
Paper ID #42772

Differences in Attitudes and Self-efficacy Toward Programming of Students
in Mechanical and Industrial Engineering Programs

Xinyi Ma, University of Toronto

Xinyi Ma is a graduate student researcher at University of Toronto in the Department of Mechanical
and Industrial Engineering, supervised by Prof. Janet Lam. Her research interest is student experience
in engineering education. Xinyi holds an Honours Bachelor of Science in Statistics with a minor in
Computer Science from University of Toronto.

Janet Lam, University of Toronto

Janet Lam is an Assistant Professor, Teaching Stream in operations research with the Department of
Mechanical and Industrial Engineering.

She has been working in the field of maintenance optimization since 2008, with an emphasis on optimal
scheduling of inspections for condition-based maintenance. Janet served as a research associate at the
Centre for Maintenance Optimization and Reliability Engineering (C-MORE) applying academic research
directly with industry partners, including those in mining, utilities, transportation, and the military. Janet
has a track record of cultivating strong relationships with industry partners and developing maintenance
engineering resources that are both useful and current.

She is also a respected engineering educator with more than 10 years of teaching undergraduate, graduate,
and professional students. She was a Teaching Specialist for first year engineering students at Michigan
State University from 2016 to 2017. She is a Fellow of the National Effective Teaching Institute and a
Runner-Up Best Upper Year Instructor in the Skule Student Choice awards 2020-2021.

Janet received her Ph.D. in Industrial Engineering at the University of Toronto.

©American Society for Engineering Education, 2024

Work in Progress: Differences in Attitudes and Self-efficacy
toward Programming of Students

in Mechanical and Industrial Engineering Programs

This WIP research stems from the significance of computer programming nowadays and
explores the subjective perspectives and experiences about programming. In the context of a
third-year quality control course with a computing lab component involving both mechanical and
industrial engineering students, we aim to answer the following research questions: (1) How do
differences in the programs’ curricula impact students’ attitudes and self-efficacy toward
programming? (2) How do the computing lab activities affect the students’ attitudes and self-
efficacy toward programming? Three surveys are distributed across the semester, collecting
students’ programming backgrounds, perceived interests, usefulness, and self-efficacy, along
with their engagement with lab activities. Initial findings indicate that industrial engineering
students have more positive attitudes and higher confidence toward programming compared to
mechanical engineering students. Future research will further investigate this question with the
following survey responses and seek to understand the influence of programming lab activities
on students’ programming experiences.

Keywords: programming, attitudes, self-efficacy, mechanical engineering, industrial engineering

Introduction

As computer programming has been widely used in both academic research and industrial
practice, the skill is becoming increasingly important in engineering education. According to A.
Bandura, self-efficacy accurately predicts both subsequent behaviors and outcomes [1], and self-
efficacy toward programming could reflect confidence in performing tasks such as understanding
the logical structures, solving problems through programming, and debugging [2], [3].
Meanwhile, attitudes also play an important role in students’ learning outcomes, and computer
programming attitudes could include different dimensions like programming interest and mindset
in various relevant scales [4], [5].

Several studies have investigated students’ attitudes and self-efficacy towards programming,
concluding a positive relationship between programming attitudes and self-efficacy, with
explorations in gender, learning style, and programming experience factors in attitudes and self-
efficacy, while they focused on students in computer science and engineering majors [6] - [8].
Looking at studies conducted in courses with programming components intended for general
engineering students, Ronan and Erdil researched whether a first-year rotation-based survey
course introducing various computer science and engineering topics would impact attitudes and
beliefs about computing of students but found no significant differences [9]. Meanwhile, a
second-year course including three computational projects using scaffolding pedagogy led to
positive changes in programming self-efficacy for biomedical and agricultural engineering
undergraduates, while the results in other aspects like interest, anxiety, and mindset are mixed
[10]. In another study, a significant positive change in attitudes in an introductory programming
course for students from non-programming majors was observed, as they encouraged students to
work on coding scenarios in peer group activities [11]. Also, as students from several
engineering streams excluding software and electrical engineering were surveyed, it was found

perceived usefulness of programming plays an important role in students’ intention to take
programming classes in college [12].

While these studies provide important insights into programming attitudes and self-efficacy, they
do not address the potential differences between students from various engineering streams
created by the different curricula. There have been proposals to integrate computational
components through successive engineering curricula, strengthening the students’ programming
skills applicable to specific disciplines [13]. Shiavi and Brodersen also explored students’
preferences for instructional modes in an introductory computing course and discovered they
prefer laboratory over lecture and consider laboratory settings useful especially when learning
more challenging themes [14]. In this project, we will compare the attitudes and self-efficacy
toward programming of mechanical and industrial engineering students and analyze how the
curricula of the two streams prepare students for programming mentally and emotionally. The
research questions are: (1) How do differences in mechanical and industrial engineering curricula
impact students’ attitudes and self-efficacy toward programming? (2) How do the computing lab
activities affect the students’ attitudes and self-efficacy toward programming?

