arising “from the tendency of the atoms to assume stable electron structures, like those 
of the inert gases, by completely filling the outermost electron shell” while, in contrast, 
“secondary or physical forces and energies are also found in many solid materials; they are 
weaker than the primary ones.” This explanation makes it sound like primary bonds are not due 
to physical forces! In reality, the reason a full valence shell is stable is because the valence 
electrons feel a strong attractive force from the nucleus while additional electrons only feel a 
much weaker force due to a combination of (1) shielding from the valence (and core) electrons 
and (2) necessarily being further from the nucleus since the valence shell is filled. [12] goes on to 
explain ionic and secondary bonding as being the result of coulombic attraction, but covalent 
bonding is not described as being due to any forces at all, and metallic bonding is described as a 

 
3 The reason that repulsion is only described as between nuclei and not between the electrons of each atom is 
because electrons, being so much less massive than nuclei, move approximately instantaneously compared to the 
movement of the nuclei. When the atoms are squeezed together, the electrons will rearrange themselves to be in 
equilibrium within the whole system while the nuclei are still repelling each other [41]. 



sea of electrons being the “glue” that holds the ionic cores together, without explaining what 
physical force makes the electrons glue-like. These types of explanation are still common in 
chemistry education as well despite extensive chemistry education literature documenting the 
conceptual issues arising for students who are taught bonding in this way [45], [46]. 
 
In the electrostatic interpretation of bonding, all the bond types are due to increased electron 
density between nuclei but differ in how the increased electron density is distributed. For 
covalent bonds, it is approximately equally distributed between them. For ionic bonds, it is much 
denser near the more electronegative atom. For metallic bonds, it is spread out between each 
nucleus and all of its neighboring nuclei, rather than localized between just two nuclei. Figure 
1A illustrates the difference between covalent and ionic bonds from this perspective. For 
secondary bonds, since the valence shells are full, the electrons of each atom cannot approach 
very close to the other nucleus. Nevertheless, the electron density of the full valence shells can 
shift slightly in between the nuclei, resulting in weak bonds. These types of bonds are illustrated 
in Figure 1B.  
 
Next, our Modeling Interatomic and Intermolecular Interactions chapter introduces interatomic 
potentials. It begins with a review of the concepts of force and potential energy in the context of 
a spring. Students are then given a model in which they can draw a potential energy curve 
between two atoms and drag the atoms to start at different distances and then see how the atoms 
move as a result. They are first asked to draw a spring-like potential and then to draw a potential 
that will result in behavior consistent with what we know about atoms: effectively no interaction 
at large distances, attraction at short distances, and repulsion at very short distances. The 
interface with examples of both these drawings is shown in Figure 2. This corresponds to an 
exploration phase in the learning cycle [47], [48], [49].  
 
 

 
 
Figure 1: (A) Cartoon illustration of electron density shift in a pure covalent bond between two oxygen atoms 
and a highly ionic bond between a sodium and chlorine atom. Zeff is the effective nuclear charge that valence 
electrons feel based on the attraction to the nucleus and the repulsion from non-valence electrons. More 
electronegative atoms have a higher Zeff. The Zeff values shown here are very rough approximations as the reality 
is more complex than a simple canceling out of charges from the nucleus and core electrons. (B) Even with noble 
gasses that have full valence shells, the electron density can shift slightly, resulting in weak bonds between atoms. 
This means that despite full valence shells, an electron near a noble gas still feels a slight attraction towards its 
nucleus. Since these bonds are so weak, noble gases only form liquids and solids at extremely low temperatures. 

 



 
After the exploration phase, students are introduced to the Lennard-Jones potential as a 
mathematical and graphical representation of interatomic potentials, and they answer a number 
of questions about it. Next, they interact with a simple molecular dynamics model of two atoms 
in one dimension interacting according to the Lennard-Jones potential. Students can change the 
parameters of the potential, drag one of the atoms to different starting positions, and initialize the 
atom with different amounts of kinetic energy. The model is similar to the one shown in  
Figure 2B except that the potential is drawn for the student according the Lennard-Jones 
potential. Students use this model to answer a number of questions about the potential, kinetic, 
and total energies of the atoms in different initial conditions and under what conditions the bond 
will break. In contrast to our approach, the most popular MSE textbook introduces interatomic 
potentials before discussing bond types and then only explicitly discusses them in the context of 
ionic bonds [12]. The static diagrams in a textbook also cannot convey the dynamic nature of 
bonded atoms, i.e., that they are constantly oscillating around the equilibrium bond position 
(unless they are at absolute zero). 
 
In the following chapter, students interact with MD models of many atoms interacting in two 
dimensions. Crystal structures emerge from these models as shown in Figure 3. These crystal 
structures are not explicitly encoded anywhere in these models. Atoms simply follow Newton’s 
laws, accelerating due to interatomic forces, and crystal structures emerge as the equilibrium 
structures. The chapter also discusses the limitations of these models including that they cannot 
produce non-close packed crystal structure without significant modifications to the code to deal 
with directional bonds. To our knowledge, this is a novel approach to introducing crystal 
structure in that we first have students “discover” that crystals emerge from simple models of 
interatomic forces and only then introduce the ways to characterize and describe crystal 
structures. This focus on emergence helps connect crystal structure back to the basic physics 
principles underlying MD models and the ideas of bonding and interatomic potentials introduced 
in the previous chapters.  
 

 

 
Figure 2: Interface for drawing an interatomic potential and seeing the dynamics of the atoms. Left: A spring-like 
potential results in a symmetrical oscillation as seen in the "x position vs time" graph. Right: an interatomic 
potential results in an oscillation that spends more time far from the equilibrium distance because of its 
asymmetry. 
 



 
 
3.2 Diffusion  

 
Diffusion is covered in a single chapter in our text which begins with some history: the discovery 
of Brownian motion in 1827, then Einstein’s paper in 1905 explaining it as a result of random 
movement of atoms, and finally Jean Bapitiste Perrin’s experimental confirmation of Einstein’s 
predictions in 1909. This history is interesting in part because there were still prominent 
scientists in 1905 who did not think atoms existed, but Einstein’s explanation of Brownian 
motion provided extremely strong evidence for their reality. The unit presents traces of the 
random paths of colloidal particles taken from Perrin’s paper [50], and then shows a molecular 
dynamics simulation with one atom tracing its path to show that this type of random motion 
emerges naturally, as shown in Figure 4A. This is used to justify the random walk model: given 
that each atom follows what looks like a random path, we can drastically simplify our model by 
ignoring all the Newtonian physics and instead modeling each atom as simply taking a step in a 
random direction each time step, as shown in Figure 4B. 
 
Students then explore a random walk model with thousands of atoms to explore how 
concentration profiles emerge from many random walkers. Using the model, shown in Figure 5, 
students can draw concentration profiles which causes atoms to populate according to that 
concentration. They can then run the random-walk model and see how the concentration profile 
evolves. Next, students are introduced to diffusion mechanisms in solids and explore one model 
of vacancy-mediated diffusion and one of interstitial diffusion, shown in Figure 6.  
 

Figure 3: (A): Emergent 
close-packed hexagonal 
crystal structure from atoms 
interacting according to 
Lennard-Jones potential. (B): 
Emergent rock-salt crystal 
structure from cations and 
anions interacting according to 
an interatomic potential with 
an ionic attraction/repulsion 
term.   
 



 
The next section of the unit helps students to understand why the macro-level concentration 
profile dynamics they observed in the previous models emerge from random walk. This entails a 
qualitative derivation of Fick’s laws of diffusion starting from a random walk. The students are 

 

 
Figure 4: (A) A Molecular 
dynamics simulation with one 
atom colored green and 
tracing its trajectory, which 
results in what looks like 
moving in fairly straight lines 
with periodic random changes 
in direction. (B) A random 
walk model in which the atom 
turns a random direction and 
takes a step forward each time 
step. 
 