Methodology

Context and Participants

The study is conducted in a third-year quality control course at the University of Toronto. This
course is a required core course for industrial engineering students, and a technical elective under
the manufacturing stream for mechanical engineering students, while it could also be taken by
students in other engineering streams as an elective. There are 114 industrial engineering
students and a total of 58 mechanical and other engineering students enrolled in the course in the
winter 2024 term. The course components for industrial and mechanical engineering students are
different: while both groups have weekly 3-hour lectures, mechanical students have 3-hour labs,
and industrial students have 1-hour labs and 2-hour tutorials. The contents covered in those
sections are the same, but students have access to the school computers during computing labs
while they have to bring their own laptops for tutorials as these sessions are in regular
classrooms. However, since most students have their laptops and use them in the practical
sessions, the difference in settings might not be the main influence factor. The computing labs,
which are referred to as Tutorilabs in this course, cover basic data analytics skills using Python,
with an emphasis on data manipulation and visualization to solve practical problems using
common packages such as NumPy, Pandas, and Matplotlib.

Students in both majors have taken the same required courses in their first year, including a
course introducing computer programming fundamentals. The industrial engineering curriculum
includes core courses on object-oriented programming, data science, and data structures and
algorithms, while there are no such requirements in the mechanical engineering curriculum.
Therefore, we suppose industrial engineering students generally have more programming
experience than mechanical engineering students prior to this course, though more previous
exposure does not necessarily lead to more positive attitudes and higher self-efficacy toward
programming.

Data Collection

Data are collected through three surveys distributed in the first week of the course, the week after
midterm in early March when students have attended 5 out of 10 labs, and at the end of the
semester by April 2024. The first survey asks about students’ programming background, which
they select from a list of programming languages and environments they have been exposed to.
Then they rate their interest in programming, their perceived usefulness of programming, and
their self-confidence about programming on a 5-point Likert scale. In the midterm and final
surveys, we also include questions about students’ engagement in lab activities, asking how the
lab activities help them in the course assessments, how the courses they have taken prepare them
for the programming tasks, and their perceived performance for the course besides questions
about attitudes and self-efficacy, to further understand the role of previous and current courses in
students’ development of mental and emotional view toward computer programming.

Questions in the first survey are as follows:

1. Please indicate your previous exposure to programming (select one or more items you
have experience with from the list):

• Python
• R
• Java
• MATLAB
• C
• JupyterHub
• GitHub
• Other (Text input)

2. How would you rate your interest towards programming?
1 – Not At All Interested 2 – Not Interested 3 – Neutral 4 – Interested
5 – Extremely Interested

3. Do you think programming is useful for your future studies/career?
1 – Not At All Useful 2 – Not Useful 3 – Neutral 4 – Useful 5 – Very Useful

4. Comparing to your peers, how would you rate your programming abilities?
1 – Significantly Below Average 2 – Below Average 3 – Average 4 – Above Average
5 – Significantly Above Average

Questions in the mid-term and end-of-course surveys are as follows:

1. How much have you attended the Tutorilab sessions or made use of the Tutorilab files?
1 – Not At All (skip Q2 if this option is selected) 2 – A little 3 – Some 4 – Much
5 – Very Much

2. How much have the Tutorilab activities prepare you for relevant assessments for this
course?
1 – Not At All 2 – A little 3 – Some 4 – Much 5 – Very Much

3. How much have the previous courses you have taken prepared you for the programming
components of assessments?
1 – Not At All 2 – A little 3 – Some 4 – Much 5 – Very Much

4. Which course have you taken best prepared you for the programming components of
assessments? (Text input for the course code)

5. How would you rate your interest towards programming?
1 – Not At All Interested 2 – Not Interested 3 – Neutral 4 – Interested
5 – Extremely Interested

6. Do you think programming is useful for your future studies/career?
1 – Not At All Useful 2 – Not Useful 3 – Neutral 4 – Useful 5 – Very Useful

7. Comparing to your peers, how would you rate your programming abilities?
1 – Significantly Below Average 2 – Below Average 3 – Average 4 – Above Average
5 – Significantly Above Average

8. What is your expected score for this course?
90-100 80-89 70-79 60-69 50-59 0-49

As our research focuses on the cognitive perspective rather than programming ability, we do not
collect students’ real grades for this course. Instead, we ask for their expected score for this
course at mid and end of the term and match this perceived performance with their other
responses. The data collection methodology has been approved by the Research Ethics Board
(REB) at the University of Toronto.