 
 

 

Figure 5: Students are able to 
click and draw a concentration 
profile (grey line) and the 
concentration of atoms (blue 
circles) is updated 
accordingly. Left: right after 
drawing a concentration 
profile with high concentration 
near the edges and zero 
concentration in the middle. 
Right: The same model after 
running it for several time 
steps. The graph above the 
atomic view shows the initial 
concentration profile with the 
grey line and the current 
concentration profile with blue 
bars. 

 

Figure 6: (A) Random-walk 
model of vacancy-mediated 
diffusion. (B) Random-walk 
model of interstitial diffusion. 
The yellow dots are interstitial 
atoms and the blue lattice 
atoms are just for 
visualization.  



given the diagram shown in Figure 7 and are first asked to fill in the black boxes with the 
expected number of atoms jumping in each direction and the blue boxes with the resulting 
expected flux between columns. They are instructed to explain what feature of the concentration 
profile determines the flux (the slope) and then to try to invent a mathematical rule for what the 
flux will be at each position. After spending a few minutes on this, they are shown the standard 
answer, which is Fick’s 1st Law.4 We ask students to first try to invent an equation before 
introducing Fick’s 1st Law based on research that when students first try to invent a mathematical 
formula, it prepares them better for future learning [51].  
 
This process is then repeated for Fick’s 2nd law. The students first fill in the green boxes shown 
in Figure 7 with the expected concentration change at each x-position based on the fluxes in/out 
of that position. Then they are asked to explain in words what determines the rate of change in 
concentration at each position. Finally, they are asked to invent a mathematical rule for the rate 
of change of concentration after which they are shown Fick’s 2nd law.5 After these derivations, 
students are given some questions to qualitatively predict how concentration profiles will change 
over time and some quantitative questions using the mathematical form of Fick’s laws.  
 
Apart from the interactive models which support active learning, this approach to diffusion at the 
introductory MSE level differs from the traditional approach [12] in two important ways. First, 
we spend more time justifying and exploring the random walk model, including introducing 
NetLogo code for it. This is important for students to develop a clear understanding of the 
atomic-level behavior and avoid the misconception that individual atoms move deterministically 
from areas of high concentration to low concentration [52]. Second, we have students 
qualitatively derive Fick’s laws instead of simply introducing them without any derivation. This 
aids in conceptually understanding Fick’s laws and in connecting them with the underlying 
atomic behavior from which they emerge.  
 
 
 

 
4 Fick’s 1st law is: 𝐽(𝑥) = 𝐷 #$

#%
, where J(x) is the flux at position x, D is the diffusion coefficient, and 

𝑑𝐶

𝑑𝑥
 is the spatial 

derivative of concentration with respect to x. 
5 Fick’s 2nd law is: )$
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= 𝐷 )!$
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 is the partial derivative of concentration with respect to time, D is the 

diffusion coefficient, and 
𝜕2𝐶

𝜕𝑥2
 is the second spatial derivative of concentration with respect to x. 



 
 
Figure 7: Students were given the graph on the left to qualitatively derive Fick’s Laws and then produce a graph 
like the one on the right. Each yellow circle represents a diffusing atom at a certain x position. Each atom has a 
25% of jumping in either direction. Students first fill in the black boxes with the expected number of atoms that 
will jump from that column in the indicated direction. Next, they fill in the blue boxes with the expected net Flux 
across the dotted blue lines between each column (Fick’s 1st Law). Finally, they fill in the green boxes with the 
expected change in concentration at each x-position (Fick’s 2nd Law). The first few boxes are filled in with the 
correct numbers for illustration.  

 
 
4 Conclusion 

 
The educational potential of computational representations matches perfectly with the 
increasingly computational field of materials science and engineering. Atomistic computational 
modeling techniques are “one-to-many” [36], meaning that one modeling technique can address 
many MSE phenomena. This is because atomistic techniques are based on fairly basic atomic 
behavior from which larger-scale properties emerge. One-to-many models have advantages both 
scientifically and educationally. Scientifically, they enable the modeling of real complex 
materials without needing to make overly simplistic modeling assumptions. Educationally, they 
help students grasp the underlying mechanisms of MSE phenomena and connect them with more 
basic physical principles.  
 
Rather than being seen as advanced topics, computational techniques should be introduced at the 
introductory level—as presented in this paper—to help students develop conceptual 
understanding of MSE. With the right tools, such as NetLogo, computational models can be 
made easily interactive to engage students in active model-based learning, leading to 
understanding of many MSE topics from the perspective of emergence, starting with atomic 
behavior and ending with macro-level phenomena.  
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Appendix 1: The Computational Modeling Techniques 
 
Molecular Dynamics (MD) 
 
Molecular dynamics (MD) is the first atomistic modeling technique we will use in the course and 
the most frequent. In MD, atoms are modeled as Newtonian point masses. Since all the MD 
models used in the course are in two dimensions, the atoms in our MD models have a mass and 
four state variables: x position, y position, x velocity and y velocity. In an MD model, atoms 
exert forces on one another according to an interatomic potential/force function. The details of 
the interatomic potential depend on the atoms being modeled, but the general shape is always 
like that shown in Figure 8. The potential energy approaches zero at long distances, decreases to 
a minimum at a relatively short distance (the equilibrium distance), and then increases towards 
infinity if the atoms are squeezed together. Force is defined as the negative derivative of 
potential energy, with a positive force being repulsive and a negative force being attractive. So, 
the atoms feel a repulsive force when they are closer together than the equilibrium distance and 
an attractive force when they are further apart than equilibrium distance.   
 



 

Figure 8: An interatomic potential function plots 
the potential energy due to the interaction of two 
atoms as a function of their distance. It is defined 
such that potential energy is zero at infinite 
distances. The distance with minimum energy 
corresponds to the bond length at absolute zero. 
When atoms are further apart that this, they attract 
and when they are closer together, they repel. 
 

 
The interatomic potential is an abstraction, treating each atom as a unified whole. In reality, the 
protons and electrons in each atom interact with the electrons and protons in other atoms. The 
particles of opposite charge (protons in one atom and electrons in the other) attract and the same-
charged particles repel. At close distances, the repulsion is stronger than the attraction and atoms 
exert a net repulsive force on each other. At long distances the attraction is stronger than the 
repulsion and the atoms exert a net attractive force on each other. In most MD simulations these 
details are abstracted away, and atoms are treated as the fundamental entities of the model. 
The core of an MD model, from the perspective of an atom, consists of calculating the forces it 
feels from other atoms, accelerating, and then moving. This takes place in two steps: 

1. Each atom calculates the force it feels from all other atoms within a cutoff distance and 
sums them together. It then updates its velocity (i.e., it accelerates) based on this force. 

2. Then, each atom moves (updates its position) based on its velocity.  
 
Depending on the numerical integration scheme being used, these two steps might be done in the 
opposite order, but they are the two steps repeated every time step of the model.  
MD can be used to model many phenomena in MSE. For example, different phases of matter can 
emerge from MD simulations at different temperatures. The main downside of MD is that it is 
computationally very expensive. Conventional MD can only be used to model processes that take 
tens to hundreds of nanoseconds in the real world (Pierce et al., 2012). Perhaps surprisingly, this 
short time scale is still useful for modeling many phenomena, but some phenomena obviously 
require longer time scales. 
 
Monte Carlo (MC) 
 
Monte Carlo (MC) simulations enable modelling phenomena over longer time scales—up to 
seconds with certain techniques—by giving up some of the detail of MD. MC uses probabilistic 
algorithms that only deal with energy and position. As such, atoms in an MC simulation only 
have state variables pertaining to position, not velocity. The potential energy (PE) of atoms is 
calculated based on their distances from other atoms using interatomic potential functions like 



the one shown in Figure 8. Atoms make random moves probabilistically weighted by how they 
change PE.  
 