The first survey has a total of N = 83 responses, where 47 are industrial engineering students, 23
are mechanical engineering students, and there are also 12 materials science engineering students
and 1 chemical engineering student included in the responses. Due to the smaller sample sizes of
materials science and chemical engineering student groups, only industrial and mechanical
engineering groups are included in the statistical analysis, while the exploratory data analysis
includes the distribution of students from all 4 streams to show some side findings in addition to
the main research questions.

Analysis

Welch’s t-test is used to compare differences in the perceived mean levels of programming
interest, usefulness, and efficacy between mechanical and industrial engineering students, which
is more robust to sample size and variance differences between the two groups compared to the
Student’s t-test [15]. While nonparametric tests such as the Mann-Whitney U test could be used
for ordinal data from Likert scales, it is still suggested to apply parametric tests if both groups
have sample sizes larger than n=15 even when some test assumptions are not met [16].

When data collection from the mid-term and end-of-course surveys are completed, we propose to
use two-way mixed ANOVA to measure how the two groups of students’ programming attitudes
and self-efficacy evolve over the semester. Ordinal logistic regression might also be conducted to
take more factors that could affect attitudes and efficacy levels into account. Besides, qualitative
analysis will also be performed on the courses they have taken and the courses they think that
have prepared them for the lab activities to provide additional information on the findings.

Results

According to the survey data, previous exposure to Python and MATLAB is rather high in all
students, while exposure to other programming languages or environments (R, Java, C,
JupyterHub, GitHub) is much higher among industrial engineering students than other

engineering students. The results are expected as the industrial engineering program requires
more programming-related courses than the other three programs, providing them with
opportunities to work with a wider range of programming tools. While this course mainly uses
Python, the background differences could still affect students’ general programming attitudes.

Industrial engineering students are generally interested in programming, and mechanical and
materials science students are closer to the neutral level of interest. Students in all groups
acknowledge that programming is useful for their future studies and careers, while the mean and
median levels are still higher among industrial engineering students than students from other
streams. The median self-efficacy ratings for these groups of students are all around average, but
the mean levels indicate more confidence in industrial engineering students than in the two
groups. Variance differences across groups are not huge and are not an influencing factor in
Welch’s t-test.

Table 1.
Descriptive statistics of perceived programming interest, usefulness, and self-efficacy for
industrial, mechanical, materials science, and chemical engineering students
Items Interest Usefulness Self-Efficacy
Programs Median Mean Var Median Mean Var Median Mean Var
Industrial
(n=47)

4.00 3.96 0.93 5.00 4.62 0.36 3.00 3.32 0.73

Mechanical
(n=23)

3.00 3.30 0.65 4.00 3.91 0.95 3.00 2.74 0.54

Materials
Science
(n=12)

3.50 3.08 1.24 4.00 4.00 0.33 3.00 2.58 0.58

Chemical
(n=1)

4.00 4.00 0.00 4.00 4.00 0.00 2.00 2.00 0.00

Note: There is only 1 student response from chemical engineering, so the above statistics for the
group only reflect the answer of this student.

Then, we apply Welch’s t-test with the hypotheses 𝐻!: The mean levels of programming interest,
usefulness, and self-efficacy of mechanical and industrial engineering students are the same
respectively, and 𝐻": The mean levels of programming interest, usefulness, and self-efficacy of
mechanical and industrial engineering students are different.

As p-values for each of the Welch’s t-tests for interest, usefulness, and self-efficacy are smaller
than the significance level .05 (and are all below .01), we would reject the null hypotheses.
Results have indicated statistically significant differences between mean levels of programming
interest, usefulness, and self-efficacy between the two groups of mechanical and industrial
engineering students.

Table 2.
Welch’s t-test results summary table for mean levels of programming interest, usefulness, and
self-efficacy of students in mechanical and industrial engineering programs

Items Interest** Usefulness** Self-Efficacy**
Values Test

Statistic
P-
value

Df Test
Statistic

P-
value

Df Test
Statistic

P-
value

Df

2.930 0.005 51.220 3.116 0.004 30.323 2.886 0.006 49.616
Note: *P < 0.05, **P < 0.01.

Discussion

The initial findings have provided some insights into our first research question, as there are
differences in mechanical and industrial engineering students’ attitudes and self-efficacy toward
programming, where industrial students perceive higher interest, usefulness, and confidence
toward programming compared to mechanical students, which could be influenced by the
programs’ curricula. We will dive deeper into this question with data from the following two
surveys. Meanwhile, with responses about their engagements in lab activities, we seek to learn
the effect of computing lab on their programming affection, motivation, and perceived
confidence. In the context of this specific course with connections to their previous courses, we
hope to gain more understanding of engineering curricula’ influence on students’ perspective of
computer programming.