Two core insights underly MC simulations. First, when looked at over a long period of time, an 
atom is equally likely to be moving in any direction (assuming it is interacting with a lot of other 
atoms). This allows us to model the movements of atoms as taking steps in random directions. 
However, not every step is equally likely. The probability of a step depends on how it changes 
the potential energy (PE) of the system. The second core insight underlying atomistic MC 
simulations is that the kinetic energy (KE) of atoms in a real system follow a probability 
distribution, known as the Boltzmann distribution, of the form 𝑝(𝐸) ∝ exp	(− %

&'
), where p(E) is 

the probability of having KE equal to E, T is the temperature of the system, and k is Boltzmann’s 
constant. This distribution can be derived analytically, as Boltzmann did, and it also emerges 
from MD simulations. As atoms move around, energy is continuously converted between kinetic 
and potential energy (PE). An atom can increase its PE by giving up KE. For example, when an 
atom runs into another atom, it slows down, thereby losing KE, but gains PE.  

The general algorithm for an MC simulation is that each time step an atom: 
1. Calculates its current PE due to its interactions with other atoms (usually only those 

within a cutoff radius to reduce the number of calculations) 
2. Makes a random move (within one atomic radius of its current position). 
3. Calculates its PE in the new position. 
4. If the new PE is lower than the old PE à accept the new move 
5. If the new PE is higher than the old PE à accept the new move with a probability equal 

to exp	(− ∆%
&'
), where ∆𝐸 is the change in PE from the old to new position and the 

temperature, 𝑇, is an externally set parameter. This is the probability, from the Boltzmann 
distribution, that the atom would have enough kinetic energy to move to the new position 
of higher potential energy.  

 
MC simulations give the same spatial distribution of atomic positions over long time scales as 
MD simulations. This means that MC simulations can be used to simulate the equilibrium 
behavior of system, but they cannot be used to simulate the dynamics of how a system will 
change moment to moment over time.  
 
Random walk 
 
Random walk simulations can be viewed as a simple subset of MC simulations. In a random 
walk simulation, atoms are modeled as taking random steps, often on a lattice. In the simplest 
version, an atom is equally likely to move to any neighboring lattice site. In more complex 
versions, the probability of jumping to different directions or to certain types of lattice sites can 
be changed to model different material systems. Probability of jumps can also be weighted based 
on changes in PE as in Monte Carlo simulations.  
 
Appendix 2: Questions in the Bonding to Crystal Structure Chapters 
This appendix includes the exact text of the questions students answer in the chapters on atomic 
bonding, interatomic potentials, and the beginning of the crystal structure chapter summarized 
above in section 3.1.  



 
Questions students answer using a simple MD model of two atoms free to move in 2D which 
students can click and drag to rearrange in space:  
 

1. What happens when the atoms are placed far apart (greater than 10 atomic radii, 10r0, 
where r0 is half the diameter of the atom) and are initially not moving? 

2. What happens when the atoms are a small distance apart - perhaps closer than 3r0 apart - 
and not moving initially? 

3. What happens when the atoms are very close together, that is, the edges of the atoms are 
nearly touching? 

 
Questions students answer using a model that shows electron density shifting between two nuclei 
and the resulting net forces on the nuclei: 

1. How does the electron density of the atoms shift (the red cloud) as the atoms are brought 
closer together up until the overall interaction is balanced? 

2. Consider the charge present in the electron cloud and at the nucleus of the atom. Try to 
explain why the atoms attract each other when they are far apart, why they repel when 
they get very close, and why there is a distance when the overall interaction is balanced, 
i.e. the net force is zero. 

3. Based on the answers to the above questions, explain what an atomic bond is. 
 
 
Questions students answer using the model shown in Figure 2: 

1. First, construct a spring potential like that on the previous page (parabola). When you 
have one you like, click the export-sketch button and upload your sketch here (you can 
drag a file onto the "choose file" button or click it and find the file). Make some 
observations about how the atoms behaves in this potential. Which features does the 
spring model have that fits atomic hypothesis (Section 3.4)? What is it missing? Would 
this be a good model for simulating atomic bonding? 

2. Now, construct an interatomic potential that more accurately models the atomic 
hypothesis. When you have one you like, click the export-sketch button and upload your 
sketch here. Explain what the main difference is between your new potential and the 
spring potential? Make some observations about the atomic pair in this potential. 

 
 
Questions students answer using an interactive Desmos graph of the Lennard-Jones (LJ) 

potential along with its equation 𝑈)*(𝑟) = 4𝜖 67+
,
8
-.
− 7+

,
8
/
9: 

1. What happens to ULJ when you change 𝜖? What do you think we might be able to model 
in a two-atom system by changing 𝜖? 

2. What happens to ULJ when you change 𝜎? What do you think we might be able to model 
in a two-atom system by changing 𝜎? 

3. What happens to the interatomic potential energy as the distance between the atoms gets 
very large (𝑟 → ∞)? Show this mathematically. What does this value at 𝑈(𝑟 → ∞) mean? 

4. What happens to the interatomic potential energy ULJ as the distance between the atoms 
gets very small (𝑟 → 0)? What does this mean? 



5. The LJ potential (and indeed other interatomic potentials) are constructed such that the 
potential energy is positive at short distances at very short interatomic separation 
distances	𝑟,	becomes	negative	as	𝑟	increases	and	reaches	a	minimum.	Then,	it	
increases	and	approaches	zero	at	𝑟 → ∞.	What	does	the	value	of	the	negative	
potential	energy	minimum	𝑈0 = |𝑈(𝑟 = 𝑟0|	represent?  

6. Find the general expression for the distance at which the potential energy is minimized. 
We call this the equilibrium bond distance 𝑟0, and it is the point of at which net force in 
the system is zero 𝐹 = 0. 

 
Questions students answer using a simple MD model of two atoms interacting according to the 
LJ potential in 1D. This model is similar to the one shown in Figure 2, but the potential is 
provided and students can vary the parameters of the LJ potential as well as the initial kinetic 
energy of the atoms and click and drag one of the atoms to different positions. 

1. In previous sections, we've modeled interatomic potentials with a parabolic spring 
potential and a sketched potential. In this section, we'll use the Lennard-Jones equation 
Eq. 4.5.1 to model the interatomic interactions. Of course, to make this happen, we need 
to change the code! Take a look at Line 131 in NetLogo model 4.6.1 under NetLogo 
Code. This line asks NetLogo to report the force acting between that atoms at the so the 
code will accelerate the atom appropriately during the next tick. Does this line of code 
make sense based on your understanding of the interatomic force from the Lennard-Jones 
potential? Explain. 

2. Set the initial kinetic energy initial-KE to zero and click the setup and go buttons. The red 
atom is originally positioned at equilibrium. What does it do? Why? What happens to the 
plots of kinetic and potential energy vs time as when you move the atom? 

3. Now, let the atom go. Explain why the atom moves the way it does. Explain why the 
energy plots show what they show. You may want to slow the model speed down to 
observe this better. 

 
 
Questions students answer using the model shown in Figure 3A: 

1. Create a mental model of three atoms (represent them with circles) occupying a two-
dimensional plane. Imagine that these atoms interact with each other according to a 
Lennard-Jones potential. First draw the atoms at an "initial" state in which they're 
positioned at the vertices of an equilateral triangle with sides of length 𝑙 = 4𝑟0, where 𝑟0 
is the equilibrium bond distance. Then, sketch how you think the atoms will be positioned 
over some time ∆𝑡 later at which they've reached "equilibrium". Sketch the atoms in their 
final equilibrium position. Upload your sketches with a short explanation of your 
reasoning. 

2. Use the NetLogo model to validate your sketch. Make sure that settings are on the 
default: 

a. num-atoms is set to 3 
b. initial-config is set to "Random" 
c. Constant temp is enabled. 
d. temp is set to 0.1 



e. First, set go-mode is set to "drag atoms" and press go. Arrange the atoms as you'd 
like. 

f. Then, go-mode to "simulate" and press go. 

Watch the system equilibrate. Describe the results. Do your results agree with your 
predictions above? (If they don't, explain why you see what you see now.) 

Try this a few times with different initial configurations. Do you ever get any variation in 
your configuration - or is it always the same? 

3. Repeat the previous question for 4, 6, and 30 atoms. For simulations of 4 and 6, you'll 
want to drag atoms so that they are close enough to “feel” each other. For 30 atoms, you 
can just run the simulation. What arrangements do you observe for each? Include the 
images and describe. For simulations of 3, 4, and 6 atoms, count the total number of 
bonds in each atomic assembly. 