These results would first be useful for engineering educators at the University of Toronto.
Mechanical and industrial engineering have been two engineering streams under the same
department, and while the two programs have very different curricula from the second year,
some instructors in the upper years do not fully recognize variations between these two groups.
With more knowledge of the student population, educators could provide help to students more
accordingly when the two groups are mixed in a course. The course studied will be discontinued
as a required course for industrial engineering students starting from next year, and the two
sections will be combined with students from both streams taking it as a technical elective. In
such kind of case, it will be difficult for the instructors and teaching assistants to efficiently lead
mixed sessions with students of various backgrounds and skill levels, as pace differences
between the industrial and mechanical sections are already starting to show during the first
weeks of the course. We hope our research throughout the semester can assist in the transit and
provide information for similar engineering courses with a diverse student body.

From a more general perspective, while curricula of different engineering streams need to focus
on the specific field and it is not realistic to require all engineering students to take numerous
programming-related courses, incorporating programming components applicable to the subject
would be beneficial, as Raubenheimer et al has mentioned in their work [13]. Tasks like data
analyzing and visualizing are inevitable in most engineering fields, and the relevant preparations
in undergraduate courses not only expose them to programming skills but might also help them
build up interest and confidence.

Finally, while we encourage participation through various methods, we could not get responses
from all students registered in the course, and we expect the final sample size of three matched
data sets to be lower than the N = 83 we have now. This would be a limitation for our project,
and we hope future work would be conducted in a larger quantity and also include students from
more engineering streams.

References

[1] A. Bandura, “Self-efficacy: toward a unifying theory of behavioral change,” Psychological

Review, vol. 84, no. 2, pp. 191–215, 1977.
[2] M.-J. Tsai, C.-Y. Wang, and P.-F. Hsu, “Developing the Computer Programming Self-

Efficacy Scale for computer literacy education,” Journal of Educational Computing
Research, vol. 56, no. 8, pp. 1345–1360, 2019.

[3] M. J. Scott and G. Ghinea, “Measuring enrichment: The assembly and validation of an
instrument to assess student self-beliefs in CS1,” in Proceedings of the tenth annual
conference on International computing education research, 2014.

[4] I. Cetin and M. Y. Ozden, “Development of computer programming attitude scale for
university students,” Computer Applications in Engineering Education, vol. 23, no. 5, pp.
667–672, 2015.

[5] B. Dorn and A. Elliott Tew, “Empirical validation and application of the computing
attitudes survey,” Computer Science Education, vol. 25, no. 1, pp. 1–36, 2015.

[6] O. Ozyurt, “An analysis on distance education computer programming students’ attitudes
regarding programming and their self-efficacy for programming,” Turkish Online Journal
of Distance Education, vol. 16, no. 2, 2015.

[7] M. S. Gunbatar, “Examination of undergraduate and associate degree students’ computer
programming attitude and self-efficacy according to thinking style, gender and
experience,” Contemporary Educational Technology, vol. 9, no. 4, pp. 354–373, 2018.

[8] M. Derya GURER, I. Cetin, and E. Top, “Factors affecting students’ attitudes toward
computer programming,” Informatics in Education, vol. 18, no. 2, pp. 281–296, 2019.

[9] D. Ronan and D. Cenk Erdil, “Impact on computing attitudes and career intentions in a
rotation-based survey course,” in 2020 ASEE Virtual Annual Conference Content Access
Proceedings, Jun. 2020.

[10] J. Arigye, A. J. Magana, J. A. Lyon, and E. Pienaar, “Biomedical and agricultural
engineering undergraduate students programming self-beliefs and changes resulting from
computational pedagogy,” in 2023 ASEE Annual Conference & Exposition Proceedings,
Jun. 2023.

[11] D. Whittinghill, D. Nelson, K. A. R. Richards, and C. Calahan, “Improving the affective
element in introductory programming coursework for the ‘non programmer’ student,”
in 2014 ASEE Annual Conference & Exposition Proceedings, Jun. 2014.

[12] K. Steelman et al., “Work in progress: Student perception of computer programming
within engineering education: An investigation of attitudes, beliefs, and behaviors,”
in 2020 ASEE Virtual Annual Conference Content Access Proceedings, Jun. 2020.

[13] D. Raubenheimer, R. Brent, J. Joines, and A. Craig, “Integration of computer-based
problem solving into engineering curricula,” in 2008 ASEE Annual Conference &
Exposition Proceedings, Jun. 2008.

[14] R. Shiavi and A. Brodersen, “Study of instructional modes for introductory
computing,” Journal of Engineering Education, vol. 94, no. 4, pp. 355–362, 2005.

[15] M. Delacre, D. Lakens, and C. Leys, “Why psychologists should by default use Welch’s t-
test instead of Student’s t-test,” International Review of Social Psychology, vol. 30, no. 1,
pp. 92–101, 2017.

[16] G. M. Sullivan and A. R. Artino Jr, “Analyzing and interpreting data from likert-type
scales,” Journal of Graduate Medical Education, vol. 5, no. 4, pp. 541–542, 2013.