Upload a single image showing these configurations (you can screenshot each and put 
them into a single image), with all the bonds indicated. 

4. Comment on the trends you observed in the previous question. What patterns arise from 
these simulations? What can you say about the number of bonds formed in each 
configuration? Did you observe anything for very large assembles that differed from 
smaller ones? 

 

Appendix 3: Questions in the Diffusion Chapter 
 
This appendix includes the exact text of the questions students answer in the chapter on diffusion 
summarized above in section 3.2.  
 
Question students answer using the model shown in Figure 4A: 

1. Watch the green atom move around at a temperature of temp = 5. 
a. Describe its motion. 
b. Why does it change direction and velocity? 
c. Does it look like it is equally likely to move in all directions? (look at the graph as 

well) 
 
Questions students answer using the random walk model shown in Figure 5: 

1. What happens to the concentration profile at short times (10s of ticks)? (You may want to 
slow down the model for this.) 
 
How about long times (100s of ticks)? Should the long-term behavior depend on the 
initial concentration profile? Why or why not? Note - the edges (far left and far right) of 
the world are "closed". An atom will not pass over the edge of the world. 
 



2. Try drawing different profiles with different types of shapes using the draw-profile 
button. Drag your mouse across the world to define concentrations in different regions. 
Try a number of different shapes. 
 
Which regions of your concentration profile change the fastest? Which change the 
slowest? (You may want to slow down the model in this case) 
 

3. Using the random walk model, try to explain the behavior you observed in the previous 
question - that is, why might some regions change faster than others? 

 
 
Questions using a figure similar to the one shown in Figure 7 but with only the black and blue 
squares: 

1. Fill in all the boxes following the example for columns 1 and 2: 
a. In the black boxes, fill in the number of atoms expected to jump from the one 

column to the other. Assume that atoms have a 25% of jumping in either direction 
(unless they are at an edge, in which they can't jump in the direction of the edge). 
Note - you are allowed to have fractional atoms jump in this model, which has 
small number of atoms - in real systems there would be moles of atoms jumping 
around with some statistical probability. 

b. In the blue boxes, fill in the expected flux, i.e. how many net atoms will pass 
through the blue dotted line for the tick. If an equal number of atoms pass through 
in each direction, the net number of atoms passing through is zero (as shown in 
the example). Define atoms jumping from left to right as positive and those 
jumping right to left as negative. So, if more atoms are jumping through the line 
from the right than the left, the flux will be negative. 

c. In the written portion of your submission, explain in words what feature of the 
concentration profile determines the flux. 

2. Based on your result in the previous problem, try to come up with a mathematical rule for 
what the flux will be at each point. Take 5 minutes to try to come up with something 
reasonable. 

a. It is okay if you feel stumped. Just do your best to invent and submit something 
reasonable. You'll then be able to see the canonical equation. The point of this 
activity is to help you practice developing mathematical models, regardless of 
whether you reinvent the exact traditional equation. 

b. Use J(x) to represent flux at a given position. (In our discrete case, flux is only 
defined at values 1.5, 2.5, 3.5, ...) 

c. Make sure to define the other variables you use! 
 
 
Questions using a figure similar to the one shown in Figure 7 but with the blue squares filled in 
and the green ones empty: 

1. Fill in the green boxes with expected change in concentration at each x position based on 
the net flux of atoms at that position. Then, sketch a line on the graph indicating the new 
concentration. Upload the file. 



In the written portion of the submission, explain what determines what the change in 
concentration will be at any given point. 

2. Try to come up with a mathematical rule for what rate of change 12
!$

 in concentration will 
be at each x position. 

a. Again, the point of this activity is intended to help you practice developing 
mathematical models, regardless of whether you reinvent the traditional equation. 
So, do your best but don't worry so much about getting it "right." 

b. Even though we are currently using a discrete representation, use 12
!$

  to represent 
rate of change in concentration at a given x position. In the answer, we will be 
extending to the continuous case. 

c. Make sure to define the other variables you use! 
 


